
Research Article
Free Vibration Characteristics of Moderately Thick Spherical
Shell with General Boundary Conditions Based on Ritz Method

Bing Hu,1,2 Cong Gao,3 Hang Zhang,3 Haichao Li ,3 Fuzhen Pang,3 and Jicai Lang 3

1State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2China COSCO Shipping Cooperation Limited, Shanghai 200027, China
3College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Correspondence should be addressed to Haichao Li; lihaichao@hrbeu.edu.cn and Jicai Lang; langjicai@hrbeu.edu.cn

Received 17 February 2020; Revised 14 August 2020; Accepted 1 October 2020; Published 29 November 2020

Academic Editor: YuRen Wang

Copyright © 2020 BingHu et al.+is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the Ritz method is adopted to investigate the vibration characteristics of isotropic moderately thick annular spherical
shell with general boundary conditions. +e energy expressions of the annular spherical shell were established based on the first-
order shear deformation theory (FSDT). +e spring stiffness method is introduced to guarantee continuity and simulate various
boundary conditions on the basis of the domain decomposition method. Under the current framework, the displacement
admissible function along axial direction and circumferential direction of the shell structure are, respectively, expanded as the
unified Jacobi polynomials and Fourier series.+e final solutions can be obtained according to the Ritz method.+e validity of the
proposed method is proved by comparing the results of the same condition with those obtained by the finite element method
(FEM) and published literatures. +e results show that the current method has fast convergence and delightful accuracy through
the comparative study. On this basis, the vibration characteristics of isotropic moderately thick annular spherical shell are further
studied by a series of numerical examples.

1. Introduction

+e isotropic moderately thick annular spherical shell
structure, as a basic component, has been widely used in
many fields of engineering, such as drive shaft, cooling
towers, water tanks, pressure vessels, and rotor system. In
practical engineering, the dynamical behavior and stability
are very important for the structural design because of the
structure exposed to various complex environments and
bear various dynamic loads. Based on this background, it is
very important and necessary to investigate the free vibra-
tion characteristics of isotropic moderately thick annular
spherical shell under general boundary conditions.

For vibration analysis of thin spherical shell, Bryan [1]
developed a new method to investigate the differential
equations of motion about a thin spherical shell, in which the
Legendre polynomials are utilized to obtain the analytical
solutions for the spatial differential equation. Xie et al. [2]
proposed a unified approach to study the vibration

characteristics of spherical of revolution stiffened by rings
with T cross-section. Based on Flugge’s thin shell theory,
Wang et al. [3] presented the vibration characteristics of
coupled doubly curved shell structures which subject to
arbitrary boundaries. Pang et al. [4] applied the Ray-
leigh–Ritz method to analyze the free vibration of doubly
curved shells. Li and Yuan [5, 6] applied quasi-Green’s
function method to analyze the free vibration of shallow
spherical shell based on the fundamental solution and
boundary equation of the problem. By using a hybrid finite
element method, Menaa and Lakis [7] presented the free
vibration characteristics of the spherical shell by uniting the
thin shell theory and classical finite element method. By
using the separation of variable method, Zaera et al. [8]
obtained the free vibration solutions of closed thin spherical.
Polyakov et al. [9] derived the formulation of a closed
spherical shell to analyze the free vibrations along the
thickness direction of structure. According to von Karman’s
thin shallow shells theory, +omas et al. [10, 11] derived the
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nonlinear vibration equations of shallow spherical shell
under large amplitude displacement.

For vibration analysis related to moderately thick
spherical shell structures, Tornabene et al. [12–16] applied
the Generalized Differential Quadrature (GDQ) method to
investigate the free vibration characteristics of the rotating
shell structure based on FSDT. Buchanan and Rich [17]
figured out the frequency parameters of thick isotropic
spherical shells with simple supports by formulating La-
grangian finite element in spherical coordinates. Based on
FSDT, Wang et al. [18–21] carried out a great deal of re-
search studies on spherical shell structures under different
boundary conditions, and the analytical solutions were
obtained by the Ritz method. Jin et al. [22–25] also con-
ducted a large number of studies to analyze free vibration
characteristics of spherical shell structures under general
boundary conditions based on the Rayleigh–Ritz method,
which each admissible functions is invariantly expanded as a
modified Fourier series according to the three-dimensional
shell theory of elasticity. Hosseini-Hashemi and Fadaee [26]
applied the separation of variables method for free vibration
analysis of moderately thick spherical shell according to the
first-order shear deformation theory. Zenkour [27]
expressed the dynamic responses of anisotropic spherical
shells under a uniformly distributed transverse load in the
frame work of mixed first-order shear deformation theory.
Based on higher order shear deformation theory (HSDT),
Fazzolari [28] presented the free vibration characteristics of
doubly curved laminated composite spherical shallow shells
by using the dynamic stiffness method (DSM). Panda et al.
[29–32] investigated the nonlinear free vibration charac-
teristics of laminated composite shallow spherical shell using
the variational method, and the analytical model was
established on the basis of Green–Lagrange nonlinear ki-
nematics. For space reasons, other papers on rotating cy-
lindrical and spherical shells can be found in references
[33–35].

It can be concluded that lots of published literatures
focused on the free vibration response of thin spherical shell
which subject to general edge restraints, and the free vi-
bration characteristics of moderately thick spherical shell
structures have been investigated in some research studies.
However, to the authors’ knowledge, the aforementioned
review for vibration solutions of moderately thick annular
spherical shell structure with general boundary conditions
based on the FSDT is infrequent. Considering this back-
ground, it is necessary to analyze the free vibration char-
acteristics of moderately thick annular spherical shell
structure with general boundary conditions. In addition, this
paper presents a series of unpublished numerical results of
the effects on the boundary conditions, shell segments, and
structural parameters, which can be used as basic data to
provide comparative data for future researchers in this field.

