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,e health monitoring and management have been accepted in modern industrial machinery for an intelligent industrial
production. To timely and reliably assess the bearing performance degradation, a novel health monitoring method called feature
clustering analysis (FCA) has been proposed in this study. Along with the working time going, this newmonitored chart picked by
FCA aims to describe the feature clustering distribution transition by a series of reference models. First, the data provided by the
reference state (healthy data) and the one from the monitor state (monitor data) are fused together to construct a reference model,
which is to explore the active role of healthy status and activate the difference between healthy status and unhealthy status.
Manifold learning is later implemented to mine the discriminated features for good class-separable clustering measure. In this
manner, heterogeneous information hidden in this reference model will appear once degradation happened. Finally, a clustering
quantification factor, named as feature clustering indicator (FCI), is calculated to assess distribution evolution and migration of
the monitor status as compared to the consistent healthy status. Furthermore, a single Gaussianmodel (SGM) based on these FCIs
is used to provide a smooth estimate of the healthy condition level. ,e corresponding negative log likelihood probability (NLLP)
and the fault occurrence alarm are developed for an accurate and reliable FCC. And it can well depict a comprehensibility of the
real bearing performance degradation process for its whole life. Meanwhile, as compared to other health profiles based on the
classical health indicators, the proposed FCC has provided a much more accurate degradation level and rather monotonic profile.
,e experimental results show the potential in machine health performance degradation assessment.

1. Introduction

Condition-based maintenance (CBM) has been widely ac-
cepted as an essential maintenance program in the modern
industry. Based on the information acquired through con-
dition monitoring, health monitoring and management are
vital in ensuring safety, minimizing breakdowns, and re-
ducing the production costs [1–3]. As an easily damageable
but widely used part in rotating machinery, the bearing
health condition needs to be timely and reliably identified
[4–10], where the failure and loss can be effectively warned
and prevented at an early level. Meanwhile, quite different
from fault detection and fault diagnosis [11, 12], the rest
crucial step for CBM is the analysis of the size or degradation
level of a fault, where fault detection is to identify whether

the equipment is or not in a normal status and fault diagnosis
focuses on fault mode identification. And a more accurate
health condition evaluation will bring much more benefits for
decision-making process of CBM. As the mechanical vibra-
tion reveals the dynamic performance degradation of bearing
health, a data-driven approach based on vibration analysis has
been widely used in bearing health monitoring. In bearing
health monitoring, health indicator (HI) is hoped to effec-
tively degenerate following the bearing health condition with
monotonicity overall, so that the full cycle life of the bearings
can be accurately monitored with an early warning reached to
trigger the slight degradation alarm, whereas there is a major
challenge to construct a reliable and sensitive HI from the
online or monitored vibration signals, which are always
disturbed by the environmental noise and macrostructural
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disturbance. ,erefore, monitoring HI construction from the
nonlinear stochastic vibration signals is crucial in the ap-
plication of bearing health monitoring.

