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As metal boring bars have low dynamic stiffness, chatter is easily induced during the boring process. Therefore, improvement of
the chatter stability is an open problem that requires further study. Though researchers proved that the composite materials
suitable for making tapered boring bars can further improve the dynamic stiffness to meet the need of high-speed boring,
existing research studies did not study the dynamic characteristics of the tapered composite boring bar comprehensively. In
particular, no research has been done about the natural frequency and chatter stability of the composite boring bar under
various taper ratios. Therefore, in this paper, a model of a tapered composite boring bar is established based on the Adomian
modified decomposition method (AMDM). Second, this paper verifies the effectiveness of the AMDM by using the ANSYS
software. Moreover, this paper studies the natural frequency of the boring bar model under various situations. Third, we verify
the convergence of chatter stability of the boring bar model. Finally, the chatter stability of the tapered composite boring bar is
analyzed comprehensively. The results show that the natural frequency and the chatter stability of the tapered model can be
improved by choosing appropriate taper ratio, ply angle, stacking sequences, L/D ratio, T/D ratio, and the carbon composite.
The results are helpful for the design of high-quality tapered composite boring bars matching the need of high speed cutting. In
particular, these results can provide guidelines for adjusting the cutting speed in CNC boring and can further improve the
surface finish of the machined workpieces.

1. Introduction

Boring bars are tools for boring cylinders that are often used
in machine manufacturing. When boring deep holes, the
boring bar must be slender, because bore holes often are
deep and narrow. In the past, most boring bars were made of
metal materials. However, it was found that this kind of
boring bar can only bore holes with an L/D ratio that is less
than five. Moreover, metal boring bars possess low dynamic
stiffness, and thus, chatter easily occurs during boring.
Chatter worsens the surface finish of the machined work-
pieces, causing them to fail to meet accuracy requirements
and affecting the quality of the parts.

To overcome the chatter problem of metal materials,
many scholars [1-13] have conducted studies and found that
chatter is often generated by three factors, i.e., ripple

regeneration, mode coupling, and friction. In the study of
ripple regeneration (which is caused by surface ripples), Luo
et al. [14] adopted a hybrid digital method to solve the
problem of surface ripple regeneration. Altintas and Weck
[15] studied the stability of regenerative chatter during metal
cutting. Litak [16] analyzed the vibrations generated by
vertical cutting and used a one-degree-of-freedom model to
simulate the complex system of regenerative cutting. In the
field of mode coupling, Tulasiramarao et al. [17] analyzed the
stability of the coupling between the cutting tool and the
machined workpieces. KalmarNagy and Moon [18] studied
the mode coupling of the vibrations. Gasparetto [19] studied
the system theory of mode coupling from two perspectives.
In the study of friction regeneration, Wu et al. [20, 21]
created a dynamic friction mechanical model to predict the
cutting force and validated it. These studies were of great
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significance to understand the occurrence of chatter.
However, they did not fundamentally solve the problem of
chatter caused by high-speed cutting.

Using composite materials with a high dynamic stift-
ness to fabricate boring bars is an effective way to suppress
chatter during high-speed and deep-hole cutting. Re-
searchers have sought suitable composite materials to
fabricate boring bars. For example, Nagano et al. [22]
designed a composite boring bar with an iron core and
proved that when this boring bar was applied, chatter did
not occur when the L/D ratio was less than 7. Furthermore,
Lee et al. [23] designed a carbon fiber composite boring bar
with a damping layer and proved that the L/D ratio could
reach 10.7 without chatter. Considering shear deformation
and rotational inertia, Zhang et al. [24] analyzed the dy-
namic characteristics of composite boring bar. The analysis
results show that the shear deformation and rotational
inertia affect the vibration mode shapes of the composite
boring bar and reduce its natural frequency and chatter
stability. Although these efforts have advanced the field of
research, it is unclear whether there is a better method to
increase the dynamic stiffness.

