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Operational modal parameter identification is a tough problem in aerospace engineering due to the complex mechanics
environment, various noises, and limited computational resources. In this paper, a novel, recursive, robust, and high-
efficiency modal parameter identification approach is proposed for this issue. (e kernelized time-dependent autore-
gressive moving average (TARMA) model is adopted to model the nonstationary responses, a recursive estimator is
established based on the maximum correntropy criterion, and sliding-window technique is applied to fix the compu-
tational complexity, which ensures the approach its estimation accuracy, robustness, and high efficiency. Finally, steps of
the identification procedure and model selection are presented. An experimental scheme is proposed for validation, and
the proposed approach is comparatively assessed against the classical recursive pseudo-linear regression TARMA method
via Monte Carole tests of a time-varying experimental system. (e results of the comparative study demonstrate that the
proposed method achieves similar estimation accuracy and higher computation efficiency under the Gaussian envi-
ronment. Moreover, a superior estimation accuracy and enhanced robustness are rendered under additive non-Gaussian
impulsive noise.

1. Introduction

Aerospace structures are typical time-varying structures,
such as airplanes with varying additional aerodynamic ef-
fects in flight [1, 2], launch vehicle with varying fuel mass
[3–5], and satellite with deployable antenna [6, 7]. (e great
increase in the complexity and size of aerospace structures
has brought remarkable difficulties and challenges to the
system level dynamics simulation and test on the ground.
(erefore, online time-varying operational modal parameter
identification is imperative for better flight performance,
longer service lifetime, and more reliable control ability in
aerospace engineering.

(e problem of operational modal parameter identifi-
cation of time-varying structures involving exclusively
available response signals is also referred as the output-only
time-varying identification problem [8]. Time-dependent
autoregressive moving average (TARMA) model-based

identification methods have gained much more attention
due to their attractive features [9, 10].

Over the past decades, many efforts have been under-
taken to develop the batch identification methods based on
the TARMA model [11–13]. Most batch identification
methods have good tracking and estimation accuracy.
However, great computational cost and postprocessing
manner limit their application to online identification. Also,
a lot of work has been done in recursive methods based on
the TARMA model. Xie and Evans [14] first used expo-
nentially weighted Legendre functions to model time-
varying parameters of the TARMA model. Poulimenos and
Fassois [15] further extended the recursive methods by
selecting basis functions of orthogonal functions and pro-
posed the recursive pseudo-linear regression TARMA
(RPLR-TARMA) method. However, as running basis
methods mentioned above, both of them encountered nu-
merical problems when basis sequences are not bounded. In
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order to improve the numerical problems, Yang [16] pro-
posed a kernelized TAR model, which represented the time-
varying parameters by using a series combination of kernel
functions. Ma et al. [17] extended the kernelized TAR model
to the TARMA model and proposed a recursive estimator.
However, the kernel-based TARMA method does not
perform well when signal-to-noise ratio is low, or there is a
significant non-Gaussian impulsive noise, which limit its
application to aerospace structures with rugged mechanical
environment. Yu et al. [18] proposed a maximum corren-
tropy criterion based on the TARMA model; it shows
charming ability to deal with significant non-Gaussian
impulsive noise and provide a new manner to extend the
recursive TARMA method to the complex mechanics
environment.

In order to extend the recursive TARMA method for
online operational modal parameter identification of aero-
space structures, based on the conditions of the complex
mechanical environment, various noises, and limited
computational resources, a novel, robust, recursive esti-
mator is established based on the kernelized TARMAmodel
with the maximum correntropy criterion. (e kernelized
TARMA model represents time-varying parameters as a
linear combination of kernel functions; by using “kernel
trick” and sliding-window technique, the computation
complexity is fixed and only related to the window length.
Moreover, by considering the ridge regression criterion and
the maximum correntropy criterion [19–23], the proposed
estimator is also capable of the ill-posed problem and the
non-Gaussian noise problem. Finally, a recursive workflow
of the sliding-window exponentially weighted recursive
maximum correntropy ridge regression-kernelized TARMA
(SWRMCRR-KTARMA) method is presented by taking the

assumption that the time-varying system changes slowly in a
certain time scale.

