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In the real-time position technology of underground shallow source, the signal denoising performance of wireless sensor nodes
directly determines the location speed and accuracy of underground burst point. Because of the complexity and randomness of the
underground medium and the fact that underground explosion is a nonstationary transient process, the problems of low
convergence rate and poor steady-state performance of the filter exist when the existing LMS algorithm is used for signal
denoising. In light of the above concerns, this paper comes up with a signal denoising algorithm and hardware implementation
method based on D-LMS (delay-LMS). Firstly, according to the autocorrelation function characteristic of random signal, using the
principle that the autocorrelation function time delay characteristic of narrowband signal such as explosion vibration signal is
better than that of wideband random signal such as ground noise, the D-LMS filter algorithm is constructed by introducing the
time delay parameter. Secondly, the selection method of key parameters in D-LMS hardware implementation is analyzed.-irdly,
the corresponding hardware circuit is designed by FPGA, and the simulation is carried out. Numerical simulation and ex-
perimental verification show that compared with the existing LMS improved algorithm, the D-LMS algorithm proposed in this
paper has higher denoising stability and better denoising effect. Compared with the signal postprocessing method based on the
host computer, the signal denoising speed of this method is significantly improved. -is method will provide a powerful
theoretical method to solve the problem of high-precision and fast source positioning and provide technical support for the
development of high-speed and real-time source positioning instruments.

1. Introduction

Distributed source location in shallow underground spaces
is a positioning technique that integrates sensing, net-
working, transmission, and positioning [1, 2]. It works by
placing a large number of wireless sensor nodes on the
ground, which are tasked with collecting vibration signals
generated by explosions [3]. Following the explosion, the
wireless transmission network transmits the sensor node
data to the control center, where the position of the burst
point is determined, as shown in Figure 1.

Quick location of a range of seismic sources is an
emerging application, such as in real-time monitoring of
underground chamber blasting, rapid location of fuze firing,
and rapid prediction of rock burst, water burst, and mud
burst [4]. In this context, effort on improving the processing

speed of the wireless sensor nodes themselves has become a
hot subject in the field of rapid location of underground
seismic sources [5].

When a wireless sensor node processes data, a key step in
achieving accurate and fast positioning is denoising the
vibration signal. Conventional methods for denoising un-
derground seismic signals include wavelet threshold
denoising [6], Gabor transform [7], weighted moving av-
erage filtering [8], singular value decomposition matrix
analysis [9], and HHT [10]. Although these methods im-
prove the signal-to-noise ratio of the vibration signal, they
take up a great amount of hardware resource due to their
computational complexity, which makes them difficult to
implement on wireless sensor nodes and are thus inappli-
cable. LMS (least mean square) is a typical adaptive filtering
algorithm. Despite its low convergence speed, it is simple in
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structure and involves a small amount of calculation and is
easy to implement. Besides, it involves no extra calculation
complexity if there are changes in the working environment.
-erefore, from the perspective of VLSI (very large scale
integration) hardware implementation, the LMS algorithm
is the best way to complete wireless sensor node on-chip data
preprocessing.

Continuing from the LMS algorithm, researchers have
changed the principle of selecting the step size to come up
with a variety of modified algorithms such as SVS-LMS [11],
VS-LMS [12], Witch-LMS [13], Tanh-LMS [14], and Atan-
LMS [15]. -ese algorithms, by constructing a functional
relationship between the step factor and the error signal
power, have worked with good results in the field of noise
detection and noise cancellation.-e underground vibration
signal is a nonstationary transient time-varying signal, while
the noise signal is a broadband random signal, and hence the
error signal power spectrum is time-varying, with the result
that when a step factor is used to adjust the filter coefficients,
the filter convergence rate decreases, the filter’s steady-state
performance deteriorates, and the denoising effect worsens.

In view of the above problems, this paper introduces a
delay parameter and proposes to build a D-LMS filter al-
gorithm (delay least mean square), which leverages the
characteristics of the autocorrelation function of the random
signal; in terms of the time delay of the autocorrelation
function, narrowband signals, such as the explosive vibra-
tion signal, are better than broadband random signals, such
as the ground noise [16, 17]. By means of simulation, the
denoising performance of D-LMS and existing LMS im-
proved filter is compared in this paper, which also discusses
about the key filter parameters for engineering imple-
mentations. A field experiment was performed to verify the
performance of the proposed filter. -e result suggests that
the proposed filter circuit improves greatly the SNR of the
input signal and accelerates the location process. -is
method adds some engineering value to the field of un-
derground space applications [18–20].

