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Aiming at the problems of poor self-adaptive ability in traditional feature extraction methods and weak generalization ability in
single classifier under big data, an internal parameter-optimized Deep Belief Network (DBN) method based on grasshopper
optimization algorithm (GOA) is proposed. First, the minimum Root Mean Square Error (RMSE) in the network training is taken
as the fitness function, in which GOA is used to search for the optimal parameter combination of DBN. After that the learning rate
and the number of batch learning in DBNwhich have great influence on the training error would be properly selected. At the same
time, the optimal structure distribution of DBN is given through comparison. .en, FFTand linear normalization are introduced
to process the original vibration signal of the gearbox, preprocess the data from multiple sensors and construct the input samples
for DBN. Finally, combining with deep learning featured by powerful self-adaptive feature extraction and nonlinear mapping
capabilities, the obtained samples are input into DBN for training, and the fault diagnosis model for gearbox based on DBNwould
be established. After several tests with the remaining samples, the diagnosis rate of the model could reach over 99.5%, which is far
better than the traditional fault diagnosis method based on feature extraction and pattern recognition. .e experimental results
show that this method could effectively improve the self-adaptive feature extraction ability of the model as well as its accuracy of
fault diagnosis, which has better generalization performance.

1. Introduction

As a key part of mechanical transmission system, the
gearbox is widely used in wind turbine generators, coal
mining, and military equipment. When operating, the
gearbox is exposed to alternating load, and key parts such as
gears and transmission shafts are prone to failure. If the fault
is not diagnosed in time and the equipment keeps running,
minor faults may turn into serious faults, resulting in ma-
chine shutdown, production stagnation, and even casualties
[1, 2]. .erefore, real-time state monitoring and fault di-
agnosis of the gearbox are necessary measures to ensure the
safe operation of these equipments [3, 4].

.e fault diagnosis process for the gearbox generally
includes four steps: data collection, feature extraction, fea-
ture fusion, and pattern recognition. Among them, feature
extraction is the most critical step, which directly determines

the performance of fault diagnosis. Sun et al. [5] proposed a
fault diagnosis method for the planetary gearbox based on
parameter optimized VMD, determining the parameters of
mode number and center frequency adaptively according to
the extreme value of power spectral density. Such method
can effectively extract fault feature frequency, making ac-
curate diagnosis for crack faults in gears under strong
background noises and subtle fault signals. Isham et al. [6]
decomposed the vibration signal of the gearbox by VMD,
then extracted the time-domain, frequency-domain, and
time-frequency-domain features of each IMF component to
construct the eigen matrix of signal, and finally trained ELM
to establish a fault diagnosis model to complete the intel-
ligent diagnosis of the gearbox in the wind turbine. Zhang
et al. [7] took advantage of GWO algorithm to search for the
optimized parameters in TVF-EMDmatching with the input
signal, eliminating the influence of parameter selection on
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the decomposition results. .en, the fault characteristics of
rotating machinery were extracted by analyzing the IMF
component with the maximum weighted kurtosis index..e
abovementionedmethods are effective for simulation signals
and certain specific fault signals, but they need abundant
knowledge in signal processing and rich experience in expert
diagnosis. In complex industrial test sites, with huge
amounts of data, fault information is often complex and
changeable, and it may also contain internal and external
excitation as well as the coupling of multiple faults. It is
unrealistic to just rely on professional technicians and di-
agnostic experts for manual analysis. At present, in health
monitoring, with the increase of measuring points, sampling
frequency, and time length of data collection, a larger
amount of data has been acquired by the monitoring system.
.ese massive data makes the traditional fault diagnosis
methods fall into a bottleneck in real-time monitoring ef-
ficiency, fault diagnosis accuracy, and self-adaptive analysis
capability. .erefore, exploiting information from the big
data to efficiently and accurately identify the health status
has become a new problem in the health monitoring of
equipment [8].