2. Method

2.1. Kernelized TARMA Model and Maximum Correntropy
Criterion. (e TARMA model with na and nc designating,
respectively, its autoregressive (AR) and moving average
(MA) orders, is of the general form [12]

x[t] + 

na

i�1
Ai[t]x[t − i] � e[t] + 

nc

i�1
Ci[t]e[t − i], e[t] ∼ NID(0,Σ[t]),

(1)

with t designating the normalized discrete time, x[t] the
discrete-time nonstationary vibration signal modeled, e[t]

an unobservable uncorrelated innovation sequence with
zero mean and time-varying nonsingular covariance matrix
Σ[t], and Ai[t],Ci[t] the model’s time-dependent AR and
MA parameter matrices. NID(·) stands for normally inde-
pendently distributed random variables with indicated mean
and covariance.

By using kernel transformation, the AR and MA pa-
rameter matrices can be expressed as

Ai[t] ≈

ωAi
1,1[t]Tu(t) . . . ωAi

1,k(t)Tu(t)

⋮ ⋱ ⋮

ωAi
k,1[t]Tu(t) . . . ωAi

k,k[t]Tu(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ci[t] ≈

ωCi
1,1[t]Tu(t) . . . ωCi

1,k[t]Tu(t)

⋮ ⋱ ⋮

ωCi
k,1[t]Tu(t) . . . ωCi

k,k[t]Tu(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2)

(e kernelized TARMA model is given by [24]

x[t] � − 

na

i�1
Ai[t]x[t − i] + 

nc

i�1
Ci[t]e[t − i] + e[t],

⇔x[t] � w[t]
Tφ[t] + e[t],

⇔x[t] �

wA1
1,1[t]T . . . wA1

1,k[t]T . . . wCnc

1,1 [t]T . . . wCnc

1,k [t]T

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

wA1
k,1[t]T . . . wA1

k,k[t]T . . . wCnc

k,1 [t]T . . . wCnc

k,k [t]T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− x[t − 1]⊗u(t)

⋮

e t − nc ⊗u(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + e[t],

⇔x[t] � w[t](φ[t]⊗u(t)) + e[t],

⇔x[t] � w[t]
Tφ[t] + e[t],

(3)

where ⊗ is the Kronecker product, w[t] is the time-de-
pendent parameter vector, φ[t] is the regression matrix, and
ω[t] and ϕ[t] are the corresponding kernelized counterparts.
u(t) is the transformed feature vector lying in the feature
space; by using a Gaussian kernel, the “kernel trick” can be
expressed as follows:

u ti( 
Tu tj  � κk ti, tj  � exp −

ti − tj

�����

�����
2

2σ2k
⎛⎜⎜⎝ ⎞⎟⎟⎠, (4)

where σk designates the adjustable parameter.
(e system’s “frozen-time” characteristic matrix equa-

tion is given by [25]
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|A[B, t]| � I + 

na

i�1
Ai[t]B

i




� 0, (5)

with B designating the backshift operator, Bix[t] � x[t − i].
(e roots of the system can be derived from a general ei-
genvalue problem [26]

D[t] − λr[t]I( Vr[t] � 0, (6)

where λr[t] and Vr[t] � [λ− na
r Lr, . . . , λ− 1

r Lr]
T stand for the

rth eigenvalue and eigenvector of D[t]. (e matrix D[t] is
constructed from the AR parameter matrices as

D[t] �

0 I . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . I

− Ana
[t] − Ana− 1[t] . . . − A1[t]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

(e “frozen-time” modal frequencies and damping ra-
tios of the system can be computed by

fr[t] �
ln λr[t]




2πTs

,

ζr[t] �
− Re ln λr[t]( 

ln λr[t]



.