2. Principle of D-LMS Adaptive Filters

According to the underground explosion fluctuation theory
and the characteristics of the autocorrelation function of
random signals, of which the ground noise is a type, the
autocorrelation function of the ground noise attenuates
fast, while narrowband random signals, such as explosion
vibration signals, have an autocorrelation function that
attenuates slow [21]. -at means that the explosion vi-
bration signal has a wider autocorrelation function than the
ground noise. -erefore, with an appropriate delay length,
the noise signal will no longer be correlated with the
original signal, but the useful signal still keeps a good
correlation with it [22, 23], as shown in Figure 2. Auto-
correlation operation is performed on Part A and Part B,
the former containing only noise signal while the latter
containing both noise and useful signal. -e result of the
operation is shown in Figure 2.

It can be seen from Figures 2(b) and 2(c) that the au-
tocorrelation of the noise signal in Part B decreases rapidly as
the length Δ of the time delay changes, while the autocor-
relation of the useful signal in Part A remains at a high level.
-erefore, it is possible to extract the effective signal in the
explosive vibration signal by introducing the time delay
parameter and taking advantage of the autocorrelation
characteristics of the signal. -e specific structure of the
proposed D-LMS (delay least mean square) is shown in
Figure 3.

Let the signal collected by a wireless sensor node be
x(n) � s(n) + N(n), where s(n) is the explosion vibration
signal and N(n) is the environmental noise. x(n) is the
expected signal, w(n) is the adaptive filter coefficient, d(n) is
the filter input signal, y(n) is the filter output signal, e(n) is
the error signal, μ is the step factor, and Δ is the delay
amount. -e D-LMS filter expression is as follows:

x(n) � s(n) + N(n), (1)

d(n) � x(n − Δ) � s(n − Δ) + N(n − Δ), (2)

y(n) � w
H

(n)d(n), (3)

e(n) � x(n) − y(n), (4)

w(n + 1) � w(n) − 2μ d(n)e
∗
(n). (5)

-e explosion vibration signal s(n) has an autocorre-
lation function with a longer attenuation characteristic than
the environmental noise N(n) [24]. -erefore, if an ap-
propriate delay time Δ is chosen, the signals N(n) and
N(n − Δ) are no longer correlated, while s(n) and s(n − Δ)
are still correlated to a good degree. So, the adaptive filter’s
output y(n) is the best estimate of s(n).

3. Simulation Verification

3.1. Performance Comparison of the D-LMS Filter and the
Existing Modified LMS Filters. To further compare the
performance of the D-LMS filter with the existing modified
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Figure 1: Schematic diagram of shallow underground distributed
source location.
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Figure 2: Autocorrelation results of signal and noise, respectively. (a) Underground explosion vibration signal. (b) Autocorrelation
characteristic curve of Part A. (c) Autocorrelation characteristic curve of Part B.
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Figure 3: D-LMS filter model diagram.
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LMS filters, a study was made that used explosion shock
waves generated by artificial simulation.-e signal sampling
rate was set at 10 kHz, and the sampling time was set to 10 s.
-e useful explosive signal was a damped stretched sine
wavelet.-e setting frequency was 150Hz, the arrival time of
first break was at 1 s, the attenuation factor was e− i/160 (i� 0,
1,. . ., n), the noise source was white Gaussian noise, and the
initial SNRwas −5 dB.-eD-LMS filter delay points were set
to be 10, and the filter order was set to be 12. Five modified
LMS algorithms, namely, SVS-LMS, VS-LMS, Witch-LMS,
Tanh-LMS, and Atan-LMS, were used to filter adaptively the
explosive vibration signals 1200 times. -e resulting error
convergence curves are shown in Figure 4.

As can be seen from Figure 4, during 1200 iterations, the
convergence speed and convergence accuracy of the D-LMS
algorithm are significantly better than other algorithms.