2. Theoretical Formulations

2.1. *e Mathematical Model of Moderately *ick Annular
Spherical Shell. An isotropic moderately thick annular
spherical shell with radius R is considered, as shown in

Figure 1. +e deformation displacements of the annular
spherical shell with respect to the coordinate system can be,
respectively, defined by u, v, and w in the φ, θ, and δ di-
rections, and the system (φ, θ, δ) represent axial, circum-
ferential, and normal directions, accordingly. Cs and h,
respectively, represent the geometry center and thickness of
the annular spherical shell. φ0 and φ1, respectively, denote
the center angle correspond to the top and bottom of an-
nular spherical shell. +e formulas of this paper are derived
on the basis of the domain decomposition method [36–41],
the spherical shell is divided into H segments along axial
direction, and the artificial springs are arranged at both ends
of each segment; the continuity condition and various
boundary conditions can be simulated by assigning the
stiffness values of springs.

2.2. EnergyExpressions ofModerately*ickAnnular Spherical
Shell. According to FSDT [42–44], the displacements of ith
segment of moderately thick annular spherical shell can be
written as follows:

U
i
(φ, θ, δ, t) � u

i
(φ, θ, t) + δψi

φ(φ, θ, t), (1a)

V
i
(φ, θ, δ, t) � v

i
(φ, θ, t) + δψi

θ(φ, θ, t), (1b)

W
i
(φ, θ, δ, t) � w

i
(φ, θ, t). (1c)

+e strains of moderately thick annular spherical shell in
this study can be written as follows:

εi
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In this paper, the symbols A and B are Lamé parameters,
and they can be expressed as follows [45, 46]:

A � R,

B � R sinφ.
(4)

+e stresses of the structure can be written as follows:
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where symbols of σ and τ, respectively, represent normal and
shear stresses. +e Qij(δ) are defined as follows:
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where E and μ are elastic modulus and Poisson’s ratio,
respectively. +e force and moment resultants can be
expressed as below:
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where κ represents the shear correction factor, and it is set as
5/6 in this study. +e symbols of Aij, Bij, and Dij can be
written as follows:

Aij, Bij, Dij  � 
h/2

−h/2
Qij(δ) 1, δ, δ2 dδ. (8)

+e strain energy of the select segment can be expressed
as follows:
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Figure 1: Geometry notations and coordinate system of the annular spherical shell.
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+e strain energy expression can be rewritten as
Ui � Ui
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BC, and the detailed expressions are shown
in equations (10)–(12):
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+e kinetic energy of the select segment can be written as
follows:
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where the dot on the symbols represents differentiation
about time, and the related symbols can be expressed as
follows:

I0, I1, I2(  � 
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δ
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2

1, δ, δ2 dδ. (14)

As mentioned above, the application of artificial springs
can ensure the convergence of result. Each edge of the
structure is restrained by three linear springs (ku, kv, kw) and
two rotational springs (kφ, kθ). +en, the boundary potential
energy for moderately thick annular spherical shell is
expressed as follows:
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where kt,0(t � u, v, w,φ, θ) and kt,1, respectively, denote the
spring stiffness value of the moderately thick annular
spherical shell.

+e potential energy stored in two adjacent segments can
be shown as follows:
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Figure 2: Frequency parameters Ω of the annular spherical shell with different boundary parameters.
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+us, the total potential energy can be written as follows:

UBS � Ub + 
I−1

i�1
U

i
s. (17)

2.3. Admissible Displacement Functions. In this paper, the
authors try to introduce the unified Jacobi polynomials to
improve the selection of displacement functions based on
the domain decomposition method, and the value of φ are

Table 1: Related spring stiffness values.
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Figure 3: Frequency parameters Ω of the annular spherical shell with different number of segments.
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Figure 4: Frequency parameters Ω of the annular spherical shell with different truncation.
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Figure 5: Continued.
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defined in the range of [−1, 1]. +e related recurrence
formulas are shown as below:

P
(α,β)
0 (ϕ) � 1, (18a)

P
(α,β)
1 (ϕ) �

α + β + 2
2

ϕ −
α − β
2

, (18b)

P
(α,β)

i (ϕ) �
(α + β + 2i − 1) α2 − β2 + ϕ(α + β + 2i)(α + β + 2i − 2) 

2i(α + β + i)(α + β + 2i − 2)
P

(α,β)

i−1 (ϕ)

−
(α + i − 1)(β + i − 1)(α + β + 2i)

i(α + β + i)(α + β + 2i − 2)
P

(α,β)

i−2 (ϕ),

(18c)

where α, β> − 1 and i � 2, 3, . . .

+erefore, the displacement functions can be generalized
according to Jacobi polynomial:

u � 
M

m�0
UmP

(α,β)
m (φ)cos(nθ)e

iωt
, (19a)

v � 

M

m�0
VmP

(α,β)
m (φ)sin(nθ)e

iωt
, (19b)

w � 
M

m�0
WmP

(α,β)
m (φ)cos(nθ)e

iωt
, (19c)

ψx � 
M

m�0
ψxmP

(α,β)
m (φ)cos(nθ)e

iωt
, (19d)

ψθ � 
M

m�0
ψθmP

(α,β)
m (φ)cos(nθ)e

iωt
, (19e)

where Um, Vm, Wm, ψθm, and ψφm are unknown coefficients;
m and n, respectively, represent the semiwave number in
axial and circumferential direction, andM is highest degrees
of m.