(8)

In general, correntropy is a local similarity measure
between two arbitrary random variables of X, Y ∈ R, with
joint distribution function FXY(x, y), and is defined by
[27]

V(X, Y) � E κc(X, Y)  �  κc(x, y)dFXY(x, y), (9)

where κ(·) is a kernel function that satisfies Mercer theory
and E(·) denotes the expectation operator. In this note, the
shift-invariant Mercer kernel is the Gaussian kernel given
by

κc(x, y) � G(e) � exp −
e2

2σ2c
 , (10)

where e � x − y, and σc > 0 stands for the kernel bandwidth.
For a ridge regression problem, with parameter weight

vector w, the corresponding optimal problem based on the
maximum correntropy criterion can be expressed as follows:

max
w

JMCC � max
w



N

i�1
E exp −

e2(i)

2σ2c
   − c‖w‖

2⎡⎣ ⎤⎦. (11)

2.2. Recursive Maximum Correntropy Ridge Regression-Ker-
nelized TARMA Method. (e exponentially weighted
mechanism is used to put more emphasis on the recent
data. In order to fix the computational complexity, a
sliding-window technique is adopted, allowing the pro-
posed method can be operated in a recursive manner with
low computational cost. Given the forgetting factor
0< λ≤ 1 and the regularization parameter c≥ 0, the

weighted regularized maximum correntropy cost function
is defined as

max
ω[t]



t

τ�t− N+1
λNκc x[τ] − ω[t]

Tϕ[τ]  −
1
2
λN

c‖ω[t]‖
2⎡⎣ ⎤⎦,

(12)

and the solution to this optimal problem is given by

ω[t] � Ψ
→

[t] Ψ
→

[t]
TΨ
→

[t] + λN
cσc

2 Γ
→

[t]
− 1

 
− 1

x
→

[t], (13)

with

Ψ
→

[t]≜[ϕ[t − N + 1],ϕ[t − N + 2], . . . ,ϕ[t]],

x→[t]≜[x[t − N + 1], x[t − N + 2], . . . , x[t]]
T
,

Γ
→

[t]≜diag λN− 1
E[t − N + 1], λN− 2

E[t − N + 2], . . . , E[t] ,

(14)

where E[t]≜ exp((− 1/2σ2c)e[t]Te[t]).

Denote Q
→

[t] � Ψ
→

[t]TΨ
→

[t] + λNcσ2c Γ
→

[t]− 1 and
k
→

[t] � [ϕ[t − N + 1], . . . , ϕ[t − 1]]Tϕ[t]; the following
equation can be received:

Q
→

[t] �
Q
→∗

[t − 1] k
→

[t]

k
→

[t]T ϕ[t]Tϕ[t] + λNcσ2cE[t]− 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (15)

where Q
→∗

[t − 1] can be obtained by removing the first row
and column of Q

→
[t − 1].

By using “kernel trick,” ϕ[t]Tϕ[t] can be computed as
follows:

ϕ[t]
Tϕ[t] � (ϕ(t)⊗u(t))

T
(ϕ(t)⊗u(t))

� ϕ(t)
Tϕ(t) κk(t, t),

(16)

where κk(ti, tj) � exp(− (‖ti − tj‖
2/2σk)).

By using the upsized matrix inversion formula, the
update process of Q

→
[t]− 1 is

Q
→

[t]
− 1

�
Q
→∗

[t − 1]− 1 + z
→

[t] z
→

[t]T r
→

[t]− 1 − z
→

[t]r[t]− 1

− z
→

[t]T r
→

[t]− 1 r
→

[t]− 1
⎡⎢⎢⎣ ⎤⎥⎥⎦,

(17)

with z
→

[t] � Q
→∗

[t − 1]− 1 k
→

[t] and r
→

[t] � λNcσ2c
E[t]− 1 + ϕ[t]Tϕ[t] − z

→
[t]T k

→
[t].

Define

Q
→

[t − 1]
− 1

�
A
→

B
→

C
→

D
→

⎡⎢⎣ ⎤⎥⎦. (18)

By using the downsized matrix inversion formula, the
following equation can be obtained:

Q
→∗

[t − 1]
− 1

� D
→
-C
→

A
→− 1

B
→

. (19)
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Considering equations (19) and (13), the kernelized
parameter matrix ω[t] can be obtained:

ω[t] � Ψ
→

[t]Q
→

[t]
− 1

x
→

[t]. (20)

Finally, time-dependent AR andMA parameter matrices
can be computed by

w[t]
T

� A1[t], . . . ,Ana
[t],C1[t], . . . ,Cnc

[t] 

� w[t]
T Ik na+nc( )⊗u[t] 

� Ψ
→

[t]Q
→

[t]
− 1 x→[t] 

T
Ik na+nc( )⊗u[t] 

� Q
→

[t]
− 1 x→[t] 

T
φ[t − N + 1]T⊗κk(t − N + 1, t)

⋮

φ[t]T⊗κk(t, t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

(e workflow of the SWRMCRR-KTARMA method is
summarized in (Algorithm 1).