In prognostic health management (PHM), one of the
most important issues is to acquire the sensitive and rep-
resentative features for an effective HI construction. Up to
now, many advanced techniques have been working on the
original features construction, which can be divided into
three analysis domains: time-domain analysis, frequency-
domain analysis, and time-frequency analysis. To further
extract the sensitive features, feature selection (FS) [13–15]
or feature extraction (FE) [16–22] techniques are often used
as the preprocessing methods for bearing fault diagnosis and
degradation assessment. ,e FS methods mainly focus on
the selection of the most sensitive features based on the
principle of the feature discrimination ability. By utilizing
the internal liner/nonlinear characteristics in the raw fea-
tures, the FE methods employ some optimization strategies
to enhance the sensitivity of the extracted features. ,ere are
mainly two different kinds of FE methods: linear projection
methods, such as principal component analysis (PCA) [13],
linear discriminant analysis (LDA) [14], and locality pre-
serving projections (LPP) [17] and nonlinear projection
methods, including kernel PCA (KPCA), trace ratio linear
discriminant analysis (TR-LDA) [20], local tangent space
alignment (LTSA) [21], and locally linear embedding (LLE)
[23]. Linear FE methods are practical and visualized but are
not sufficient enough to extract the nonlinear structure in
the nonstationarity data. Nevertheless, with the consider-
ation of the local topology structure, the nonlinear FE
methods can discover the intrinsic geometry structure of the
raw data. It should be noted that, in the framework of the
conventional health monitoring scheme, these mentioned
original features or extracted features of the monitor dataset
are always directly constructed and mapped based on the
healthy dataset alone in the training process. ,en, the new
extracted features will be put into the next models for
bearing fault diagnosis [19, 20], performance degradation
assessment (PDA) [4–10], and residual useful life (RUL)
prediction [23–25]. For example, Yu [7] obtained the feature
mapping from the healthy data by LPP and put the mapped
features of the monitor data into the Gaussian mixture
model (GMM) for bearing performance degradation. Pan
et al. [8] employed the extracted features from normal data
to train a support vector data description (SVDD)model and
health index based on general distance was designed. In the
application of bearing health monitoring, Upadhyay and Rai
[10] trained self-organizing map (SOM) from the original
feature matrix of the normal data and used the support
vector regression to assess the degradation.

Although these works have been succeeded in the ap-
plication of bearing performance assessment, there still exist
the following two characteristics that are not well consid-
ered. First, the reference model with the healthy data will
play an important role in feature enhancement. According to
the physical mechanism of the bearing failure, once a slight
or severe fault happens, the surface of the monitored
bearings will be worn or exfoliated. ,e corresponding
periodic impact will produce transient components in the

measured signal, which indicate the difference between the
abnormal data and normal data. By introducing the normal
data with abnormal data in a new reference model, it can be
foreseen that the abnormal data will be easy to be classified
from the normal data. Especially for health monitoring, the
monitor data with a slight degradation occurrence can be
clearly enhanced and thus timely detected. However, in the
traditional framework, the normal data and themonitor data
are always independent and the information will not reflect
on the mappings/extracted features. Our recent work [17]
has shown a significant difference between the feature space
of healthy data and unhealthy data, which will effectively
improve the clustering and distinguishability of multiclass
features, including identification for some different degra-
dation severities with similar feature distribution. In this
manner, in our work in [18], we have tried to use reference
features to evaluate the bearing performance degradation.
,erefore, the reference model with healthy data will play an
active role of healthy status and activate the difference be-
tween healthy status and unhealthy status.

Secondly, in the traditional monitoring systems, the
extracted features are just constructed directly from the
historical operation data under the assumption of healthy
data. And from the principle of statistical quality control
(SQC), it can be known that the feature distribution of the
real-time monitor data will transfer from that of the healthy
data along with the operating time going. According to the
mentioned reference model, there is also a similar phe-
nomenon that the relative feature clustering distribution of
the two classes directly depicts the performance degradation
level for each monitor data. When the monitor data has the
same property with the healthy data, the feature clustering
distribution of these two classes will be in coincidence or
overlap with each other. Otherwise they will be divided into
two populations, which mean that the monitor data is be-
coming damaged. ,us, the feature clustering distribution
trend can be imported in bearing performance degradation,
which can expose the distribution evolution and migration
of the monitored reference model.

Motivated by these considerations, this study utilizes
feature clustering distribution of the reference model with
the healthy data to assess the performance degradation.
Feature clustering analysis (FCA) is proposed instead of the
complex mathematical monitoring models. First, a reference
model is built by involving the same reference state (healthy
data) with the monitored samples at each moment. Second
the manifold feature extraction method is applied on each
raw feature space for a two-class classification issue. As
aforementioned, nonlinear FE methods show much better
class-separable clustering measure for multiclass patterns.
,at is to say, their extracted features have better hetero-
geneity between different class patterns and show better
homogeneity in the same class patterns. In this study, the
nonlinear FE method, LLE, is implemented as a pre-
processing method to deliver a better feature clustering
distribution for the reference model. ,en, a novel HI,
feature clustering indicator (FCI), is proposed to quanti-
tatively evaluate the class-separable clustering effect for each
mapped reference model. In this manner, the performance
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degradation of the monitored bearings can be exposed by the
clustering evolution of the monitor data as compared to the
reference healthy data. Furthermore, to effectively and
steadily monitor the current health and give an accurate fault
occurrence alarm, the simple single Gaussian model (SGM)
[7] is used to reach a smooth estimate of the healthy con-
dition. In addition, the negative log likelihood probability
(NLLP) and a fault occurrence alarm can be obtained. Fi-
nally, an improved SGM-based feature clustering chart
(FCC) is developed for an accurate and reliable bearing
health monitoring.