With the development of machine learning, fault diag-
nosis methods based on machine learning models have
become a research hotspot, such as BP Neural Network,
Support Vector Machines (SVM), and Extreme Learning
Machines (ELM). However, in case of high-dimensional big
data, when applying the shallow learning model for gearbox
fault diagnosis, there is lack of diagnosis and generalization
ability in fault diagnosis, the accuracy of which relies on the
extraction quality of fault features among big data [9]. As a
newmethod in the field of machine learning, deep learning is
increasingly applied in fault diagnosis due to its powerful
modeling and characterization capabilities. Different from
the traditional fault diagnosis methods of feature extraction
and pattern recognition, deep learning integrates them into
the deep neural network to carry out the feature extraction of
signals in the hidden layer and the recognition of state
patterns in the output layer. Lei et al. [8] used denoising
autoencoder (DAE) as an unsupervised algorithm in the
pretraining stage and BP algorithm as a supervised algo-
rithm in the fine-tuning stage to build a deep neural net-
work, achieving adaptive extraction of fault characteristics
and accurate identification of health conditions of different
faults in the gearbox under various working conditions and a
large number of samples. Jin et al. [9] introduced the
multiobjective optimization algorithm to optimize multiple
Stack Denoising Automatic Encoders (SDAE) and extracted
the diverse fault features of the planetary gearbox. Lei et al.
[10] proposed a two-stage learning method for machine
intelligence diagnosis, learning the characteristics of signals
directly with unsupervised two-layer neural network and
then adopting softmax regression to classify the health
status. After that the method was successfully verified with
relevant data sets. Deep learning avoids the dependence on a
large number of signal processing technologies and diag-
nostic experience, directly extracts fault features self-adap-
tively from signals in frequency domain, integrates feature
extraction and pattern recognition methods in traditional

fault diagnosis, and achieves self-adaptive extraction of fault
features as well as intelligent diagnosis of health conditions
under big data.

Deep learning opens a new way for intelligent fault
diagnosis. Wen [11] used DBN with different structures to
establish the fault diagnosis model for bearing, evaluated the
models through multiple indexes of performance, and se-
lected the network structure with the best diagnostic per-
formance. .rough experiments, Zhang [12] deeply
analyzed the influence of number of nodes in the hidden
layer, learning rate, and number of iterations on feature
extraction ability of DBN and determined how the main
parameters should be set. .e abovementioned methods
have achieved certain effects in DBN network construction
and self-adaptive fault feature extraction. However, in the
process of parameter selection for DBN, network parameters
are still modified according to experience. At this time, the
diagnosis model has disadvantages of insufficient stability
and high randomness of diagnosis. Based on this, this paper
designed a new fault diagnosis method based onDBN to give a
set of optimal diagnosis scheme. First, parameter optimization
is carried out through GOA to reduce the influence of manual
parameter setting on training results. .en, the influence of
optimal network structure distribution and parameter opti-
mization on feature extraction capability of the hidden layer is
analyzed. Finally, the preprocessed data is input into the
network for training, and a fault diagnosis model for the
gearbox based on DBN is constructed. .rough experiments,
it has been proved that the method proposed in this paper can
effectively improveDBN’s self-adaptive fault feature extraction
ability and identification accuracy effectively solving the
shortcomings in traditional methods under big data.

2. The Parameter-Optimized DBN Method

In this section, some related algorithms which include DBN,
GOA, and the parameter determining criterion are intro-
duced. Based on these algorithms, a new parameter-opti-
mized DBN method is proposed.

2.1. Brief Overview of DBN. DBN is a probability genera-
tion network composed of several Restricted Boltzmann
Machines (RBMs) [13, 14]. .e network consists of a visible
layer, a hidden layer, and an output layer. .e visible layer
and the hidden layer are connected by weights, and each
neuron itself has an offset to represent its own weight. .e
output layer and the previously hidden layer form a BP
neural network which is mainly used to adjust the initial
parameters of the hidden layer to achieve supervised training
of the entire network. In the DBN learning process, the data
is input from the bottom layer and then through the various
hidden layers to complete the training process. .e learning
process can be divided into two parts: pretraining and fine
tuning. Figure 1 shows a DBN structure with n layers hidden.