2.3. Model Structure Selection. (e model structure pa-
rameters of the proposed SWRMCRR-KTARMA method
include the kernel bandwidth σc and σk, the forgetting factor
λ, the sliding-window length N, the regularization param-
eter c, and AR and MA orders na and nc.

Modal structure selection is generally based upon trail-
and-error or integer optimization schemes, and the “fitness”
one is finally selected. (e “fitness” function can be estab-
lished based on many rules; in this note, a normalized re-
sidual sum of squares (RSS) criterion is chosen as the
“fitness” function, which can be seen as

RSS≜


N
t�1 e[t]Te[t]

N
. (22)

Model structure selection of SWRMCRR-KTARMA can
be tackled via the following three basic steps:

Step 1: given initial values of σc, σk, λ, N, and c based on
prior knowledge of model parameter variation.
Step 2: select AR and MA orders based on the mini-
mization of the normalized RSS:

(a) Given the integer search space with na � nc, and the
fitness AR order na is selected when the decrease of
RSS values is quite subtle

(b) Given the integer search space [0, na], and the best
fit MA order nc can be selected in the same way as
that of the AR order

Step 3: optimizing initial parameters based on the
model orders obtained in Step 2.

(is process can be done while the fitness or suitable
one is found. A detailed optimization scheme is beyond the
scope of the current note, and the initial parameters will be

selected based on prior knowledge or the normalized RSS
criterion.

Remark 1. (e kernel bandwidth σk reflects the nonlinear
power of the proposed method; it should be selected based
on different problems. (e kernel bandwidth σc controls the
robustness to impulsive noise of the proposed method; it
should be selected properly to avoid the “over-robust”
problem.

Remark 2. (e selection of the forgetting factor and sliding-
window length is a coupled problem. Both of them affect the
tracking ability of the method, and the forgetting factor
should be very close to one in case N is relatively small. In
this note, the forgetting factor λ � 1 is initially recom-
mended, and the selection of N is based on the normalized
RSS criterion.

Remark 3. (e regularization parameter c deals with the
overfitting problem, which controls the variance of esti-
mated regression parameters; however, it does this at the
expense of adding bias to the estimate. (e selection of c is a
compromise issue.

3. Experimental Verification

In order to effectively and reliably assess the SWRMCRR-
KTARMA method, a time-varying barrel experimental
structure is adopted to simulate the typical mass-varying
feature of the launch vehicle by draining off contained water
for validation, along with the classical exponentially
weighted recursive pseudo-linear regression TARMA
(EWRPLR-TARMA) method [15] for comparison. (e ex-
perimental scheme is as follows.

(e “frozen” modal experiment is first taken out, and
the corresponding “frozen” modal parameters are re-
ferred as baseline value. (en, the time-varying experi-
ment is carried out, and the nonstationary response signal
is recorded by transducers. Various intensities of nu-
merical non-Gaussian impulsive noise are added into the
response signal directly for evaluating the robustness
under non-Gaussian noise, as it is limited by the present
experimental condition to simulate the non-Gaussian
impulsive phenomena physically. Finally, the
SWRMCRR-KTARMA method and the EWRPLR-
TARMA method are validated and compared based on
the experimental data.