2.4. Solution Procedure. +e Lagrangian energy functionsL
can be expressed as follows:

L � 
H

i�1
T

i
− U

i
  − UBS. (20)

Differentiate with regard to undetermined coefficients,
and the formula can be obtained:

zL

zϑ
� 0,

ϑ � Um, Vm, Wm,ψxm,ψθm.

(21)

Substituting the formulas mentioned above into equa-
tion (21), the matrix form can be shown as follows:
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Figure 5: Relative percentage error of the annular spherical shell with different Jacobi parameters.
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K − ω2M Q � 0, (22)

where K, M, and Q of equation (22) represent stiffness
matrix, mass matrix, and unknown coefficients matrix.

3. Numerical Results and Discussion

According to the above research, a unified analytical model
for moderately thick annular spherical shell is established.
+e main purpose of this section is to discuss the numerical
results. According to the experience of published literatures,
the various boundary conditions can be represented by the
first letter of a word. For example, the free and elastic edge
conditions are denoted by the letter F and Ei (i� 1, 2, 3).+e
material properties are chosen as E � 168GPa, ρ �

5700kg/m3, and μ � 0.3. In addition, other related param-
eters appeared in this paper are defined asM� 8, α� β� 0.5,

H� 6; R� 1m, φ0 � π/6, φ1 � π/2, and h� 0.06m. +e results
of this paper are handle by Ω � ωR

���
ρ/E


.

3.1. Convergence Study. In order to investigate the con-
vergence of different spring stiffness values, Figure 2 illus-
trates the frequency parameters of moderately thick annular
spherical shell with different boundary parameters. No
matter for boundary spring and connective spring, it is
obvious that the edge condition changes from free to
clamped case with the spring stiffness values in range of
10−11E to 1010E. For example, the boundary condition is
clamped when spring stiffness values are defined in 103E to
1010E. +us, the various boundary conditions can be easily
obtained through the analysis. All edge conditions used in
this study are shown in Table 1.

Figure 3 shows results of moderately thick annular
spherical shell with different segment numbers, and the

Table 2: Comparison of frequency for the annular spherical shell.

n m
F–F F–C C–F C–C

Present FEM Present FEM Present FEM Present FEM

2

1 58.34 58.37 335.44 335.69 158.55 158.70 1067.35 1068.10
2 157.40 157.67 977.91 978.15 932.69 932.60 1335.74 1337.50
3 912.75 912.59 1389.15 1391.20 1336.83 1339.10 2150.97 2158.90
4 996.66 996.95 1856.99 1858.60 1562.82 1564.30 2701.76 2707.30
5 1455.59 1456.90 2251.48 2259.40 2132.67 2145.30 2992.14 3001.10

3

1 160.40 160.48 384.62 385.04 176.77 176.88 1031.73 1032.30
2 385.48 386.04 1068.80 1069.70 1004.08 1004.50 1421.22 1423.40
3 1065.40 1066.10 1515.69 1518.30 1453.91 1456.30 2232.02 2240.20
4 1380.75 1382.20 2111.14 2113.00 1788.38 1789.70 3024.52 3032.60
5 1576.96 1578.60 2354.72 2363.20 2282.17 2290.50 3351.62 3372.60

4

1 294.15 294.35 621.79 622.71 297.93 298.13 1055.37 1055.90
2 636.24 637.31 1153.80 1155.10 1073.02 1073.80 1521.82 1524.40
3 1174.39 1175.80 1664.41 1667.90 1571.91 1574.60 2333.59 2342.00
4 1713.64 1717.30 2483.20 2490.80 2155.14 2156.90 3283.18 3295.50
5 1960.10 1961.80 2596.72 2601.80 2398.24 2406.60 3483.08 3499.60

5

1 453.10 453.55 888.92 890.55 454.66 455.10 1128.99 1129.70
2 905.27 907.10 1276.79 1278.80 1172.80 1173.90 1645.58 1648.50
3 1325.75 1328.00 1840.65 1845.10 1714.25 1717.40 2464.25 2472.80
4 1908.15 1912.73 2664.28 2673.60 2545.11 2553.10 3497.85 3518.60
5 2509.94 2513.10 3175.94 3182.60 2595.33 2598.80 3781.52 3790.10

Table 3: Comparison of the results for the annular spherical shell (m� 1).

n
F–F F–C C–F C–C

Present Qu et al. [37] Present Qu et al. [37] Present Qu et al. [37] Present Qu et al. [37]
0 0.86794 0.87054 0.81696 0.81661 0.40539 0.40549 0.98744 0.98710
1 0.86154 0.86412 0.60870 0.60880 0.15171 0.15170 1.02673 1.02639
2 0.05724 0.05726 0.34849 0.34857 0.07635 0.07636 1.00321 1.00292
3 0.15319 0.15323 0.65740 0.65733 0.15408 0.15412 0.99835 0.99803
4 0.27893 0.27900 0.96571 0.96537 0.27901 0.27908 1.04307 1.04274
5 0.42932 0.42940 1.11593 1.11557 0.42933 0.42941 1.12659 1.12623
6 0.60179 0.60188 1.24443 1.24402 0.60180 0.60189 1.24619 1.24578
7 0.79550 0.79559 1.40073 1.40026 0.79550 0.79559 1.40104 1.40056
8 1.01041 1.01048 1.58989 1.58934 1.01041 1.01048 1.58994 1.58939
9 1.24667 1.24672 1.81090 1.81026 1.24667 1.24672 1.81091 1.81027
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boundary condition is set as clamped-clamped case. +e
example shows clearly that the current method converges
quickly with the increase of H, that is to say, it is not
necessary for very high value of H. Considering the solution
precision of moderately thick annular spherical shell, the
value of H is set as 6 in this paper.