Tapered boring bars exhibit higher dynamic stiffness
than those of the uniform boring bars. And many scholars
have studied this type of beam model. For example, Goel
[25] investigated the transverse vibrations of linearly tapered
beams that were elastically restrained against rotation at
either end. Laura and Gutierrez [26] studied the vibrations of
a cantilevered beam of varying cross section using an ap-
proximate solution based on the Rayleigh-Schmidt ap-
proach. Grossi et al. [27] used a set of orthogonal
polynomials in the Rayleigh-Ritz method to study the vi-
brations of tapered beams. Ho and Chen [28] used a dif-
ferential transform to solve the free and forced vibration
problems of nonuniform beams. Abrate [29] used the
Rayleigh-Ritz method to study the free vibrations of non-
uniform beams. De Rosa and Auciello [30] examined the
dynamic characteristics of beams with linearly varying cross
sections. Ren et al. [31] analyzed the influence of the taper
ratio on the natural frequencies characteristics of the
composite boring bar.

In all the above studies, researchers did not study the
dynamic characteristics of the tapered composite boring bar
comprehensively. In particular, the natural frequency and
chatter stability of the composite boring bar under various
taper ratios have not been examined. However, it is proved
that the study of this problem can provide guidelines for
adjusting the cutting speed in CNC boring, reduce the
chatter, protect the boring cutter, achieve efficient cutting,
and finally improve the surface finish of the machined
workpieces.

Therefore, this paper first presents a model for tapered
composite boring bar based on the Adomian modified
decomposition method (AMDM). Second, this paper verifies
the effectiveness of the AMDM by using the ANSYS soft-
ware. Moreover, this paper studies the natural frequency of
the boring bar model under different ply angles, length to
diameter (L/D) ratios, thickness to diameter (T/D) ratios,
and three types of composite materials in detail. Third, we
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verify the convergence of chatter stability of the boring bar
model. Finally, the chatter stability of the tapered composite
boring bar is analyzed under different taper ratios, ply an-
gles, stacking sequences, L/D ratios, T/D ratios, and com-
posite materials in detail.

In contrast to existing studies, the novel features of this
paper are as follows. First, this paper establishes a tapered
composite boring bar model based on AMDM, which is an
accurate numerical method. As far as we know, till now,
there is no report about boring chatter suppression ex-
ample using the AMDM. Second, we verify the effectiveness
and the convergence of chatter stability about our AMDM
model. These two kinds of verification make the analysis of
this paper more complete. Third, the natural frequency and
the cutting stability of our model are analyzed compre-
hensively. The results show that the natural frequency and
the chatter stability of the tapered model can be improved
by choosing appropriate taper ratio, ply angle, stacking
sequences, L/D ratio, T/D ratio, and the carbon composite.
The behavior characteristics and conclusions we gained in
this paper are helpful to design high-quality composite
boring bars, suppress chatter, achieve high-speed cutting in
CNC boring, and finally improve production quality and
efficiency.

The rest of this paper is developed as follows. In Section
2, a tapered composite boring bar model is established. In
Section 3, we first verify the effectiveness of the AMDM [32]
by taking the ANSYS. And then, the natural frequencies of
the composite boring bars with different ply angles, L/D
ratios, T/D ratios, composite material types (three types),
and taper ratios are analyzed in detail. In Section 4, the
convergence of the chatter stabilities of tapered composite
boring bar is verified at first. And then, the chatter stabilities
of tapered composite boring bars for different ply angles,
taper ratios, L/D ratios, and T/D ratios and for three types of
composite materials are analyzed in detail. Section 5 con-
cludes this paper.

2. Modeling and Analysis of Tapered Boring Bar

The model of the tapered boring bar is shown in Figure 1.
The left side is fixed and the right side is free.

For the tapered boring bar, the equation of motion for
transverse vibrations is as follows:

0 *y(z,t) *y(z,t) B

where E is Young’s modulus, I (z) is the second moment of
area, A (z) is the cross-sectional area at the position z, p is the
mass density of the boring bar material, and y(z,t) is the
transverse deflection at time t.

The transverse deflection y(z,t) can be written as
follows:

y(z,t) =Y (2)h(t), (2)

where Y (z) is the transverse deflection and h(t) is a har-
monic function of time. If w denotes the frequency of h(t),
then
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FIGURE 1: Model of tapered composite boring bar.