3.1. Mass-Varying Test Structure. A free-free barrel mass-
varying laboratory system is set up to simulate the mass-
varying feature of the carrier rocket by draining off water.
(e test structure is hung from the aluminum alloy support
frame by the nylon rope to simulate the free-free boundary
conditions. (e steel barrel is 2.5m high, and the outer
diameter is 0.05m, and the thickness is 0.001m. Total
weight of the barrel is 2.4 kg, and two 15 kg added masses
are attached to it in order to reduce the natural frequency of
the system, as shown in Figure 1. (e tankage of the barrel
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allows mass of water varying from 15.7 kg (full state) to 0 kg
(empty state), and the diameter of the hole at the bottom
controls the flow rate. (e exciter system consists of an

exciter (Modal Shop 2025E) and a power amplifier
(SmartAmp 2100E21-400). An impedance head (PCB
288D01), a laser range finder (Y1TA100MHT88), and 9

Initialization:
w[0]T � 0, σc, σk, λ, c, N

Computation (1≤ t≤N):
e[t | t − 1] � x[t] − x[t | t − 1] � x[t] − w[t − 1]Tφ[t]

E[t] � exp((− 1/2σ2c )e[t | t − 1]Te[t | t − 1])

k[t] � ψ[t − 1]Tϕ[t] �

ϕ[1]Tϕ[t]

⋮
ϕ[t − 1]Tϕ[t]

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

φ[1]Tφ[t]κk(1, t)

⋮
φ[t − 1]Tφ[t]κk(t − 1, t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

z[t] � Q[t − 1]− 1k[t]

r[t] � λtcσ2cE[t]− 1 + φ[t]Tφ[t]κk(t, t) − z[t]Tk[t]

Q[t]− 1 �
Q[t − 1]− 1 + z[t]z[t]Tr[t]− 1 − z[t]r[t]− 1

− z[t]Tr[t]− 1 r[t]− 1 

w[t]T � (Q[t]− 1x[t])T
φ[1]T⊗κk(1, t)

⋮
φ[t]T⊗κk(t, t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

Computation (t>N):
Downsizing: obtain Q

→∗
[t − 1] by removing the first row and column of Q

→
[t − 1].

Compute Q
→∗

[t − 1]− 1 according to the downsized matrix inversion formula.
e[t | t − 1] � x[t] − w[t − 1]Tφ[t]

E[t] � exp((− 1/2σ2c )e[t | t − 1]Te[t | t − 1])

k
→

[t] � Ψ
→

[t − 1]Tϕ[t] �
ϕ[t − N + 1]Tϕ[t]

⋮
ϕ[t − 1]Tϕ[t]

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

ϕ[t − N+]Tϕ[t]κk(t − N + 1, t)

⋮
ϕ[t − 1]Tϕ[t]κk(t − 1, t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

z
→

[t] � Q
→∗

[t − 1]− 1k[t]

r
→

[t] � λNcσ2c E[t]− 1 + φ[t]Tφ[t]κk(t, t) − z
→

[t]T k
→

[t]

Q
→

[t]− 1 � Q
→∗

[t − 1]− 1 + z
→

[t] z
→

[t]T r
→

[t]− 1 − z
→

[t] r
→

[t]− 1

− z
→

[t]T r
→

[t]− 1 r
→

[t]− 1 

w[t] � (Q
→

[t]− 1 x→[t])T
φ[t − N + 1]T⊗κk(t − N + 1, t)

⋮
φ[t]T⊗κk(t, t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

TARMA model parameter estimation:
[A1[t], ..., Ana

[t],C1[t], ...,Cnc
[t]] � w[t]T

ALGORITHM 1: SWRMCRR-KTARMA method.

Exciter

PC

Power
amplifier

Aluminium
support frame

SCADA III

Added
mass

Steel
barrel

Accelerometer

Cistern

Valve

(a) (b)

Figure 1: Schematic diagram (a) and setup (b) of the experimental system.
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accelerometers (PCB 333B30) are, respectively, used as the
force, distance, and motion transducers. (e acquisition
module is a LMS SCADAS III system. Control systems
consist of a steering engine (JX PDI6221MG) and a remote
control (Futaba 14SG).

(e experimental mass-varying system is characterized
by the position of the water level, and the water level is time-
dependent. Considering the frozen-time assumption, the
time-varying experimental system can be treated as a series
time-invariant system, and the time-invariant modal anal-
ysis methods can be applied. And the frozen modal ex-
periments are conducted as follows.