+e results of moderately thick annular spherical shell
with different truncation numbers are shown in Figure 4.
+e example shows clearly that the current method con-
verges quickly with the increase ofM. To obtain the accurate

solution of moderately thick annular spherical shell, the
value of M is defined as 8 in this study.

Figure 5 displays the results of moderately thick annular
spherical shell with different Jacobi parameters α and β. +e
ordinate in this example is the relative percentage value, and
the results of α� β� 0.5 are selected as the comparative
object. It is apparently that the different Jacobi parameters
have little effect on free vibration of moderately thick an-
nular spherical shell.+at is to say, all the Jacobi polynomials
are capable to construct the displacement functions, and it

Table 4: Results of the annular spherical shell with classical boundary conditions (φ0 � π/6, φ1 � π/2, h� 0.06m, and R� 1m).

n m
Boundary conditions

F–C F–SS F–SD C–C C–SS C–SD SD–SD SD–SS SS–SS

1

1 0.6817 0.6506 0.3576 1.2726 1.1611 0.7320 0.6097 1.0460 1.0823
2 0.9894 0.9577 0.7359 1.2795 1.2727 1.1643 1.0542 1.1558 1.2720
3 1.3427 1.2516 0.7955 2.0030 1.8598 1.5264 1.2667 1.7017 1.7203
4 1.9047 1.8469 1.1163 2.3335 2.3046 1.8602 1.7053 2.1163 2.2841
5 2.1354 2.1184 1.4217 2.8789 2.7077 2.5767 2.1325 2.3296 2.5383

2

1 0.3605 0.3382 0.2278 1.1451 1.1290 0.9540 0.9382 1.0524 1.1290
2 1.1020 1.0643 0.9936 1.3688 1.2626 1.2556 1.1866 1.1893 1.1957
3 1.4457 1.3421 1.1197 2.1017 1.9256 1.5831 1.3930 1.7653 1.7855
4 1.9971 1.9560 1.3690 2.8395 2.7567 1.9251 1.7650 2.4661 2.5941
5 2.2387 2.1109 2.0135 3.1365 3.0247 2.8368 2.6382 2.7026 2.9972

3

1 0.5538 0.5497 0.5485 1.1221 1.1032 1.0197 0.9967 1.0613 1.0987
2 1.1934 1.1543 1.0763 1.4746 1.3692 1.3590 1.2831 1.3021 1.3158
3 1.6014 1.4856 1.4830 2.1979 2.0213 1.9902 1.8637 1.8746 1.8970
4 2.3367 2.1670 1.8228 3.0816 2.9144 2.0751 1.9907 2.7311 2.7447
5 2.4780 2.4739 2.1649 3.3585 3.3122 2.9481 2.7569 3.0208 3.3013

4

1 0.8911 0.8884 0.8831 1.1667 1.1417 1.0872 1.0724 1.1201 1.1360
2 1.2970 1.2470 1.1855 1.5956 1.4920 1.4687 1.4051 1.4324 1.4501
3 1.7894 1.6701 1.6583 2.3293 2.1575 2.1439 2.0165 2.0296 2.0533
4 2.5440 2.3725 2.3567 3.2899 3.0849 2.6580 2.6352 2.9121 2.9279
5 3.1451 3.1322 2.5656 3.7065 3.7013 3.0904 2.9122 3.5558 3.6988

Table 5: Results of annular spherical shell with elastic boundary conditions (φ0� π/6, φ1� π/2, h� 0.06m, and R� 1m).

n m
Boundary conditions

E1–E1 E1–E2 E1–E3 E2–E2 E2–E3 E3–E3

1

1 0.6682 0.8025 0.4156 0.6744 0.4500 0.1894
2 1.1437 1.2778 0.9634 1.2766 0.9529 0.4576
3 1.3670 1.5104 1.3662 1.6952 1.3363 1.2948
4 2.0209 2.0138 1.5122 2.1306 1.7902 1.4920
5 2.1526 2.3845 2.0636 2.2725 2.1369 2.0342

2

1 0.9770 0.9395 0.6613 0.9195 0.6564 0.6201
2 1.3532 1.3533 1.3517 1.3495 1.3495 0.7010
3 1.4163 2.0186 1.3672 2.0245 1.4248 1.3519
4 2.0912 2.1530 2.0360 2.3291 2.0251 2.0211
5 2.7441 2.8315 2.3495 2.7795 2.4778 2.2574

3

1 1.0410 1.0240 0.8554 1.0209 0.8517 0.8132
2 1.4542 1.4424 1.4052 1.4412 1.4061 1.2166
3 1.9933 2.1648 1.8316 2.1619 1.8503 1.6942
4 2.1833 2.6963 2.1766 2.7773 2.1761 2.1124
5 3.1657 3.1378 3.1087 3.1375 3.1308 2.8808

4

1 1.1213 1.1154 1.0133 1.1150 1.0126 0.9892
2 1.5674 1.5626 1.5162 1.5626 1.5167 1.4476
3 2.3086 2.3037 2.2259 2.3033 2.2256 2.2244
4 2.6444 3.2899 2.4510 3.2893 2.4567 2.3376
5 3.3018 3.3037 3.2906 3.3361 3.2898 3.2623
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can be regarded as one of the advantages of the current
method.

3.2. Free Vibration Behavior of Moderately *ick Annular
Spherical Shell Structure. Table 2 shows the natural fre-
quency of moderately thick annular spherical shell with
classical boundary conditions, and all the results are
compared with those obtained in commercial FEM soft-
ware ABAQUS. +e geometrical parameters of model is
defined as φ0 � π/6, φ1 � π/2, and h � 0.06m, and the meshes
size are set as 0.01m. Table 3 exhibits the results of
moderately thick annular spherical shell with classical
boundary conditions, and the results are defined as
Ω � ωR

����������
ρ(1 − μ2)/E


. +e geometrical parameters are de-

fined as φ0 � π/8, φ1 � π/2, h/R � 0.05, and R � 1m, and all
the results are compared with Qu et al. [37]. From the above
research, it is clear that the proposed method is very

accurate in solving the free vibration of moderately thick
annular spherical shell.