,e rest of this paper is organized as follows: Section 2
presents the framework of the feature clustering system,
where a new reference model-based FCA is proposed and its
improved SGM-based FCC is developed. In Section 3, three
whole-life bearings with comparisons are employed to verify
the effectiveness of the proposed FCI. Finally, conclusions
are drawn in Section 4.

2. Feature Clustering Analysis

In this section, a feature clustering analysis based on ref-
erence model is proposed for bearing health monitoring.
Figure 1 illustrates the framework of FCA methodology.
First, the critical issue is to choose the reference state for the
reference model. In this study, the healthy data is regarded as
the reference state, and the measured samples at monitor
moment t (t= 1, 2, . . ., T) are combined with the reference
state to construct the original reference matrix. Manifold
learning is then implemented on the combined reference
state to extract the meaningful features for a significant
clustering distribution. In this manner, the characteristics of
the monitored signal can be well highlighted as comparison
with the same reference signal (healthy data). ,ereafter, a
discriminant clustering factor is calculated to evaluate the
feature clustering of the mapped reference model at each
monitor moment, so that the FCCwill be achieved for online
bearing health monitoring. Finally, SGM is further used to
smoothly estimate the probability distribution evaluation
and migration for the bearing health condition. Meanwhile,
for a better illustration, Figure 2 draws the process of feature
clustering analysis. Once the reference model was con-
structed with a baseline data, the manifold feature would be
later mined via manifold learning, where a two-class feature
space is provided to illustrate the degradation. A Gaussian
model is further used to build a clustering chart for bearing
PDA. Unlike the classical health monitoring scheme, with
the same reference state, the feature clustering distribution
of the reference model can expose the variety and hetero-
geneous information once a fault happened. ,e detailed
information of the proposed feature clustering system, in-
cluding general feature construction, reference modelling
through manifold learning, FCA, and SGM-based FCC, is
presented in the following.

2.1. General Feature Construction. In the process of FCA, the
first operation is to construct a feature matrix for reference
manifold. Lots of numerical features have been calculated to

depict the equipment condition. In general, the time-domain
statistical features are usually employed as the physical mag-
nitude descriptors.,is study calculates eight statistical features
to build the original time-domain features [17], including the
maximum peak value, kurtosis, absolute mean, crest factor,
shape factor, root mean square (RMS), variance, and square
root value. Simultaneously, as one of the famous feature
generation techniques, wavelet transform (WT) has been
widely used with its merit of multiresolution analysis. And by
means of a series of low/high frequency pass filters, wavelet
packet transform (WPT) can decompose a nonstationary signal
into different frequency subspaces without energy loss. In this
study, a three-level WPT with “db8” wavelet is employed to
decompose the raw signal into eight frequency subbands. And
the reconstructed wavelet coefficients of node (j, n) can be
expressed as Pn

j(k), k � 1, 2, . . . , N􏽮 􏽯, where N is equal to the
length of the input signal. ,e signal energy of each frequency
subband is calculated as

E3,i � 􏽘
N

k�1
P

n
j(k)􏽨 􏽩

2
. (1)

Following this signal energy, the energy ratio in the third
level to the total energy is reached as the final frequency-
domain features as follows:

r3,i �
e3,i

Etf

,whereEtf � 􏽘
7

i�0
e3,i. (2)

,e final features can be totally achieved as the feature
set {f1, f2, . . ., f16} in Table 1. ,erefore, a referenced
feature matrix at monitor moment t (t � 1, 2, . . ., T) can be
synthesized by combining the health feature set H � {x1,
x2, . . ., xn0} with sample number of n0 and the corre-
sponding feature set Nt � {y1, y2,. . ., ynt} with sample
number of nt together. ,us, a reference feature model
Mt � {H, Nt} with the sample number of (n0 + nt) is
constructed for the following reference manifold feature
space learning.