2
° ya(tj 2 ~0’Y (2)h (1), ©

where w is the circular frequency of h(t).
By substituting (3) into (1), we obtain

o’ d*Y (z)
iz (E“Z) a2

Based on Figure 1, the boundary conditions at z= 0 point
(i.e., the fixed end) are defined as follows:

Y(0)|z=0 = 0)

) - pA(2)w’Y (2) = 0. (4)

dY (2) ()

dz

z=0

The boundary conditions at z=L point (i.e., the free end,
at which the bending moment and the shear force are zero)
are defined as follows:

Y (z)]
dzz L - 0) (6)

d 2y ()]
- [EI(Z) el | (7)

The radius of the fixed end (i.e., z=0) is R,,. The radius of
the free end (i.e., z=L) is R, and the radius ratio is defined
as follows:

Ry

@ = >
RO

(8)

where « denotes the taper ratio. When a = 1, the model
reduces to the uniform cross-section composite boring bar
model.

Assuming that the cross-sectional radius of the com-
posite boring bar is linearly distributed along the z-axis, the
radius at any z position is as follows:

R(2) =R0[1+(a—1)ﬂ. 9)

The tapered mass and the bending stiffness of the
composite bar are as follows:

pA(z):pA0[1+(0c—1)%]2=pA0[1—ﬁ%]2, (10)

EI(z)=EIO[1+((x—1)%]4=EIO[1—/3%]4, (11)

where f=1-a.

By substituting (10) and (11) into (1), we obtain the
equation of motion for a tapered boring bar:

d? z214d’Y (2)\ pAyw? z1? B
dz2<[1_ﬁL] iz? )‘ 7 U RGR

(12)

By substituting (11) into (7), we obtain the boundary
condition:

Y 4 Y
dYG) AP dYE (g
dz? (1-pL dz2 ||,
The following dimensionless quantities are defined:
z=5,
L
Y(z)
Y(Z)=——F
()=~ (14)
o - pAyw*L*
EI,

Equation (12) can be rewritten in dimensionless form as
follows:

d? A2Y (Z2)
ﬁ(“ a7

Equation (15) can be expanded as follows:
a‘y(z) 8 Y (Z) N 128 d*Y(2)
dzt  1-pz dz>  (1-pz)* dz?

) -’ (1-B2)°Y(Z)=0. (15)

(16)
QZ

_(1—7/3Z)ZY(Z) =0.

At the position z =1, the boundary conditions of (6) and
(13) can be rewritten as

Y"(1) =0, (17)
" B _
Y (1)—4my (1) =0. (18)

Y (Z) can be determined by the AMDM [32]. Based on
the AMDM, (16) can be expressed in the following form:

~ o 88 &Y (2) 128 &Y (2)
YZ)=0(2)+L {1—/32 dz>~ (1- Bz dZ?
2
Ta- ﬂZ)ZY(Z)}’

(19)

where

D(2Z2)=Y(0)+Y'(0)Z +

Y'(0) 2 Y'(0) 5 (a)
—Z.

By substituting (20) into (19), Y (Z) can be simply
expressed by a sum of Z functions:



Y(2) = chz =Y (0)+Y' (0)Z+——

y" (0)
k=0 2

(21)

R
()z +C 2k,

where Cy = (1/(k(k-1)(k-2) (k- 3)))Zk S8 +3)(+
2)(j+ 1) 3CJ+3+/\(k j-3)pC —12(k - j-3)
(j+2)(+ DT °C,, 1.

Based on the boundary conditions of the boring bar, the
initial coefficients are determined as follows:

C,=0
C, =0,
Y/I 0 22
o, V'O (22)
2
YIH 0
C, - (0)
6

Substituting these coefficients into (21), we obtain an
equation in terms of three variables, that is, C,, C;, and Q.
Substituting (21) into the boundary equations at z=1 (see
[17] and [18]) and solving the two variables C, and C;, we
can obtain the following equation:

fHc, + fP@c, =0, r=1,2 (23)

It is assumed that C, and C; are not equal to zero at the
same time. According to Cramer’s rule,

|F[”] (Q)| =0. (24)