Tables 4 and 5 show the results of moderately thick
annular spherical shell, respectively, which subject to clas-
sical and elastic edge restraints. Figure 6 displays the fre-
quency parameters Ω under different boundary conditions
which varies with the increasing of mode of n. From the
examples, it is obviously that the different boundary con-
ditions have a clear effect on the results of moderately thick
annular spherical shell. To improve the understanding on
free vibration characteristics of moderately thick annular
spherical shell, some mode shapes under different boundary
conditions are given in Figure 7.

Tables 6 and 7 and Figure 8 display the results with
different h/R ratios in moderately thick annular spherical
shell. From the examples, it is obvious that that the results
have a tendency to increase with h/R increasing. Not sur-
prisingly, the frequency parameters Ω increased obviously
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Figure 6: Frequency parameters Ω of the annular spherical shell with different boundary conditions.
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Figure 7: Comparison of the FEM and predicted mode shapes for the annular spherical shell structure.

Table 6: Results of annular spherical shell with different h/R ratios (φ0� π/6, φ1� π/2, R� 1m, and n� 1).

Boundary conditions h/R
m

1 2 3 4 5

F–C

0.04 0.6692 0.9562 1.1605 1.5797 2.0162
0.05 0.6756 0.9718 1.2491 1.7727 2.0984
0.06 0.6817 0.9894 1.3427 1.9047 2.1354
0.07 0.6877 1.0090 1.4362 1.9751 2.1365
0.08 0.6934 1.0304 1.5255 2.0214 2.1366

F–SS

0.04 0.6462 0.9349 1.1077 1.4789 2.0101
0.05 0.6484 0.9456 1.1760 1.6710 2.0767
0.06 0.6506 0.9577 1.2516 1.8469 2.1184
0.07 0.6528 0.9711 1.3316 1.9666 2.1361
0.08 0.6549 0.9858 1.4133 2.0203 2.1365

C–C

0.04 1.1064 1.2307 1.6367 2.1884 2.3118
0.05 1.1903 1.2545 1.8287 2.2869 2.5964
0.06 1.2726 1.2795 2.0030 2.3335 2.8789
0.07 1.2893 1.3702 2.1229 2.4235 3.0382
0.08 1.3057 1.4598 2.1809 2.5630 3.1001

C–SS

0.04 1.0387 1.2263 1.5302 2.0551 2.2855
0.05 1.0977 1.2542 1.6909 2.2863 2.4067
0.06 1.1611 1.2727 1.8598 2.3046 2.7077
0.07 1.2224 1.2931 2.0162 2.3314 2.9422
0.08 1.2646 1.3327 2.1343 2.3903 3.0668

C–SD

0.04 0.7134 1.0543 1.3970 1.5920 2.0820
0.05 0.7228 1.1071 1.4891 1.6985 2.4045
0.06 0.7320 1.1643 1.5264 1.8602 2.5767
0.07 0.7411 1.2221 1.5500 2.0314 2.6179
0.08 0.7504 1.2770 1.5738 2.1938 2.6435
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Table 6: Continued.

Boundary conditions h/R
m

1 2 3 4 5

E1–E1

0.04 0.6581 1.0742 1.2416 1.6043 2.1274
0.05 0.6625 1.1151 1.2956 1.8195 2.1364
0.06 0.6682 1.1437 1.3670 2.0209 2.1526
0.07 0.6747 1.1640 1.4497 2.1103 2.2708
0.08 0.6817 1.1804 1.5370 2.1204 2.4550

E2–E2

0.04 0.6562 1.1071 1.4817 1.9230 2.1696
0.05 0.6647 1.1891 1.6149 2.0143 2.2345
0.06 0.6744 1.2766 1.6952 2.1306 2.2726
0.07 0.6849 1.3656 1.7404 2.1930 2.3867
0.08 0.6960 1.4532 1.7699 2.2105 2.5491

E3–E3

0.04 0.2181 0.4215 1.1221 1.4347 1.6467
0.05 0.2007 0.4388 1.2062 1.4757 1.8292
0.06 0.1894 0.4576 1.2948 1.4920 2.0342
0.07 0.1820 0.4774 1.3808 1.5074 2.2341
0.08 0.1775 0.4978 1.4480 1.5397 2.4198

Table 7: Results of annular spherical shell with different h/R ratios (φ0 � π/6, φ1 � π/2, R� 1m, and n� 2).

Boundary conditions h/R
m

1 2 3 4 5

F–C

0.04 0.3173 1.0318 1.2223 1.6683 2.0346
0.05 0.3388 1.0646 1.3318 1.8857 2.0902
0.06 0.3605 1.1020 1.4457 1.9971 2.2387
0.07 0.3822 1.1431 1.5581 2.0342 2.4495
0.08 0.4039 1.1867 1.6631 2.0619 2.6536

F–SS

0.04 0.3000 1.0164 1.1589 1.5550 2.0328
0.05 0.3191 1.0385 1.2469 1.7688 2.0668
0.06 0.3382 1.0643 1.3421 1.9560 2.1109
0.07 0.3571 1.0932 1.4406 2.0338 2.2578
0.08 0.3756 1.1249 1.5391 2.0558 2.4519