3.2. Choice of Key Parameters inHardware Implementation of
D-LMS. As can be seen from the previous section, among the
modified LMS algorithms, the D-LMS algorithm gives the
best filtering effect when dealing with explosion vibration
signals. In the hardware implementation of the D-LMS filter,
the choice of the length of time delay Δ, the filter orderN, and
the step factor μ is critical to the performance of the filter.

3.2.1. Length of Time Delay Δ. -e length of time delay Δ is a
key parameter of the D-LMS algorithm to bring about good
filtering [25, 26]. Due to the high explosion intensity, the
SNRs of the explosion vibration signals collected by the
wireless sensor nodes were all greater than 0 dB. -erefore,
the emphasis was on the choice of the length of time delay
under SNR� 0 dB condition. -e signal sampling rate was
set at 10 kHz, and the sampling time was set to 10 s. -e
useful explosive signal was a damped stretched sine wavelet.
-e setting frequency was 150Hz, and the arrival time of first
break was at 1 s. -e noise source was white Gaussian noise,
with an SNR of 0 dB. -e underground explosion data
containing the useful signal and also the data containing
only the noise were extracted; autocorrelation was per-
formed on them, respectively. -e values thus found were
normalized, which are shown in Figure 5(a). -e results of
the correlation computation are shown in Figure 5(b).

It can be seen from the Figure 5(b) that at a sampling rate
of 10 kHz, when the time delay Δ is greater than 6, the cor-
relation coefficient between noises N(n) and N(n − Δ) is less
than 0.2, while that between the useful signals S(n) and S(n −

Δ) is greater than 0.9. -erefore, the delay points were set to 6.

3.2.2. Filter Order N. -e filter order N determines the
complexity of the design of the circuit. With too small an N,
the filtering error will be great and the filter just will not serve
its filtering purpose or even result in unconvergence of the
LMS algorithm. Too great an N, on the other hand, will
increase the computational complexity and thus take up
more hardware computing resources [27, 28].

-e explosion seismic signal was simulated by a damped
stretched sine wavelet, to which a noise with an SNR of 0 dB

was added. With the step factor μ kept constant, the filter
order N was changed in the process of simulation; the
simulation results are shown in Figures 6(a)–6(c).

With the step factor kept constant, the filtering perfor-
mance improves gradually as the filter orderN increases.When
the filter order is greater than 12, the filtering effect stabilizes,
and the SNR is greater than 30dB. For subsequent positioning,
when the SNR is greater than 30dB, subsequent data pro-
cessing requirements can be satisfied. To strike a balance be-
tween the filtering effect and the hardware implementation
difficulty, this paper settles on an order N� 12.

3.2.3. Step Factor μ. -e size of the step factor μ affects the
convergence speed and steady-state error of the LMS al-
gorithm [29]. A small step size gives a smaller steady-state
error and a slower convergence rate; with a large step size,
the convergence rate is faster, but the steady-state error
becomes larger too [30].

Below is a filtering test of the measured signal, with the
filter order being kept constant at N� 12 and the step factor
μ being varied.

-e simulation results in Figure 7(a) show that with too
small a μ value, the convergence rate is slow, and the tracking
performance of the filter coefficient is poor at the first break
of the vibration, resulting in blurred jump point of the first
break signal. In Figure 7(c), where the μ value is too large, the
convergence rate becomes fast, but the filtering effect de-
teriorates. For adaptive filtering of transient vibration sig-
nals, it is necessary to prioritize the convergence rate, and
after that, the filtering effect should be then improved. To
cater to both needs, the choice falls on a μ � 1/2.

4. Hardware Design of the FPGA-Based
LMS Filter

4.1. General Hardware Design of FPGA-BasedWireless Sensor
Nodes. -e specific design diagram of the system is shown
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Figure 4: Error convergence curves of a few modified LMS
algorithms.
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in Figure 8. -is system incorporates ARM+FPGA archi-
tecture in its design of the wireless sensor nodes, and its
D-LMS filter is implemented in an FPGA. -e FPGA is
responsible for explosion vibration signal collection, data
filtering, and data storage; the ARM works as the control
core, transferring the data collected by the FPGA to theWIFI
module. -e indicators of key devices are shown in Table 1.