2.1.1. Pretraining. Pretraining uses an unsupervised greedy
layer-by-layer approach to initialize the connection weights
and offsets between the RBM layers..en, each layer of RBM
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is trained separately from bottom to top [15]. Suppose RBM
is an energy-generated Bernoulli model, given the energy of
state (v, h) [16]:
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In this formula, θ is a parameter of the RBM and ωij is
a connection weight between the visible layer node and
the hidden layer node. V and H are the number of visual
units and hidden units. vi and hj are the node states of the
visible layer and the hidden layer. bi and bj are the offsets
of the visible layer and the hidden layer. In order to
maintain sparseness, the visible layer offset bj can be
initialized to lb(􏽢pi/(1 − 􏽢pi)), where 􏽢pi is the probability of
vi � 1. .e hidden layer offset aj is initialized to a large
positive number and ωij is initialized to a smaller random
number. At this time, the joint probability of the model is
as follows:
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In this formula, Z is a normalization factor. Since
there is no connection between the peer nodes, the
probability of the visible layer unit vi and the hidden layer
unit hj is independent:
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In the formula, σ(x) is a Sigmoid function. Find the edge
distribution of p(v, h; θ) to h:

p(v; θ) �
1
Z

􏽘
h

exp(−E(v, h; θ)). (4)

θ can be obtained by solving the maximum log-likeli-
hood estimation function on the training set, and the RBM
parameter update criterion is obtained by the contrast di-
vergence method [17]:

Δbi � ε 〈vi〉data −〈vi〉k( 􏼁,
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where ε is the learning efficiency and 〈·〉data and 〈·〉k are the
expected values of the distribution defined by the current
model and the reconstructed model.

2.1.2. Fine Tuning. Since pretraining is unsupervised learn-
ing, the initial values of the parameters obtained through
pretraining are not optimal parameters. At this stage, the BP
neural network is combined with the label to fine tune the
parameters for the problem of large output error. .e BP
neural network is set up at the output layer of DBN and
supervised training is performed from top to bottom.
According to formula (20), the connection parameters be-
tween each layer are optimized to make the best classification
ability of DBN. For the complex characteristics of early fault
signal, DBN is able to establish a deepmodel by simulating the
deep tissue structure of the brain, which can more effectively
characterize the complex mapping relationship between vi-
bration signal and running state of the gearbox.

2.2. Parameter Determining Criterion: Minimum Root Mean
SquareError (RMSE). It is necessary to evaluate the network
error in the training process. RMSE is the square root of the
difference between the reconstructed visual layer state vector
and the original data input vector after one Gibbs sampling
of RBM with the training sample as the initial state. .e
specific definition is as follows:

RMSE �

�����������������

􏽐
n
i�1 􏽐

m
j�1 x

j

i − y
j

i􏼐 􏼑
2

m × n

􏽶
􏽴

.
(6)

In equation (6), x
j
i means the state vector of the visual

layer; y
j

i means the input vector of original data; and m and
n, respectively, represent the number of nodes and samples
in the visible layer.

.e smaller the RMSE, the better the training effect..rough
the observation error, the training situation of the model can be
judged, and the parameters such as iteration times, learning rate,
and number of batch learning can be adjusted to achieve better
training effect..erefore, RMSE is an excellent choice as a fitness
function in the optimization process.
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Figure 1: .e structure of DBN.
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2.3. Grasshopper Optimization Algorithm. Grasshopper
Optimization Algorithm (GOA) imitates the swarm foraging
behavior of grasshoppers in nature and shows excellent
performance in dealing with multiobjective optimization
problems [18]. .e network formed by grasshopper pop-
ulations connects all the individuals so that all grasshoppers
keep in step, and one individual can determine the direction
of predation through others in the group. Since the location
of the target is unknown, the position of grasshopper with
the best fitness is considered to be the closest to the target.
.en, the grasshoppers will move in the same direction as
the target in the network. With the position update of
grasshoppers, in order to achieve a balance between global
search and local search, the appropriate range area would
decline self-adaptively until finally grasshoppers get together
and approach the optimal solution [19, 20]:
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In equation (7), N is the population size; ubd and lbd

represent the upper and lower bounds of the dth dimension,
respectively; 􏽢Td represents the current iterative optimal
solution; and

c � cmax − l
cmax − cmin

L
. (8)

In this equation, cmax is the maximum value of c; cmin is
the minimum value of c; l represents the current number of
iterations; and L represents the maximum number of
iterations.