C–C

0.04 1.1066 1.1798 1.6578 2.2737 2.9366
0.05 1.1257 1.2714 1.8821 2.6280 2.9990
0.06 1.1451 1.3688 2.1017 2.8395 3.1365
0.07 1.1657 1.4681 2.3079 2.9045 3.2323
0.08 1.1874 1.5664 2.4943 2.9362 3.2494

C–SS

0.04 1.1007 1.1217 1.5389 2.1120 2.9141
0.05 1.1163 1.1881 1.7305 2.4621 2.9791
0.06 1.1290 1.2626 1.9256 2.7567 3.0247
0.07 1.1414 1.3413 2.1162 2.8988 3.1550
0.08 1.1543 1.4217 2.2976 2.9341 3.2243

C–SD

0.04 0.9349 1.1176 1.4644 1.6288 2.1378
0.05 0.9437 1.1841 1.5576 1.7428 2.4991
0.06 0.9540 1.2556 1.5831 1.9251 2.8368
0.07 0.9657 1.3281 1.5982 2.1151 3.1190
0.08 0.9785 1.3965 1.6159 2.2991 3.2221

E1–E1

0.04 0.9466 1.1784 1.3930 1.6351 2.3054
0.05 0.9606 1.2694 1.3990 1.8645 2.6915
0.06 0.9770 1.3532 1.4163 2.0912 2.7441
0.07 0.9953 1.3832 1.4898 2.3070 2.7448
0.08 1.0152 1.3891 1.5870 2.5076 2.7457

E2–E2

0.04 0.8823 1.1596 1.5964 2.2714 2.3228
0.05 0.9000 1.2514 1.8179 2.3222 2.6258
0.06 0.9195 1.3495 2.0245 2.3292 2.7795
0.07 0.9405 1.4497 2.1927 2.3539 2.8304
0.08 0.9628 1.5490 2.2714 2.4375 2.8825

E3–E3

0.04 0.5684 0.6661 1.1828 1.5763 2.2037
0.05 0.5944 0.6853 1.2625 1.8042 2.2456
0.06 0.6201 0.7010 1.3519 2.0211 2.2574
0.07 0.6455 0.7142 1.4462 2.1883 2.3034
0.08 0.6694 0.7268 1.5414 2.2310 2.4565
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Figure 8: Frequency parameters Ω of the annular spherical shell with different h/R ratios (m� 3).

Table 8: Results of annular spherical shell with different φ0 (φ1 � π/2, R� 1m, h� 0.06m, and n� 1).

Boundary conditions φ0
m

1 2 3 4 5

F–C

π/8 0.6436 0.9719 1.2359 1.7010 1.9829
π/6 0.6817 0.9894 1.3427 1.9047 2.1354
π/5 0.7207 1.0168 1.4858 2.0655 2.1588
π/4 0.7927 1.1003 1.8439 2.1205 2.4764
π/3 0.9324 1.6052 2.3732 3.2253 3.7807

F–SS

π/8 0.6151 0.9440 1.1715 1.6221 1.9529
π/6 0.6506 0.9577 1.2516 1.8469 2.1184
π/5 0.6869 0.9768 1.3646 2.0592 2.1445
π/4 0.7548 1.0298 1.6676 2.1047 2.4733
π/3 0.8847 1.3469 2.3711 3.0294 3.5040

C–C

π/8 1.1348 1.1790 1.7292 2.1792 2.4499
π/6 1.2726 1.2795 2.0030 2.3335 2.8789
π/5 1.3572 1.4435 2.2659 2.5413 3.3283
π/4 1.5028 1.8395 2.6605 3.2375 4.1434
π/3 1.9826 3.4460 3.8057 6.0731 6.3115
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Table 8: Continued.

Boundary conditions φ0
m

1 2 3 4 5

C–SS

π/8 1.0521 1.1749 1.6077 2.1776 2.2916
π/6 1.1611 1.2727 1.8598 2.3046 2.7077
π/5 1.2836 1.3579 2.1425 2.4401 3.1824
π/4 1.4597 1.6187 2.6498 2.9327 4.0995
π/3 1.7692 2.9828 3.8054 5.5589 6.3115

C–SD

π/8 0.6681 1.0615 1.3325 1.6075 2.2854
π/6 0.7320 1.1643 1.5264 1.8602 2.5767
π/5 0.7894 1.2834 1.7247 2.1488 2.7264
π/4 0.8963 1.5830 2.1195 2.7781 3.0742
π/3 1.2719 2.8503 3.3175 3.9809 5.5639

E1–E1

π/8 0.6310 1.0695 1.2533 1.7324 2.1623
π/6 0.6682 1.1437 1.3670 2.0209 2.1526
π/5 0.6963 1.1792 1.5078 2.2043 2.3900
π/4 0.7349 1.2160 1.8837 2.5220 3.1666
π/3 0.7556 1.6250 3.4826 3.7092 6.0038

E2–E2

π/8 0.6508 1.1457 1.5671 1.9046 2.1186
π/6 0.6744 1.2766 1.6952 2.1306 2.2726
π/5 0.6929 1.4366 1.7664 2.3607 2.4996
π/4 0.7327 1.7994 1.8725 2.7260 3.2327
π/3 0.8902 2.1320 3.4461 3.8783 6.0731

E3–E3

π/8 0.1727 0.4252 1.1586 1.4577 1.7434
π/6 0.1894 0.4576 1.2948 1.4920 2.0342
π/5 0.2034 0.4968 1.4483 1.5153 2.3722
π/4 0.2269 0.5911 1.5123 1.8613 3.0009
π/3 0.2832 0.8905 1.7464 3.4707 4.0255

Table 9: Results of annular spherical shell with different φ0 (φ1 � π/2, R� 1m, h� 0.06m, and n� 2).