The dimensionless natural frequency Q) corresponding to
n terms is calculated using (24), and the Q value is deter-
mined by the following equation:

o - ol <, (25)

where ¢ is a small preset value used to control the accuracy.
Substituting Q) into the third equation of (16), we obtain the
natural frequency of the tapered boring bar as follows:

El,

=Q .
“1 pAL*

(26)

3. Effect of Taper Ratios on the Natural
Frequency of Composite Boring Bar

3.1. Effectiveness of the AMDM. As the AMDM was com-
monly applied to solve linear and nonlinear initial/bound-
ary-value problems in physics [32], it is needed to verify
whether the AMDM works in calculating the natural fre-
quency of composite tapered boring bar. To realize this aim,
we select ANSYS (which is a finite element analysis software)
to solve the boring bar frequency because of the popularity of
it in modeling various kinds of beams. In modeling process,
we first use ANSYS 15.0 to create a composite tapered boring
bar model. And then, we make the following settings. We
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select the “SHELL 281” as the element type and choose the
carbon fiber as the composite material. In addition, we set 8
layers and the thickness of each layer is 0.00025m. The
stacking sequences are denoted as [0];. Finally, we assign the
length of the tapered boring bar with 0.2 m, the inner di-
ameter with 0.016 m, and the outer diameter with 0.02 m.
The mechanical properties of the carbon fiber are listed in
Table 1. The resulting tapered composite boring bar model
after being meshed is shown in Figure 2.

In the analysis about natural frequencies of the tapered
composite boring bar which are generated using the ANSYS
software, 7 taper ratios ranging from 0.3 to 0.9 are selected.
The resulting 7 natural frequencies are filled into the third
row of Table 2. Under the same parameters and taper ratios,
the AMDM is used to solve the natural frequencies of
composite boring bar model. The results are filled into the
second row of Table 2. The difference between the natural
frequencies (i.e., (the value of the 2nd row-the value of the
3rd row)/the value of the 2nd row*100) of these two
methods is calculated and added as the fourth row of Table 2.

From Table 2, we can see that the natural frequencies
computed by the ANSYS are relevant to the taper ratios. The
smaller the taper ratio is, the greater the natural frequency is.
Similar rule is obtained by the AMDM. In particular, the
natural frequency obtained by the ANSYS is correspond-
ingly smaller than the one that is obtained by the AMDM.
However, all the differences are within 10%, which is ac-
ceptable. Therefore, the AMDM can be used to solve the
natural frequencies of composite boring bar under different
taper ratios.

3.2. Effect of Ply Angle on the Natural Frequency of the Tapered
Composite Boring Bar. To study the effect of different ply
angles on the natural frequency of the tapered composite
boring bar, three ply angles such as 0°, 45°, and 90" were set.
Keeping the diameter of the fixed end (z=0) of the boring
bar constant, we change the diameter of the free end (z=L)
gradually based on the taper ratio. The natural frequency
curves for the three different ply angles and different taper
ratios are shown in Figure 3. The horizontal axis is the taper
ratio. The vertical axis is the natural frequency. For the
tapered composite boring bar, the curve of the ply angle 0° is
at the top, the curve of the ply angle 45° is in the middle, and
the curve of the ply angle 90° is at the bottom. The natural
frequency of each curve decreased with the increase in the
taper ratio. Thus, the smaller the ply angle and the smaller
the taper ratio, the higher the natural frequency.