2.2. Reference Model via Manifold Learning. As constructed
the reference modelMt � {H,Nt} for monitor moment t, this
study implements nonlinear manifold learning method to
pick out the inherent feature distribution. By means of
manifold learning for this special reference mode, the in-
herent structure, which also stands for the natural difference
between the monitored status and the referenced status, can
be revealed. In this manner, the mined features of this
reference model will have an outstanding class-separable
clustering measure in a low-dimensional feature space. Here,
a manifold learning algorithm, called LLE [23], is employed.
By considering the neighbors of each sample with its cor-
responding weights, LLE can reconstruct the local expres-
sion combination in a global way. ,erefore, the local
geometry property, which means the neighborhood-pre-
serving embedding hidden in the high-dimensional feature
space, can be depicted in a low-dimension space. And the
reference feature extraction based on LLE is simply de-
scribed as follows.
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First, for the given high-dimensional feature setMt � {H,
Nt}� {z1, z2, . . . , zn|zi ∈ RD , i� 1, 2, . . ., n; n� n0+ nt; t� 1,
2, . . ., T }, the sensitive feature distribution is assumed to lie
on or near a d-dimensional manifold space, where d<<D,
D� 16. To acquire the low-dimensional embedding for the
reference mode, the LLE algorithm is conducted with three
main steps as follows:

(1) Construct neighbors: select the k-nearest neigh-
bors for each sample zi with the given neighbor
number k.

(2) Reconstruct with local weights: achieve the best local
reconstruction by minimizing the following error
cost function:

ε(W) � 􏽘
n

i�1
zi − 􏽘

n

j�1
wijzj

����������

����������

2

, (3)

where wij is the weight between sample zi and sample zj. If zj
is not the neighbor of zi, wij � 0 and the local weights are
subject to the constraint condition that 􏽐

n
j�1 wij � 􏽐

k
l�1 wl

i.

(3) Embedded coordinates mapping: calculate the global
internal coordinate ui by transforming the high-
dimensional vectors zi into a low-dimensional
manifold space. Set d as the final dimension of the
output manifolds by minimizing

Φ(W) � 􏽘
n

i�1
ui − 􏽘

n

j�1
wijuj

����������

����������

2

. (4)

Satisfy the constraint condition 1/N 􏽐
n
i�1 uiusT

i � Id,

􏽐
n
i�1 ui � 0. By eigenvalue decomposition for the symmetrical

coefficient matrix M� (IN−W)T(IN−W), the bottom d non-
zero eigenvectors can be finally computed to form the em-
bedding Ut � ui􏼈 􏼉

n0+nt

i�1 (t� 1, 2, . . ., T).
In this manner, the embedded coordinates Ut � {P, Qt}

can be captured by manifold learning, where P �

u1, u2, ..., un0
􏽮 􏽯 with size of d × n0 andQt � un0+1

, . . . , un0+nt
􏽮 􏽯

with size of d × nt are the corresponding coordinates of
the reference state H and the monitor data Nt, respec-
tively. ,e feature distribution of the embedded coordi-
nates Ut based on reference model reflects the distribution

Table 1: Original features.