Boundary conditions φ0
m

1 2 3 4 5

F–C

π/8 0.3989 1.0838 1.3492 1.8882 2.0273
π/6 0.3605 1.1020 1.4457 1.9971 2.2387
π/5 0.3825 1.1269 1.5822 2.1260 2.5498
π/4 0.4642 1.2032 1.9384 2.4367 2.9543
π/3 0.7003 1.6772 3.0515 3.2570 3.7890

F–SS

π/8 0.3866 1.0528 1.2677 1.7819 2.0039
π/6 0.3382 1.0643 1.3421 1.9560 2.1109
π/5 0.3516 1.0790 1.4502 2.1219 2.3433
π/4 0.4188 1.1248 1.7467 2.4282 2.9414
π/3 0.6185 1.4280 3.0188 3.1409 3.4721

C–C

π/8 1.0663 1.2502 1.8101 2.4663 2.7955
π/6 1.1451 1.3688 2.1017 2.8395 3.1365
π/5 1.2226 1.5185 2.4320 3.0975 3.4107
π/4 1.3782 1.8981 3.1363 3.4427 4.0992
π/3 1.9276 3.4851 4.2397 6.1067 6.2292

C–SS

π/8 1.0554 1.1742 1.6726 2.3405 2.7515
π/6 1.1290 1.2626 1.9256 2.7567 3.0247
π/5 1.1987 1.3767 2.2190 3.0967 3.2830
π/4 1.3275 1.6774 2.9001 3.3744 4.0740
π/3 1.7085 3.0270 4.2397 5.5981 6.2292

C–SD

π/8 0.9343 1.1710 1.4259 1.6727 2.3894
π/6 0.9540 1.2556 1.5831 1.9251 2.8368
π/5 0.9749 1.3660 1.7503 2.2177 3.2817
π/4 1.0298 1.6562 2.0976 2.9028 3.6387
π/3 1.3407 2.8863 3.2496 4.5122 5.6032
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Table 9: Continued.

Boundary conditions φ0
m

1 2 3 4 5

E1–E1

π/8 0.9479 1.2473 1.3445 1.7968 2.5694
π/6 0.9770 1.3532 1.4163 2.0912 2.7441
π/5 1.0107 1.4143 1.5423 2.4289 2.7437
π/4 1.0983 1.4399 1.9199 2.9001 3.2094
π/3 1.3349 1.6564 3.5149 3.9016 6.0480

E2–E2

π/8 0.8894 1.2273 1.7592 2.1700 2.5066
π/6 0.9195 1.3495 2.0245 2.3292 2.7795
π/5 0.9510 1.5023 2.2801 2.5156 2.8662
π/4 1.0284 1.8866 2.5227 2.9265 3.3212
π/3 1.4026 2.6416 3.4850 4.0183 6.1066

E3–E3

π/8 0.6189 0.7555 1.2454 1.7337 2.1863
π/6 0.6201 0.7010 1.3519 2.0211 2.2574
π/5 0.6202 0.6865 1.4994 2.2344 2.4279
π/4 0.5772 0.7677 1.8830 2.3026 3.1813
π/3 0.4831 1.2823 2.3369 3.4941 4.5082
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Figure 9: Frequency parameters Ω of the annular spherical shell with different φ0 (m� 3).
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Table 10: Results of annular spherical shell with different φ1 (φ0 � π/8, R� 1m, h� 0.06m, and n� 1).

Boundary conditions Φ1
m

1 2 3 4 5

F–C

π/6 3.6431 8.9681 12.6428 13.2118 22.9000
π/5 1.6899 5.4835 5.8583 7.6132 12.5239
π/4 1.1818 2.6133 3.8455 4.9257 5.9473
π/3 0.9814 1.3664 2.4315 2.8442 3.3609
π/2 0.6436 0.9719 1.2359 1.7010 1.9829

F–SS

π/6 1.3547 8.9681 11.6078 13.0808 22.8995
π/5 1.1804 4.6180 5.6506 7.6055 11.5638
π/4 1.0825 2.0957 3.8404 4.8865 5.2709
π/3 0.9527 1.2149 2.2277 2.7311 3.3606
π/2 0.6152 0.9440 1.1715 1.6221 1.9529

C–C

π/6 11.8237 15.0427 23.1127 25.1201 29.8383
π/5 5.4266 8.5302 11.2836 14.0476 16.7648
π/4 2.6824 5.2672 5.4583 8.4610 9.3175
π/3 1.6279 2.4319 3.3373 4.3047 5.0647
π/2 1.1348 1.1790 1.7292 2.1793 2.4499

C–SS

π/6 9.7987 15.0422 22.6127 25.1183 29.8370
π/5 4.2515 8.5296 10.3896 14.0384 16.7648
π/4 2.1955 4.7569 5.2871 8.4503 8.6874
π/3 1.5333 2.0992 3.3372 3.8881 5.0582
π/2 1.0521 1.1750 1.6077 2.1776 2.2916

C–SD

π/6 9.6128 12.3549 15.2373 22.6804 29.6584
π/5 3.9637 6.7642 8.8407 10.4648 16.5420
π/4 1.7120 3.9412 4.8167 5.7316 8.6811
π/3 0.8811 2.0460 2.4136 3.7170 3.9839
π/2 0.6681 1.0615 1.3325 1.6075 2.2854

E1–E1

π/6 2.5277 11.7245 14.9480 23.1578 25.3798
π/5 2.1853 5.2760 8.4169 11.3354 14.3567
π/4 1.6668 2.5613 5.1988 5.4749 8.8397
π/3 0.9140 1.6802 2.4653 3.3383 4.2588
π/2 0.6310 1.0695 1.2533 1.7324 2.1624