3.3. Effect of L/D Ratio on Natural Frequency of the Tapered
Composite Boring Bar. To analyze the effect of the L/D
(D=R() ratio on the natural frequency of the tapered
composite boring bar, the ply angle is set to 45°. The L/D
ratio is set to 7.5, 10, and 12.5. The other parameters are set
to the same values as those in Section 3.1. The effect of the L/
D ratio on the natural frequency versus taper ratio curves is
shown in Figure 4. The horizontal axis is the taper ratio. The
vertical axis is the natural frequency. The natural frequency
curves of the tapered composite boring bar are different
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TaBLE 1: Mechanical parameters of three composite materials.
Parameters E; (GPa) E,=E; (GPa) G;» (GPa) G,3=Gj3; (GPa) Vo1 = V31 V32 p (Kg/mS)
Carbon 181.0 10.3 717 3.78 0.28 0.30 1760
Aramid 76 11.5 6.3 4.4 0.30 0.34 1440
Glass 45 10 5 3.8 0.30 0.40 2540
FIGURE 2: Finite element model of the tapered composite boring bar.
TaBLE 2: Comparison of natural frequencies obtained by the AMDM and the ANSYS.
Taper ratio 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AMDM (Hz) 6737 6436 6247 6105 5990 5895 5814
ANSYS (Hz) 6645 6254 5969 5744 5557 5395 5253
Difference (%) 14 2.8 4.5 5.9 7.2 8.4 9.6
10,000 10,000
9,000 9,000 |
= 8,000 2 8,000 |
T 7,000 | F
e g 7,000
£ 6,000 g
=] 3. 6,000 |
g 5,000} g
o~ “—
= = 5,000 .
£ 4000 | g .
- 5
“ 3,000 1 Gl R
2,000} - 3000 S~
1,000 L L L L 1 2,000 L T P Pl Pttt ]
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
« «
— 0=0° —— L/ID=75
<<<<<< 0=45° ... LID=10
--- 0=90° --- L/ID=125

FiGure 3: Natural frequency of the tapered composite boring bar
with different ply angles.

for different L/D ratios. The natural frequency curve for
the L/D=7.5 is at the top, the curve for L/D =10 is in the
middle, and the curve for L/D=12.5 is at the bottom. The
three natural frequency curves decreased with the increase
of the taper ratio. Moreover, they decrease with the L/D
ratio increase.

FIGURE 4: Natural frequency of the tapered composite boring bar
with different L/D ratios.

3.4. Effect of T/D Ratios on the Natural Frequency of the
Tapered Composite Boring Bar. To analyze the effect of the
T/D (D =Ry) ratio on the natural frequency of the tapered
composite boring bar, the inner diameter was fixed, and the
outer diameter is varied by adding more layers. Three
numbers of layers (i.e., 4, 8, and 12) are set. The corresponding



T/D ratio values are 0.005, 0.01, and 0.15, respectively. The
other parameters are set as same as those in Section 3.1. The
natural frequency versus taper ratio curves for different 7/D
ratios is shown in Figure 5. The horizontal axis is the taper
ratio. The vertical axis is the natural frequency. When the T/D
ratio is 0.015, the curve is at the top. When the T/D ratio is
0.005, the curve is at the bottom. When the T/D ratio is 0.01,
the curve is in the middle. The natural frequency decreased
with the increase of the taper ratio and increase of the T/D
ratio.

3.5. Effect of Different Composite Materials on Natural Fre-
quency of the Tapered Composite Boring Bar. To analyze the
effect of the type of composite material on the natural
frequency of the tapered composite boring bar, three types
(carbon fiber, aramid, and glass fiber) of composite materials
are selected. The mechanical parameters of the three com-
posite materials are listed in Table 1. The other parameters
are set to the same values as those in Section 3.1. The natural
frequency curves for different composite materials versus
taper ratio are shown in Figure 6. The horizontal axis is the
taper ratio. The vertical axis is the natural frequency. The
natural frequency curve of the tapered carbon fiber com-
posite material boring bar is at the top, followed by Aramid
fiber composite and the glass fiber composite curves. The
natural frequency of the tapered boring bar decreased with
the increase in the taper ratio for all the materials. Thus,
carbon fiber composite is the best choice of the three
composite materials.

4. Chatter Stability of the Tapered Composite
Boring Bar

To analyze the chatter stability of the tapered composite
boring bar, we deduce the equations of the cutting depth and
the spindle speed of a one-degree-of-freedom system as
follows [33]:

2w, 0. M

b . = b
fim = K sin (2 arctan (2w, ,)/ (w2 - @?)))

60w, 0.1.2
n= » m=4,1,2,
(2m + 1)rr + 2arctan ((2{w, w, )/ (02 — w?))

(27)

where by, is the critical cutting depth, n is the spindle
speed, M = Jo pAY?(z)dz is the mass of the boring bar, w, is
the chatter frequency of the boring bar in the critical stable
state, w; is the first natural frequency of the boring bar, { is
the damping coefficient of the boring bar, and K, is the
coefficient of the cutting force (N/mm?).