In this study, the node control system was based on the
FPGA+ARM architecture, whose core circuit board is
shown in Figure 9. Major indices were as follows: (1) data
storage capacity: 16GB (expandable); (2) wireless trans-
mission rate: 6.4Mbps; (3) Beidou clock synchronization
accuracy: 20 ns; (4) the system was powered by a 12V/
20000mAh lithium battery; when the system was in the
standby mode, the power consumption was 0.15W, and
when the system was in the working mode, the power
consumption was 0.8W

4.2. Deciding the Length of the LMS Filter System Coefficient
w(n). In digital signal processing systems, especially those
that include feedback, the extra word length arising from
multiplication can be truncated or limited by quantifying the
results [31]. -e DSP multiplier core integrated in the Xilinx
series of FPGA is generally a 18 bit × 18 bit multiplier.
-erefore, for the ease of engineering implementation, the
design should be ideally implemented based on a maximum
of 18-bit fixed-point number system [32].

-e input data are treated as 12-bit integer data,
expressed as {1 sign bit + 2 integer bits + 9 decimal digits}, or
as ×(3, 9) for short. -e weight coefficient is regarded as 18-
bit integer data, expressed as {1 sign bit + 2 integer bits + 15
decimal places}, or w (3, 15) for short. A large amount of
addition and multiplication is involved in the filtering
calculation process [33]. With a fixed finite word length, if
two fixed-point numbers of N bits each are added, the result

is of N+ 1 bit; if they are multiplied with each other, the
result is of 2N digits. Hence, y (6, 24)� w (3, 15)× (3, 9).

4.3. Actual Hardware Design of the LMS Filter. -is system,
following the top-down design principle, included a D-LMS
filter consisting of 4 circuit modules, including a data latch
module, a data filteringmodule, an error calculationmodule,
and a coefficient update module. -e data latch module was
used to latch the input data and perform time delay oper-
ation on the data; the data filtering module worked to
perform 12-order filtering operation on the data; the error
calculation module was used to output the filtered result and
estimate the error; the coefficient update module had a
function of computing the filter coefficient.

-e external input signals of this circuit included data
clock (clk_din), system clock (clk), input data (din [11 : 0]),
and data enable terminal (dn-en). -e output signal of this
circuit was (yout [11 : 0]). -e data clock (clk_din) was
synchronized with the data input (din), and the system clock
(clk) was used to drive each module to work orderly.

-e top-level circuit of the system is shown in Figure 10.
Each module begins to work the moment its input port
“start” receives the pulse signal. -e work of a module is
completed when it outputs endM pulse signal. -e endM of
the previous module is connected to the “start” input of the
latter module to complete serial timing control.

For the convenience of describing each of the modules,
the actual process of the time sequence design in the
implementation of the 12-order LMS filter is given below:

Step 1: the filter module inputs data: xi �

din(i+6)(i � 0 ∼ 11)

Step 2: filtering of calculation: dyi � wi × xi(i � 0∼ 11)

Step 3: calculate the filtering result and output it:
yout � 􏽐

11
i�0dyi
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Step 4: error calculation: e � din − yout
Step 5: weight update step calculation: dwi � 2μxi × e

Step 6: update weight: wi � wi−1 + dwi

(a) -e M_XnDnWn module is intended to latch the
data input and the filter coefficient, as well as com-
plete the operations of Steps 1 and 6. -e module
relies on the system clock (clk) to detect the rising

jump edge of the data clock (clk_din). When the
rising jump edge of the data clock (clk_din) is de-
tected, the new data din are considered to be coming,
and the input data latching and the shift operation
begin. -e data input “din,” after a delay of 6 data
cycles (d1 ∼ d6), enters the shift latch x0 ∼ x11, and
x0 ∼ x11 is taken as the input vector of the filter. At
the end of the shift operation, the output
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Figure 6: Simulation validation diagram of filter orders. (a) Simulation signal diagram of 0 dB noise explosion seismic wavelet.
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Figure 7: Continued.
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x0 ∼ x11, w0 ∼ w11 (w0 ∼ w11 is the filter weight
vector) is maintained, and the output pulse signal
endM notifies the M_filter module to start working.
-e integrated circuit of this module is shown in
Figure 11.

(b) -e data filtering module completes Step 2. When
the module’s input “start” receives the pulse, it
multiplies the corresponding input data xi by wi,
with the product sent to the corresponding port
dyi. In this step, 12 12 bit∗ 18 bit multipliers are
used, and the filter calculation is completed in

parallel by the multiplier group. -e integrated
circuit of this part is shown in Figure 12.