E2–E2

π/6 2.4058 11.8290 15.1668 23.1153 25.2815
π/5 2.0827 5.4594 8.6829 11.2863 14.3044
π/4 1.5810 2.8691 5.4120 5.4854 8.8295
π/3 0.9655 2.0415 2.4579 3.4721 4.3036
π/2 0.6508 1.1457 1.5671 1.9046 2.1187

E3–E3

π/6 0.6065 3.0523 11.7244 15.3288 23.1578
π/5 0.4401 2.6234 5.2828 8.9518 11.3361
π/4 0.3274 1.8676 2.6981 5.4573 5.8831
π/3 0.2409 0.8808 1.9341 2.4549 4.0376
π/2 0.1727 0.4252 1.1586 1.4577 1.7434

Table 11: Results of annular spherical shell with different φ1 (φ0 � π/2, R� 1m, h� 0.06m, and n� 2).

Boundary conditions φ1
m

1 2 3 4 5

F–C

π/6 3.8150 9.7744 12.7949 13.2675 23.3452
π/5 1.7976 5.7957 6.5679 7.9042 12.6403
π/4 1.0786 2.8407 4.3014 5.6835 6.0835
π/3 0.6610 1.5900 2.6462 3.0491 4.1950
π/2 0.3990 1.0838 1.3492 1.8882 2.0273

F–SS

π/6 1.7894 9.7735 11.8147 13.1186 23.3427
π/5 1.2525 4.8691 6.4732 7.9034 11.7076
π/4 0.8858 2.3609 4.3011 5.3930 5.6844
π/3 0.5942 1.4280 2.4131 2.9757 4.1595
π/2 0.3866 1.0528 1.2677 1.7819 2.0040
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with the increase of mode of m. Tables 8 and 9 and Figure 9
exhibit the results with different φ0 in moderately thick
annular spherical shell. In addition, the results with different
φ1 in moderately thick annular spherical shell are shown in
Tables 10 and 11, in which φ0 � π/8. From the examples, it is
remarkable that the frequency parametersΩ tend to increase
with the increase of φ0, and the results usually decrease
monotonously as the φ1 increases, that is to say higher
frequency parameters can be obtained as the structural scale
decreases. Beyond that we can also see that the different
boundary conditions have apparent effects on the frequency
parameters Ω.

4. Conclusions

+is paper introduced a unified computational Ritz method
to investigate free vibration characteristics of isotropic
moderately thick annular spherical shell with general
boundary conditions. +e energy expressions of the annular
spherical shell were established based on FSDT. +e spring
stiffness method is introduced to guarantee continuity and
simulate various boundary conditions on the basic of the
domain decomposition method. Beyond that the unified

Jacobi polynomials and Fourier series are, respectively,
applied to represent the displacement admissible function
along axial direction and circumferential direction of the
structure. +e final solutions can be obtained according to
the Ritz method. In order to prove the validity of the
proposed method, the results of the same condition are
compared with those obtained by the finite element method
and published literatures. +e results show that the current
method has fast convergence and delightful accuracy
through the comparative study. +e most discovery of the
current method is that the selection of admissible dis-
placement functions is generalized by applying Jacobi
polynomial. In addition, the effects on the boundary con-
ditions, shell segments, and structural parameters are pre-
sented through a large number of numerical examples,
which can be used as basic data to provide reference for
future staff of such research in this field.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Table 11: Continued.

Boundary conditions φ1
m

1 2 3 4 5

C–C

π/6 11.8721 15.5416 23.1968 25.0071 30.2760
π/5 5.4699 9.2255 11.3802 13.9153 17.3881
π/4 2.6771 5.5250 6.1150 8.3655 9.4051
π/3 1.5265 2.5309 4.0903 4.4366 5.0917
π/2 1.0663 1.2502 1.8101 2.4664 2.7956

C–SS

π/6 9.9024 15.5405 22.6995 25.0063 30.2709
π/5 4.3291 9.2250 10.4991 13.9064 17.3881
π/4 2.1852 4.8709 6.1028 8.3585 8.7829
π/3 1.4057 2.2061 3.9147 4.2136 5.0848
π/2 1.0555 1.1742 1.6726 2.3405 2.7516

C–SD

π/6 9.7048 12.0543 16.1126 22.7599 29.7101
π/5 4.0875 6.4610 9.9060 10.5863 16.6106
π/4 1.8688 3.7454 4.9063 6.8564 8.7765
π/3 1.0948 2.1426 2.3305 3.9390 4.8355
π/2 0.9344 1.1710 1.4259 1.6727 2.3895

E1–E1

π/6 3.4567 11.7824 15.1735 23.2436 25.6980
π/5 2.9763 5.3506 8.8059 11.4264 14.7994
π/4 2.2170 2.6997 5.5649 5.8007 9.2446
π/3 1.2500 1.8752 2.5440 4.0978 4.3435
π/2 0.9479 1.2473 1.3445 1.7968 2.5694

E2–E2

π/6 4.6941 11.8925 15.3560 23.2065 25.6246
π/5 3.9936 5.6479 8.9445 11.3881 14.8358
π/4 2.3491 3.8445 5.5347 5.7751 9.4039
π/3 1.2645 2.4977 3.0776 3.7952 4.4128
π/2 0.8894 1.2273 1.7592 2.1700 2.5066

E3–E3

π/6 0.7960 4.8777 11.7827 15.9717 23.2436
π/5 0.8284 4.1400 5.4124 9.8944 11.4306
π/4 0.8871 2.2813 3.6241 5.5559 7.0605
π/3 0.8699 1.0742 2.4766 2.8647 4.2797
π/2 0.6189 0.7555 1.2455 1.7337 2.1863
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