4.1. Convergence of Chatter Stability of the Tapered Composite
Boring Bar. The natural frequency of w, was calculated by
the AMDM. As the AMDM uses k terms to form an ap-
proximate solution, it must be determined whether the
approximation affects the accuracy of the results of chatter
stability. For example, Abbaoui and Cherruault [34] used the
AMDM to study the convergence of a nonlinear equation. In
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FiGure 5: Natural frequency of the tapered composite boring bar
with different T/D ratios.
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FIGURe 6: Natural frequency of the tapered composite boring bar
with different composite material.

this study, the accuracy is controlled using (25). To achieve a
precision of ¢ =0.00001, the natural frequency is calculated
using the first 23 items. To verify the accuracy, the cutting
stability curves are calculated using the first 11, 14, 17, and 20
terms for comparison. If the cutting stability curves found
using k terms overlapped with the curve found using 23
terms, this value of k is sufficient to achieve the desired
accuracy. Figure 7 shows only two chatter stability lobes.
When k is 14, 17, and 20, the curves are overlapped with the
curve of k=23. Thus, the k=23 approximation is sufficiently
accurate. To further distinguish the small differences be-
tween the approximations, the ultimate cutting depth is
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FiGure 7: Different approximate numbers of terms effect on chatter
stability.

calculated and compared. The results are listed in Table 3.
The first row lists the number of items. The second row is the
limit cutting depth (V). The third row is the difference
between V. and V,;.

As shown, the limit cutting depth obtained when k =23
is chosen as the baseline. The difference of the ultimate
cutting depth is 0.00046656 when k=11 and 0.00000002
when k=14, respectively. Thus, when k=14, the cutting
depth completely meets the precision need (i.e., £ < 0.00001).
In particular, when k=17 and 20, the cutting depth is close
to 0. Therefore, we can select the first 23 items. The results
listed in Table 3 and the curves drawn in Figure 7 are
consistent with the analysis results. From these results, we
can conclude that the AMDM is convergent.

4.2. Effect of Taper Ratio on the Chatter Stability. To analyze
the effect of the taper ratio on the chatter stability, four
different taper ratios such as 0.3, 0.5, 0.7, and 1.0 are selected.
The other parameters of the tapered boring bar are set as the
same as those in Section 3.1. The material of the tapered
boring bar is the carbon composite. The length is 0.2 m, the
inner diameter is 0.016 m, and the outer diameter is 0.02 m.
The ply angle is 45°. The chatter stability lobes of four taper
ratios are shown in Figure 8.

Figure 8 shows that, for different taper ratios, the chatter
stability curves are different. When the taper ratio is 0.3, the
lobe curve is at the top, and when the taper ratio is 1.0, the
lobe curve is at the bottom. There are two chatter curves in
the middle, and the curve with a taper ratio of 0.5 is above
that for a taper ratio of 0.7. It can be concluded that a smaller
taper ratio yielded higher chatter stability.

4.3. The Effect of Ply Angle on the Chatter Stability. To analyze
the effect of ply angle on the chatter stability of the tapered
composite boring bar, three different ply angles such as 0°,

45°, and 90° are set. To compare the effect of the taper ratio
on the chatter stability of the tapered composite boring bar, a
taper ratio of 0.7 is selected to compare with the uniform
cross-section bar (taper ratio = 1.0). To distinguish them, the
lobe curves are plotted using different line types. The sub-
script T indicates the tapered composite boring bar (taper
ratio=0.7), and the subscript U indicates a uniform cross-
section composite boring bar (taper ratio=1.0). The lobe
curves of these two boring bar models with three different
ply angles are shown in Figure 9.

Figure 9 shows that the chatter stability curves are
different for different ply angles and taper ratios. For the
same taper ratio, when the ply angle is 0, the curve is at the
top. When the ply angle is 90°, the curve is at the bottom, and
when the ply angle is 45°, the curve is in the middle.
Moreover, for the same ply angle, the curve for the smaller
taper ratio is at the top. The distance between the chatter
stability curves is large when the ply angle is 0°. When the ply
angle is 90°, the two curves almost overlapped. Thus, the
smaller the ply angle and taper ratio, the more stable the
chatter.