During the experiment, the water level starts at 0.25m
(the bottom of the barrel is the zero point) and ends at 2m,
which means the measurements of the laser range finder
start at 2.25m and end at 0.5m because the laser range finder
is on the top of the barrel. We divided the level range,
0.25m–2m, into 35 equal segments of 0.05m. (e “frozen-
time” experiment is carried out by adding about 395ml
water into the barrel in each run, and a random excitation is
added at 0.5m, and 9 channels of accelerometers are settled
along the barrel from bottom to top, as shown in Figure 1.
Figure 2 shows the first two modal frequency and damping
ratio estimates. (e horizontal axis is the measurement of
the laser range finder; the vertical axis is the modal frequency
in Figure 2(a) and damping ratio in Figure 2(b).

(e time-varying experiment is operated by opening the
hole at the bottom of the barrel, and a random excitation is
added at 0.5m at the same time. Total 9 channels are used to
obtain the nonstationary response signals. (e response
signals are sampled at 1,024Hz, the time duration is 16 s, and
the total number of the samples is 16,384.

3.2. Non-Gaussian Noise Simulation. In order to model the
outliers/impulsive noise that exist in real test cases, a class of
alpha-stable distribution is discussed. (ere is no closed-
form expression for the probability density function of al-
pha-stable distributions, but its characteristic function [28]
is given

Φ(t) � exp jμt − η|t|
α
[1 + jβsign(t)ω(t, α)] , (23)

where

ω(t, α) �

tan
απ
2

, α≠ 1,

2
π
log|t|, α � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sign(t) �

1, t> 0,

0, t � 0,

− 1, t< 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

and α is the characteristic exponent satisfying 0< α≤ 2,
which controls the thickness of tails in the distribution. μ is
the location parameter (− ∞< μ<∞), which corresponds to

the mean for 1< α≤ 2 and the median for 0< α≤ 1. η is the
dispersion parameter (η> 0), which determines the spread of
the density around its location parameter. β is the symmetry
parameter (− 1≤ β≤ 1); when β � 0, the distribution is
symmetric around the location parameter and referred to as
the symmetry alpha-stable distribution (SαS). (e overall
shape and the tails of the probability density functions of
alpha-stable distributions are presented in Figure 3. In order
to compare the level of a desired signal to an impulsive noise,
a mixture signal-to-noise ratio (MSNR) [29] is defined as

MSNRdB � 10 · log10
σ2signal
η

 , (25)

where σ2signal is the variance of the signal and η is the dis-
persion parameter of the alpha-stable distribution. In this
note, a class of symmetric alpha-stable distribution
(α � 0.9, β � 0, and μ � 0) is mainly considered.

3.3. Comparative Results and Discussion. Various capabil-
ities of the previously mentioned methods are examined in
this section. (e main focus here is placed upon the as-
sessment of the following characteristics: (a) achievable
time-dependent natural frequency accuracy, (b) computa-
tional complexity, and (c) robustness to non-Gaussian
impulsive noise.

(e proposed SWRMCRR-KTARMA method is
employed to identify the experimental time-varying struc-
ture. (e initial values, σc � 1, σk � 105, N � 175, λ �

1, c � 3 × 10− 3, are selected via prior knowledge, and model
order selection is achieved via the RSS criterion as shown in
Figure 4, which suggests the fitness AR and MA order
na � 7, nc � 1.(e forgetting factor λ � 1 is finally selected as
the sliding-window length N � 175 is relatively small. Also,
the suggested AR, MA orders and forgetting factor of the
EWRPLR-TARMAmethod are na � 8, nc � 0 and λ � 0.990,
which can be achieved via the RSS criterion as shown in
Figure 5. (e finally selected characteristics of the
SWRMCRR-KTARMA method and its LS counterpart
EWRPLR-TARMA method are summarized in Table 1.

(e modal frequency identification results of
SWRMCRR-KTARMA and EWRPLR-TARMA can be
seen in Figure 6. Evidently, the performance of the
SWRMCRR-KTARMA method achieves similar estimation
and tracking accuracy with the EWRPLR-TARMA method
under none additive noise, and it shows superior accuracy
and robustness under non-Gaussian additive noise.