In order to make each grasshopper move towards the
optimal solution during each search, it is assumed that the
optimal fitness value among individuals in the current search
process is the target value. GOA starts optimization with a
random initial set of solutions and updates position
according to formula (7), where the update of factor c de-
pends on formula (8). .e best location of target is updated
after each iteration until the termination condition is met
and the location and fitness value of the optimal individual
are returned.

2.4. Proposed Method. As shown in Figure 2, the optimi-
zation steps of GOA for DBN parameters are as follows:

(1) Set all parameters of GOA and initialize the
population

(2) Take the DBN training RMSE value as fitness
function, evaluate individual fitness value fit(i)

according to the learning rate and the number of
batch learning, and then mark the optimal individual

(3) Judge whether the current iteration times have
reached the termination condition; if so, end iteration
and output the result; if not, continue to the next step

(4) Update the position of each individual and reiniti-
alize the individuals beyond the upper and lower
bounds

(5) Update the optimal individual and start a new it-
eration: m � m + 1

3. The Construction of Gearbox Fault Diagnosis
Model Based on Parameter-Optimized DBN

Combined with the characteristics of big data from equip-
ment monitoring and the advantages of deep learning, a fault
diagnosis method for the gearbox based on parameter-op-
timized DBN is proposed. .is method achieves the organic
combination of unsupervised learning and supervised
learning and is capable for self-adaptive extraction of fault
features under big data as well as the identification of
equipment running state. Also, it is superior to traditional
methods which are with poor self-adaptive ability in feature
extraction as well as insufficient generalization performance
of shallow network in fault identification. .e method flow
chart is shown in Figure 3. .e specific steps are as follows:

(1) .e vibration signal of the gearbox is preprocessed
by FFT and linear normalization.

(2) .e vibration signals of multiple sensors are pre-
processed and formed into eigenvector
A � [x1, x2, . . . , xn]T.

(3) Minimize the training RMSE in DBN by searching
for the optimal combination of DBN parameters
with GOA, and the optimal structure distribution of
the network is given by comparison.

Start

Set parameters and initialize the population

Evaluate individual fitness
values fit (i)

Mark the optimal individual
and its location Td

Whether the current iteration number
m satisfies the termination condition

Yes

No

Reinitialize the individuals beyond
the upper and lower bounds

Update the optimal individual,
the iterative step m = m + 1

End

Figure 2: .e flow chart of improved DBN based on GOA.
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(4) Input the standard samples of different states of the
gearbox into the optimized DBN. After establishing
the fault diagnosis model, the test samples of the
gearbox in different states would be diagnosed.

4. Case Study

4.1.ExperimentSetup. In this paper, the transmission system
of the gearbox is taken as the research object to verify the
effectiveness of the proposed method by monitoring and
diagnosing its running state. .e test bed of drive system in
the gearbox is shown in Figure 4(a). It is composed of a drive
motor, gearbox, and magnetic powder brake. .e schematic
diagram of the test rig and accelerometer layout is illustrated
in Figure 4(b). Different fault states of the gearbox are
implanted by wire electrical-discharge machining. .e
number of teeth between pinion and gearwheel, pressure
angle, and tooth width are 55/75, 20°, and 20mm.

.e four running states of the gearbox are simulated on
the test bed, and samples are collected under five different
working conditions (880 rpm no load, 1500 rpm no load,
880 rpm 0.2A, 880 rpm 0.1A, and 880 rpm 0.05A) in each
state with the sampling frequency of 5120Hz. As shown in
Table 1, 500 sample groups are obtained from each running
state, each containing 512 points. In conclusion, the data set
for all running states contains 2000 samples, which simulate
the gearbox running states under various working condi-
tions and with various faults. During the training and testing
of the network, 50% samples are randomly selected for
training and the other 50% for testing. Table 1 illustrates 4
running states of normal, pitting, snaggletooth, and abra-
sion, as well as their corresponding status labels.