4.4. Effect of Stacking Sequences on the Chatter Stability.
To analyze the chatter stability of the tapered boring bar
under different stacking sequences, four different stacking
sequences are designed. Each stacking sequence consisted of
eight layers, including four 0° layers, two 45° layers, and two
90° layers. The detailed stacking sequences are listed in
Table 4. The chatter stability curves of four different stacking
sequences and two taper ratios are shown in Figure 10.

Figure 10(a) shows that, for different stacking sequences
and different taper ratios, the chatter stability curves are
different. Figure 10(b) shows an enlarged section (section
highlighted by a dashed rectangle in Figure 10(a)) of the lobe
curves. For different taper ratios, the lobe curve with a small
taper ratio is at the top, whereas the lobe curve with a large
taper ratio is at the bottom. For the same taper ratio with
different stacking sequences, the lobe curves of different
stacking sequences are different. Figure 10(b) shows that the
chatter stability curve of the 1st stacking sequence is at the
top, and that of the 3rd stacking sequence is at the bottom. In
between these two curves, the curve of 4th stacking sequence
is higher than the one of the 2nd stacking sequence. The
ultimate cutting depths are listed in Table 4. The order of the
ultimate cutting depths from largest to smallest for the
different stacking sequences is 1st, 4th, 2nd, and 3rd, which
is consistent with the results shown in Figure 10(b).
Therefore, the 1st stacking sequence of the chatter stability of
the tapered composite boring bar is the best one.

4.5. Effect of L/D Ratio on Chatter Stability. To compare the
L/D ratios on the effect of the tapered boring bar chatter
stability, the boring bar length is set to 0.25, 0.2, and 0.15 m.
The corresponding L/D ratio of the tapered boring bar is
assigned with 7.5, 10, and 12.5, respectively. The inner and
outer diameters, ply angles, and ply sequences of the boring
bar are set to the same values as those illustrated in Section
4.2. The lobe curves are shown in Figure 11.
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TaBLE 3: Effect of number of terms on prediction accuracy.

Number terms k=11 k=14 k=17 k=20 k=23
Vi 0.03265941 0.03219287 0.03219285 0.03219285 0.03219285
Vi = V| 0.00046656 0.00000002 0 0 0
0.050 - . TaBLE 4: Comparison of the ultimate cutting depth of different
M stacking sequences.
A /’ \
0.045 | i / | J Ultimate cutting depth
N A 1 /
AN \ _// Number  Stacking sequence Uniform Tapered
\l// \\ // \\ ,// \\ // \\\ /// \\\ /./v (mm) (mm)
g 0040 ' 1st [45, 0, 45,0, 90, 0,90, 0]  0.05621762  0.06113990
E 2nd [0, 0, 45, 45, 90, 90, 0, 0]  0.05544041 0.06023316
é 0.035 | 3rd [90, 45, 0,0, 0, 0,45,90] 0.05518135 0.05997409
’ 4th [0, 0, 90, 45, 45,90, 0, 0]  0.05595855 0.06088083
0030 distance between the two curves is large. On the contrary,
when the L/D ratio is large, the distance between the two
0.025 . . . . . ) curves is small. Thus, we can conclude that the smaller the
2000 3000 4000 5000 6000 7000 8000 taper ratio and L/D ratio, the better the chatter stability.
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FiGure 8: Effect of the taper ratio on chatter stability.
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FIGUre 9: Effect of the ply angle on chatter stability.

Figure 11 shows that the chatter stability curves are
different for different L/D ratios and different taper ratios. For
the same taper ratio, when the L/D ratio is 7.5, the chatter
stability curve is at the top. When the L/D ratio is 10, the
chatter stability curve is in the middle. When the L/D ratio is
12.5, the chatter stability curve is at the bottom. For the same
L/D ratios with different taper ratios, the small taper ratio
curve lies at the top, and the large taper ratio curve lies at
the bottom. Moreover, when the L/D ratio is small, the

chatter stability of the tapered composite boring bar for
different T/D ratios, the number of layers is set to 4, 8, and
12, respectively. The corresponding T/D ratios are 0.005,
0.01, and 0.15, respectively. The other parameters, such as
length, ply angles, and inside diameter, are set to the same
values as those in Section 4.2. The chatter stability curves for
different T/D ratios are shown in Figure 12.