(c) -e error calculation module completes the accu-
mulation calculation of Step 3 and the error cal-
culation of Step 4.-e integrated circuit of this part
is shown in Figure 13.

(d) -e coefficient update module completes the cal-
culation in step 5 with 12 12 bit∗ 12 bit multipliers
doing the calculation in parallel. At the same time,
the saturation truncation method is used to convert
the 24 bit multiplication result to 18 bit values. -e
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Figure 7: Simulation results of measured signal with different μ values. (a) μ � 1/8 filtering result graph. (b) μ � 1/2 filtering result graph.
(c) μ � 2 filtering result graph.
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Table 1: Indicators of key devices.

Function
unit Main components Technical index

FPGA Spartan6-XC6SLX16-
FT256

Basic logic units: 14,579; configurable logic blocks: 18,224; embedded memory block capacity:
576KB; DSP computing core: 32; IO interfaces: 186.

ARM STM32F407VET6 Maximum frequency: 168MHz; maximum flash memory: 1MB; IO interfaces: 140; 12 16-bit
timers; 2 32-bittimers; each timer has up to 4 IC/OC/PWMs.

ADC MAX1308 Power supply: ±5V; conversion accuracy: 12 bit; number of channels: 8; maximum sampling
rate: 500Ksps/channel; input range: 9V; operating temperature: −40°C to +85°C.

WIFI W5500
Supports LWIP, TCP, UDP, ICMP, IPv4, ARP, and IGMP; a built-in 32 KB large-capacity

transceiver buffer unit; supports speed adaptivity and full duplex and half duplex
communication.

FLASH MT29F4G08AFABA Storage capacity: 4G; block size: 64 pages (128K+ 4KB); page size: 2,112 bytes (2,048 + 64 bytes);
operating temperature: −40°C to +85°C.

Figure 9: Photos of the core circuit board of the wireless vibration sensor node.
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�e output filter results
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Figure 10: Schematic diagram of the LMS filter top module.
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shift operation is performed according to the step
factor, and the above calculation result is converted
into a filter coefficient. -e integrated circuit of this
part is shown in Figure 14.

(e) Resource utilization: the above circuit modules
were then synthesized, and the total resource uti-
lization on the FPGA is shown in Table 2.

4.4. Simulation Verification. MATLAB and VIVADO
(2017.4 version) were used in a joint simulation to verify the
function. -e stimulus test file was written using the
MATLAB software. -e explosion seismic signal was a
damped stretched sine wavelet, to which a noise with an SNR
of 0 dB was added. -e sampling rate was set to 10 kHz. -e
above signal was quantized as the input data of the system.
-e filter order was set to 12, and the step factor was set to
1/2. -e above data were loaded into VIVADO software;
the output result is shown in Figure 15.

-e simulation result shows that the signal output from
the filter, compared with the input signal, obviously has a
higher SNR. It can be seen that the hardware filter designed
in this study is capable of effective signal denoising.

5. Field Experiment

To test the signal denoising performance of this system, a
wireless sensor network was constructed, consisting of 8 self-
developed sets of wireless sensor nodes, APs, and bridges.

-e test site, which was 20 km away from the control master
station, was loaded with 5 kg TNT to create an artificial
vibration source. Following the quake, two sol-
utions—terminal data postprocessing and on-chip real-time
processing—were used, respectively, to assess the perfor-
mance and speed of data preprocessing.-e test site layout is
shown in Figure 16.

-e dots in the figure represent sensors, and ∗ represents
the burst point. -e devices were positioned, and each
seismic measuring point and the preset explosion point were
calibrated for their location with the aid of the high-pre-
cision Beidou. -e data are given in Tables 3 and 4.

-e test site is shown in Figure 17.
-e number of acquisition channels of a wireless sensor

node was set to be 8, sampling rate was set to 10 kHz, and
sampling time was set to 2.5 s. -e wireless transmission rate
was 6.4Mbps. -e original vibration signal collected by
wireless sensor node 1 in the experiment is shown in
Figure 18(a).-e signal after on-chip preprocessing is shown
in Figure 18(b). On the upper computer, the original signal
was processed with the MATLAB software and the D-LMS
filter algorithm, with the result shown in Figure 18(c).