4.2. Fault Diagnosis Using Parameter-Optimized DBN

4.2.1. Data Preprocessing. According to the procedure of the
proposed method, the vibration signal of the gearbox is
preprocessed. .e FFT spectrum of different running states
are given in Figure 5.

Each signal corresponds to a superposition of several
components in frequency domain and can be decomposed
by frequency-domain analysis. In order to make the signal

more concise and more convenient to represent, each group
of samples would go through FFT transformation, obtaining
1024 points. In view of the symmetry of the spectrum, half of
the data points are taken for the eigenvector, so as to reduce
the dimension of signal feature. .e data from sensors in
different measurement positions are superimposed to in-
crease the information included in the eigenvector about
space and angle. In order to reduce the influence of noises
and abnormal samples on the network training, the obtained
eigenvectors are normalized linearly to reduce the training
time and to speed up the convergence.

4.2.2. Determination for Optimal Parameter Combinations
and Network Structure of DBN. Considering that no for-
mula or theory is known in setting the number of neuron
nodes in each hidden layer, many experiments and relevant
knowledge are required then. In this paper, three types of
hidden layer structures would be analyzed: smooth type
(200-200-200), increasing type (100-200-400), and de-
creasing type (400-200-100). In order to determine both the
optimal parameter combination and the optimal network
structure at a time, GOA is applied. After searching for the
optimal parameter combination of the network with dif-
ferent structures under the same training conditions, the
structure whose RMSE converges to the minimum is con-
sidered to be the best.

First, the optimal parameters of learning rate and batch
extraction in DBN are searched by GOA, with the search range
of [0, 1] and [1, 100], respectively. According to Zhang’s sug-
gestions [18], parameter setting of GOA are shown in Table 2.

After parameter setting of the optimization algorithm,
the parameter search of different network structures is
started. As shown in Figure 6, in order to explain the pa-
rameter search process in detail, the optimization curve
under the network structure of 400-200-100 is given, where
the RMSE converges to the minimum value of about 0.0074.
Also, the iteration begins to converge after 31 times of
calculation, indicating that the algorithm has strong global
optimization ability and fast convergence speed, making it
suitable for searching optimal parameter combination of
DBN. In this case, the optimal combination of parameters
obtained by descending type (400-200-100) is [0.1711, 25].
Meanwhile, the same operation is taken in smooth type
(200-200-200) and increasing type (100-200-400), with the
result of [0.3498, 20] and [0.6356, 16], respectively.

In order to determine the optimal network structure, the
error curves of three network types with corresponding
optimal parameter combination are given. It is indicated in
Figure 7(a) that the RMSE of decreasing network (400-200-
100) converges faster with smaller value. Figure 7(b) shows
the convergence in later period (after 50 iterations), and
RMSE of the decreasing type is significantly smaller than that
of other types. .erefore, the decreasing type is taken as the
best structure in this paper.

In addition, the DBN model achieves a good training
effect and tends to a stable state at the 100th iteration.
Although the increase in the number of iterations is ben-
eficial to improve the effectiveness of fault recognition, the

Data preprocessing

Vibration
signals
from

gearbox

Signal
preprocessing

by FFT and
linear

normalization

Multisensor
signals

constitute
the feature

vector

Use
GOA

to find the
optimum

parameters

Fault
identification

DBN training

DBN

Training data

Testing data

Gear box
fault

diagnosis

Gearbox fault diagnosis

Figure 3: .e flow chart of the proposed method.
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calculation time required would also increase greatly.
Considering the recognition effect and calculation cost
comprehensively, the number of iterations is set to 100.

.e number of nodes in the input layer depends on the
sample dimension (2560 dimensions), and the number of

nodes in the output layer is determined by the running state
(4 states). In this paper, the decreasing structure type with
minimum RMSE is applied in the hidden layer. .e finally
determined parameters of the structure in the DBN model
are shown in Table 3.

Motor Drive sha� support
Coupling

Gearbox
Magnetic powder brake

(a)

Motor

Synchronous belt

Coupling

Drive sha�
support

Gearwheel

Pinion

Single-reduction
gearbox

Magnetic powder
brake

Accelerometer

(b)

Figure 4: Test bed of the transmission system: (a) overview and (b) diagram.