Figure 12 shows that the chatter stability is different for
different T/D and taper ratios. For the same taper ratio, when
T/D is 0.05, the chatter stability curve is at the bottom. When
the T/D ratio is 0.1, the chatter stability curve is in the middle.
When the T/D ratio is 0.15, the chatter stability curve is at the
bottom. For the same T/D ratio, the chatter stability curve with
the smallest taper ratio is at the top, and the chatter stability
curve with large taper ratio is at the bottom. When the T/D
ratio is large, the distance between the chatter stability curves is
large, while when the T/D ratio was small, the chatter stability
curves almost overlapped. Therefore, the larger the T/D ratio
and the smaller the taper ratio, the better the chatter stability.

4.7. Effect of Different Composite Materials on Chatter
Stability. To compare the chatter stability of tapered boring
bars with different composite materials, three types of
composite materials such as carbon, aramid, and glass are
selected. The mechanical parameters of the three composite
materials are listed in Table 1. The ply angles, length, and
other parameters are assigned with the same values as those
illustrated in Section 4.2. The resulting lobe curves for the
three different composites materials are shown in Figure 13.

Figure 13 shows that different composite materials and
taper ratios produced different chatter stabilities. The chatter
stability curve of the carbon fiber composite boring bar is at
the top, the chatter stability curve of the aramid composite
boring bar is in the middle, and the chatter stability curve of
the glass fiber composite boring bar is at the bottom. For the
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FiGure 11: Effect of the L/D ratio on the chatter stability.

same composite material, the chatter stability curve with the
smallest taper ratio is at the top, and that with the largest
taper ratio is at the bottom. Therefore, it can be concluded
that the chatter stability of the carbon fiber composite
material is the best one.

4.8. Discussion. Although smaller taper ratios can improve
the chatter stability, in boring process, the taper ratios
cannot be too small. Szuba et al. [35] found that a hollow

0 1 1 1 1 1 1 1
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n (rpm)
--- T/D=0.005p -—— T/D=0.005;
‘‘‘‘‘‘ T/D=0.01y T/D =0.01y
—— T/D=0.015¢ —— T/D=0.015;

F1Gure 12: Effect of the T/D ratio on chatter stability.

boring bar had a better bending stiffness and natural fre-
quency when the taper ratio was 0.6733. In particular, if the
taper ratio is too small, larger holding cutter tools are
needed. Moreover, if the transverse cutting force is the same,
the deformation of a small taper ratio boring bar will be
larger than that of a uniform cross-section boring bar, which
will have a negative impact on the actual boring. Therefore,
selecting an appropriate taper ratio is important to improve
the chatter stability.
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5. Conclusions

In this paper, the AMDM is introduced and used to compute
the natural frequency of a tapered composite boring bar. To
verify the effectiveness of the AMDM, we adopt the ANSYS
software to compute the natural frequencies of the model
under various tapered ratios. The results showed that the
accuracy met the requirements and satisfied the chatter
stability precision. Moreover, we verified the convergence of
chatter stability of tapered composite boring bar. Based on
these verifications, we analyze the natural frequency and
chatter stability of the tapered composite boring bar in detail
and draw the following conclusions:

(1) The natural frequency of a tapered composite boring
bar is affected by the ply angle, L/D ratio, T/D ratio,
and type of composite materials. By selecting a
smaller ply angle, taper ratio, and L/D ratio, one can
get the larger natural frequency. Furthermore, by
selecting a larger T/D ratio and the carbon fiber
composite material, one can get the larger natural
frequency.

(2) The chatter stability of the tapered composite boring
bar is related to the taper ratio, the ply angle, the
stacking sequence, the L/D ratio, the T/D ratio, and
the composite material type. The chatter stability
increases with the decrease of the taper ratio, the ply
angle, and the L/D ratio. Moreover, by selecting a
larger T/D ratio, the carbon fiber material, and the
proper stacking sequence, one can get one more
stable tapered composite boring bar.
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