Number Time domain Number Frequency domain
f1 Maximum peak value f9 r30
f2 Absolute mean f10 r31
f3 Root mean square f11 r32
f4 Variance f12 r33
f5 Square root value f13 r34
f6 Kurtosis f14 r35
f7 Crest factor f15 r36
f8 Shape factor f16 r37

Original data Reference manifold Clustering analysis Feature clustering chart

Reference data:
healthy signal

Reference model:
feature matrix Zt

Feature clustering
evaluation: SS

Gaussian modelling
SGM Npt

Feature clustering
indicator: st

Performance degradation
assessment

Feature distribution:
manifold learning Ut

Monitored
signal

Figure 1: ,e framework of the feature clustering system for rolling bearing performance degradation assessment.
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Figure 2: ,e illustration of feature clustering analysis.
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variation between the current monitored data and the
reference state. Along with the time t going, this feature
distribution will evolve into another status. ,erefore, to
depict the distribution variation, a discriminant clustering
factor is further calculated from these coordinates Ut at
time t (t � 1, 2, . . ., T), and the corresponding FCC is
constructed to describe and assess the performance
degradation as follows.

2.3. FeatureClusteringAnalysis. According to the reference
model Ut = {P,Qt} (t = 1, 2, . . ., T), it can be easily foreseen
that once a fault happened, there will be good class-
separable clustering measure between the monitor dataQt
and the healthy data P due to their different distribution.
For example, the feature RMS of a tested bearing on the
whole life time is drawn in Figure 3. ,e dataset at mo-
ment point 1 is regarded as the reference state (here it is
the healthy data). ,e other 9 runtime points along with
the working time going, including 100, 300, 500, 680, 740,
780, 860, 920, and 980, are selected as the monitor mo-
ments (corresponding to the red dash-dotted lines). In
addition, the number of samples in each moment is set to
20. Based on equations (3) and (4), a series of manifold
coordinates from the reference models can be obtained for
each runtime moment. Here, the corresponding feature
clustering distribution of the reference feature sets is
shown in Figure 4, respectively. As displayed in
Figures 4(a)–4(c), it can be seen that there is no clear
divisibility between the monitor data and the reference
state except some deviation points, which indicates that
these two datasets have the similar attributes and statuses.
Furthermore, the feature distributions in Figures 4(d)–
4(g) have separation of trend with less samples overlapped
at the moments 680, 740, 780, 860, and 920. Note that the
two categories are developing toward the opposite di-
rection. Finally, the feature distributions are totally sep-
arated in Figure 4(i). ,erefore, according to the bearing
performance degradation and their corresponding feature
clustering migration in Figure 4, it can be foreseen that the
distribution of the reference model at each monitor
moment depicts the trend of the bearing performance
degradation along with the working time.

It is widely known that there are many feature extraction
methods based on fisher classifier, which select the optimal
mappings and sensitive features based on ratio of between-class
distribution to within-class distribution in a supervised way.
Especially, Lu et al. [19] proposed TR-LDA to find themaximal
ratio of the between-class scatter Sb to within-class scatter Sw to
make the surprised patterns in a well-distinguished scatter.
Moreover, He et al. [17, 18, 24] also calculated three param-
eters, including discriminant factor SS, between-class scatter Sb,
and within-class scatter Sw, which have been successfully
applied in feature evaluation and classification quality mea-
surement. Here, to quantificationally evaluate the feature
clustering distribution for bearing performance evolution,
three parameters are calculated using the referencemodelUt as
follows:

SS �
Sb

Sw

,

Sb � Tr 􏽘
c

j�1
nj μj

− μ􏼐 􏼑 μj
− μ􏼐 􏼑

T
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

Sw � Tr 􏽘
c

j�1
􏽘

u∈Cj

u − μj
􏼐 􏼑 u − μj

􏼐 􏼑
T

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

μj
� 􏽘

u∈Cj

u

nj

(j � 1, 2, ..., c), μ � 􏽘
c

j�1

μj

c
,

(5)

where nj is the sample number in the jth class, Cj is cor-
responding label set of the jth class, and c is the total number.
,e between-class scatter Sb indicates the scattered level
among different classes, while the within-class scatter Sw

describes the concentrated level in the same class. And the
discriminant factor SS is a comprehensive indicator that
inherits the property of between-class scatter and within-
class scatter. Basically, a larger Sb indicates that the sepa-
ration of classes is clearer and a smaller Sw shows that the
concentration of each class is relatively better, which to-
gether contributes a larger SS to reflect a better separable
distribution of the monitored signal as compared to the
healthy data. In this study, it should be noted that mean-
variance standardization is also applied here to preprocess
the feature vectors for a fair evaluation.