Table 1: Four running states of the gearbox system.

Running state Sample groups Working conditions Status labels
Normal 500 5 1000
Pitting 500 5 0100
Snaggletooth 500 5 0010
Abrasion 500 5 0001

Normal

A
m

pl
itu

de
(m

∗
s–2

)
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m
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itu
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(m
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Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

500 1000 1500 2000 2500 30000
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500 1000 1500 2000 2500 30000

Snaggletooth

500 1000 1500 2000 2500 30000

Pitting

Figure 5: FFT spectrum of different running states.

Table 2: Parameter setting of GOA.

Number of search agents Maximum number of iterations Variable dimension Range of learning rate Range of batch number
10 100 2 [0, 1] [1, 100]
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According to the parameter combination obtained after
optimization, the setting of learning parameters in DBN is
shown in Table 4.

4.2.3. DBN Hidden Layer Feature Extraction Capability
Analysis. In order to verify that optimized DBN is more
capable for feature extraction, the extraction capability of
hidden layers before and after optimization is compared.
According to the advice given by Hinton et al. [21], the
learning rate and the number of batch extraction in DBN
selected by experience (viewed as DBN before optimization)
are [0.1, 10]. With the same sample and network structure
for training, the node values of the third hidden layer are
output, and its sparsity is taken as the evaluation index of
feature extraction capability.

As illustrated in Figure 8, the features extracted by DBN
after optimization are with more sparsity than that of DBN
before optimization. Such sparse features can effectively
express the essential features of data and can improve the
generalization ability of fault features. Table 5 lists the
changes of parameter combination, RMSE, and compre-
hensive distance value during iterations. .e comprehensive
distance within and between classes, obtained by dividing
the distance between classes and that within classes, is an
essential criterion for the separability of samples in different
classes and the aggregation in the same classes. Under a
specified feature, the longer the distance between classes, the
more separable the samples in different states. Similarly, the
shorter the distance within classes, the more concentrated
the samples in same states. .erefore, the increase of the
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Figure 7: RMSE curve during fine tuning: (a) global and (b) detail.
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Figure 6: .e variation of RMSE with the number of iterations.

Table 3: DBN structure parameter setting.

Input layer RBM1 RBM2 RBM3 Output layer
2560 400 200 100 4

Table 4: Learning parameter setting.

Batch Size Learning rate Momentum value Iteration
25 0.7716 0.05 100
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comprehensive distance between and within classes is ca-
pable for expressing the improvement in feature extraction
ability of the network. As shown in Table 5, RMSE gradually
decreases with the iteration, and the comprehensive distance
also appears in an upward trend. At the 31st iteration, RMSE
decreases significantly and the comprehensive distance in-
creases significantly, until finally they reach stabilization.
.is fact indicates that, with the iteration of parameters, the
feature extraction ability of DBN is improving, which has a
direct impact on the reduction of RMSE.

.e proposed method is capable for extracting fault
features self-adaptively from the spectrum of running states.
In order to further verify the feature extraction ability of the
proposed method, the first three principal components of
these features are extracted by KPCA and visualized. .en,
optimized DBN, DBN set by experience, shallow probability
network, and traditional feature extraction are compared,
respectively..e shallow probability network adopts a single
hidden layer Probability Neural Network (PNN), which
follows Bayesian law of prior probability and Bayesian rules
of decision to simplify the network training and carry out the
nonlinear mapping between original data and features.

Traditional feature extraction method is to extract 20
common characteristics in time domain, frequency domain,
and time-frequency domain from vibration signals of the
gearbox: mean value, standard deviation, peak value, RMS,
root amplitude, margin index, kurtosis index, waveform
index, pulse index, peak index, mean frequency, center
frequency, RMS frequency, standard deviation frequency,
kurtosis frequency, and the first 5 orders of energy entropy
in IMF components from EMD.