In order to compare these methods by using natural
frequency estimates in a quantitative manner, a mean ab-
solute error (MAE) is introduced as

MAE �
1
R



R

i�1

1
Ne(i)



Ne(i)

t�1
f[t] − fi[t]



⎛⎝ ⎞⎠. (26)

with f[t] designating the baseline value of the modal fre-
quency, fi[t] its estimated value based on the ith Monte
Carlo run, and Ne(i) the effective number of estimations for
the ith Monte Carlo run.
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(e MAE values and the average effective number ob-
tained by each method are summarized in Figures 7 and 8,
which illustrate the performance of the SWRMCRR-
KTARMAmethod in estimation accuracy is a bit poor (quite
similar) than the EWRPLR-TARMA method under none
additive noise (relative MAE error is less than 0.5% for two
modes), and the performance in robustness is not as good as
the EWRPLR-TARMA method (the relative effective
number is 3.9% and 10.1% for mode 1 and mode 2). Under
additive non-Gaussian impulsive noise, with MSNR de-
creasing, the performance of the EWRPLR-TARMAmethod
degenerates gradually, while the SWRMCRR-KTARMA
method keeps an accurate and robust modal frequency
estimation. (e main reason to explain this comparative

result is that the EWRPLR-TARMA method is based on the
LS estimator, which is optimal under the Gaussian noise
assumption. In another word, the maximum correntropy
criterion-based SWRMCRR-KTARMA method loses its
optimality to enhance its robustness under non-Gaussian
noise.

(e time and memory complexities of the SWRMCRR-
KTARMA method are O(N2), which is mainly determined
by the sliding-window length. However, the time and
memory complexities of the EWRPLR-TARMA method are
O(k5(na + nc)

2) [17], which is related to the dimensionality
of the regression matrix and covariance matrix. Figure 9
illustrates the normalized processing CPU times required for
model parameter estimation, which indicate the
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computational complexity associated with each method.
Evidently, the proposed method attains much better com-
putational performance than the EWRPLR-TARMA

method, especially when the number of signal channels
(parameter k) is quite large which is common in the large
aerospace structure test.
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Table 1: Identification methods, their characteristics, and the identification models.

Identification method Method characteristics Identified model
SWRMCRR-KTARMA σc � 1, σk � 105, N � 175, λ � 1, c � 3 × 10− 3 KTARMA (7, 1)
EWRPLR-TARMA λ � 0.990 TARMA (8, 0)
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4. Conclusion

A novel kernel recursive method was proposed for operational
modal parameter identification of aerospace structures. (e
SWRMCRR-KTARMA method was validated by an experi-
mental time-varying system and compared with the conven-
tional least-squares criterion-based EWRPLR-TARMA
method. (e results indicated that the proposed method was
able to track the dynamics of the time-varying system and
achieved similar accuracy, lower computational complexity,
and enhanced online identification capability compared with
the existing EWRPLR-TARMA method under Gaussian
conditions. Moreover, it exhibited its advantages on superior
estimation accuracy and robustness under additive non-
Gaussian noise. (e proposed method extends the application
range of recursive TARMA methods in aerospace engineering
to the conditions of the complex mechanics environment,
various noises, and limited computational resources.

Nomenclature

Ai[t]: Time-dependent autoregressive parameter matrix
Ci[t]: Time-dependent moving average parameter matrix
D[t]: Characteristic matrix
e[t]: Uncorrelated innovations, m
fr[t]: rth natural frequency
u(t): Transformed feature vector
Vr[t]: rth eigenvector
w[t]: Time-dependent parameter vector
x[t]: Discrete-time nonstationary vibration signal, m
Σ[t]: Covariance matrix
φ[t]: Regression matrix
λr[t]: rth eigenvalue
ζr[t]: rth damping ratio
α: Characteristic exponent
t: Normalized discrete time, s
σk, σc: Gaussian kernel bandwidth parameter
λ: Forgetting factor
c: Regularization parameter
N: Sliding-window length
na: Autoregressive order
nc: Moving average order
μ: Location parameter
η: Dispersion parameter
β: Symmetry parameter.
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