-e signal processing results under 2 modes were found
by calculation, as shown in Table 5. Number of wireless
sensor nodes: 16; number of internal sampling channels of a
wireless sensor node: 8; sampling rate: 10 kHz; sampling
time: 2.5 s; and quantization bit number: 12 bit, stored in 16
bit. -erefore, the total data storage capacity of the wireless
sensor network was 6.4MB. -e wireless transmission rate

Figure 11: Integrated circuit diagram of the data latch module.
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was set at 6.4Mbps, and it took 10 s to transmit all of the
data. -e upper computer did not begin to process the data
until receiving all of the data. -erefore, upper computer
processing lagged at least 10 s behind on-chip processing.

As can be seen from the table, due to the time spent on
manual software operation, the PC software preprocesses the
data much slower than the on-chip real-time solution.
-ough the filtering effect of the on-chip real-time solution
fell slightly behind the PC software, it gave an SNR that was

still above 30 dB. Given the extraction principle of the first
break arrival time—an important positioning parameter,
when the SNR is greater than 28 dB, the first break arrival
time can be extracted practically with no inferior accuracy
[34].-erefore, the proposed on-chip preprocessing method
is able to achieve the same effect as can be achieved on upper
computer software. More importantly, this method cuts the
signal processing time of an individual sensor node by nearly
10 s, which is a great merit in real-time source location.

Figure 13: Integrated circuit diagram of the error calculation module.

Figure 12: Integrated circuit diagram of the data filtering module.
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Figure 14: Integrated circuit diagram of the coefficient update module.

Table 2: Resource utilization rate of the filter module.

Resource Utilization Available Utilization (%)
LUT 562 14579 3.85
FF 586 18224 3.22
DSP 24 32 75.00
IO 25 256 9.77
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Figure 15: Denoising simulation results of the filter hardware.

Table 3: Coordinates of the sensors.

Sensor serial number
Actual coordinates (unit: m)

Sensor serial number
Actual coordinates (unit: m)

X Y Z X Y Z
1 −4.50 −4.50 −1.54 9 1.50 −4.50 −1.78
2 −4.50 −1.50 −0.47 10 1.50 −1.50 −0.96
3 −4.50 1.50 −0.73 11 1.50 1.50 −2.76
4 −4.50 4.50 −2.12 12 1.50 4.50 −0.54
5 −1.50 −4.50 −1.52 13 4.50 −4.50 −1.21
6 −1.50 −1.50 −0.76 14 4.50 −1.50 −0.64
7 −1.50 1.50 −0.65 15 4.50 1.50 −1.13
8 −1.50 4.50 −1.64 16 4.50 4.50 −0.83

Table 4: Location of the detonation point.

Serial number Dosage (kg)
Actual coordinates (unit: m)

X Y Z
1 5 43.21 −6.17 −19.12
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Figure 18: Diagram of different modes of signal processing. (a) Original input signal diagram. (b) Signals after on-chip preprocessing.
(c) Signals after processing by the upper computer.

Table 5: Results of signal preprocessing.

Category SNR (dB) Runtime (s)
Original signal 10 —
Signals after on-chip hardware preprocessing 30 1.085
Signals after preprocessing by upper computer software 32 10.344

(a) (b) (c) (d)

Figure 17: Field layout of the control distance of the wireless sensor nodes. (a) Main control station. (b) Field transmitting antenna.
(c) Wireless APs. (d) Wireless sensor node.
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6. Conclusions

-is paper proposes a signal denoising algorithm based on
D-LMS as well as an FPGA hardware design method to cater
to the needs of rapid and high-precision location of un-
derground sources. First, the proposed D-LMS and the
existing modified LMS were compared through simulation
for their denoising effect. -en, analysis was provided on
how to determine the length of time delay, the filter order,
and the step factor—all critical parameters in implementing
the D-LMS hardware. -e circuit modules were designed
using an FPGA for the data latch, filter, error calculation,
and weight updating modules. A field experiment was also
carried out. -e results demonstrate that the designed filter
circuit is capable of greatly improving the data processing
speed of explosion vibration signals. Compared with post-
processing methods based on an upper computer, the
proposed method shortens the data processing time by 30 s.
-is method is of some engineering application value in the
field of underground source positioning.
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