Figure 9(a) is the scatter diagram of principal elements
for feature extraction in the proposed method, indicating
that the samples in the same state cluster completely in its
own space, while those in different states separate effectively
without overlapping. Figure 9(b) is associated with DBN set
by experience. In the scatter diagram of the first three
principal elements, little overlap appears among pitting,
snaggletooth, and abrasion, which would have an adverse
impact on the accuracy of fault diagnosis. At the same time,
the significance of parameter optimization is verified as well,
which significantly affects the ability of feature extraction in
the network. Figure 9(c) is a shallow probability network.
Compared with deep probability network such as DBN, it is

Table 5: Iteration process.

Number of iterations Batch size Learning rate Comprehensive distance RMSE
1 20 0.3166 2.9238 0.01945
2 20 0.1067 2.9233 0.01945
3 25 0.1067 2.9250 0.01944
4 25 0.1067 2.9267 0.01941

. . .

28 25 0.1068 2.9676 0.01926
29 25 0.1068 2.9793 0.01925
30 25 0.1068 2.9837 0.01922
31 25 0.1712 5.0172 0.00880

. . .

97 25 0.1712 5.1849 0.007640
98 25 0.1712 5.1862 0.007635
99 25 0.1711 5.1893 0.007563
100 25 0.1711 5.1982 0.007431
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Figure 8: Comparison of fault feature sparsity between networks: (a) before optimization and (b) after optimization.
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Figure 9: Visual scatter diagram of feature extraction. (a) .e proposed method. (b) DBN set by experience. (c) Shallow probability
network. (d) Traditional feature extraction method.
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Figure 10: Continued.
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discovered that the deep probability network is more capable
for feature extraction, while serious overlapping exists
among different states under shallow probability network.
Figure 9(d) is associated with the traditional feature ex-
traction method. By observing the scatter diagram, the
distances between different states are too close with aliasing
phenomenon, which is also a main reason for the poor
diagnosis effect in traditional fault diagnosis.

4.2.4. Comparative Analysis with Other Methods. In order to
verify the advantages in diagnosis accuracy, the diagnosis
rates of the proposed method is compared with DBN set by
experience, shallow probability network, and traditional
feature extraction combined with ELM. 250 groups (the
remaining 50% samples) from each of the four running
states in the gearbox are randomly selected. In order to
eliminate the errors and to verify the fault identification
ability and stability of the model, the test is repeated for 25
times. .e test results are as follows.

As illustrated in Figure 10(a), the accuracy of the fault
diagnosis model established by the proposedmethod is higher
than 99.5% among 25 random sampling tests, and the average
diagnosis rate can reach 99.66%, indicating that the proposed
method is characterized by the high diagnosis rate and sta-
bility for the gearbox under multiple working conditions.
Figure 10(b) is the diagnosis rate of the DBN model with
empirically selected parameters. .e average diagnosis rate is
98.89%, slightly lower than the optimized DBN. Figure 10(c)
shows the diagnosis rate of shallow probability network, with
an average diagnosis rate of 84.79%. Compared with the
shallow network, the deep network is more suitable for big
data and self-adaptive fault diagnosis under complex working
conditions. Figure 10(d) shows the diagnosis rate of tradi-
tional feature extraction combined with ELM, with an average
diagnosis rate of 80.93%. Compared with the deep network
model, traditional fault diagnosis methods lack in self-
adaptive fault feature extraction, monitoring diagnosis ac-
curacy, and generalization performance.

5. Conclusion

(1) A parameter-optimized DBN method was proposed
to improve the feature extraction ability and fault
diagnosis accuracy, in which the minimum RMSE in
the network is considered as the fitness function, and
the newly proposed GOA is properly employed to
search for the optimal parameter combination.

(2) .e parameter-optimized DBN method can self-
adaptively extract fault information contained in the
signal spectrum of the gearbox, avoiding the de-
pendence on a large number of signal processing
methods, and diagnosis experience, which has more
advantages in fault diagnosis ability and general-
ization performance.

(3) A novel integrated fault diagnosis model based on
FFT, linear normalization, and the optimized DBN is
established, which provides a set of new intelligent
fault diagnosis procedure. .rough experimental
analysis, this method is superior to shallow layer
networks and traditional methods based on the
combination of feature extraction and pattern rec-
ognition, which greatly contributes to the new era of
intelligent fault diagnosis mode under “big data.”
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