As listed in Table 2, the corresponding three indexes are
calculated to evaluate the feature clustering distribution of
each reference-model coordinate Ut (t� 100, 300, 500, 680,
740, 780, 860, 920, 980). As operating time running, the
between-class scatter Sb shows an increasing trend with a
decreasing trend for within-class scatter Sw. ,us, the
comprehensive indicator SS gives a final degradation trend,
which can effectively reveal the real-time operating condi-
tion of the monitor bearing health condition.

To further strengthen the sensitivity of comprehensive
factor SS for precisely assessing bearing performance deg-
radation and detecting the occurrence of the fault at an early
stage, an exponentially weighted moving average (EWMA)
[25] statistics is applied here. With the merits of small shifts
detection for EWMA, it is very appropriate for SS-based
EWMA statistic to form amonitor profile.,erefore, a novel
HI, called as feature clustering indicator (FCI), is proposed
as follows:

st � (1 − α)SSt−1 + αSSt, α ∈ [0, 1), (6)

where a larger weight value of α allots more weight to current
indicator SSt and less weight to older indicator SSt−1.
Generally, the value is taken between 0.01 and 0.25 [6]. In
this study, the value of α is selected as 0.12. According to the
manifold feature distribution based on reference model, st is
calculated as a quantification index at each moment. ,is
will lead a new profile to assess the performance degradation
of the monitored bearing.
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Table 2: ,e feature clustering indicator for the monitor dataset at different runtime moments.

Runtime moment 100 300 500 680 740 780 860 920 980
Sb 5.77 7.30 8.51 10.9 12.0 12.5 16.2 18.4 19.3
Sw 4.59 4.51 4.45 4.33 4.27 4.25 4.06 3.96 3.91
SS 1.26 1.62 1.91 2.53 2.81 2.95 3.99 4.65 4.93

RM
S

0.25

0.2

0.15

0.1

0.05
0 100 200 300 400 500 600 700 800 900 1000

Time (time unit 20min)

Figure 3: Bearing PDA based on RMS for the whole life time (the vertical red line corresponds to the monitor runtime moment).
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Figure 4: Two-dimensional feature clustering distribution based on the reference model at different runtime moments: (a) 100, (b) 300, (c)
500, (d) 680, (e) 740, (f ) 780, (g) 860, (h) 920, and (i) 980.
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2.4. SGM-Based Feature Clustering Chart. Since the oper-
ating environment is easily interfered and there is not much
priori information about the defect progression, it is not
scientific and effective to steadily monitor current health
status without considering the historical information. In
health monitoring of the critical machine components, a
universal process control can be learned from the large
amount of healthy data. Under the assumption that only
healthy data are accessible and they will meet with the normal
distribution, SGM is further imported to model the data with
a Gaussian distribution. Actually, another improved Gaussian
model (Gaussian mixed model, named as GMM) [8] can be
also employed to describe the healthy data with complicated
distribution. It is easily seen that the SGM is a special case of
GMMwith the number of the mixed models being one. With
the calculation of FCI, SGM is later used to describe the
distribution of these FCIs and provide a smooth estimate of
the health condition.Meanwhile, a new input data will deviate
from this healthy distribution once the bearing status begins
to degenerate. In these manners, through these FCIs, the
SGM-based probability estimate can be further employed for
PDA, which is named as SGM-based FCC.

In this SGM-based monitoring system, the distribution
of the calculated FCIs via feature clustering analysis can be
modeled by a single normal probability distribution function
(PDF), which is defined as

p
s

u, δ
􏼠 􏼡 �

1
����
2πδ2

􏽰 exp −
(s − u)2

2δ2
􏼢 􏼣, (7)

where s is the calculated one-dimensional FCI and u and δ
are the mean and variance of the distribution N(u, δ), which
is denoted as parameter θ(u, δ). For a training set s� [s1, s2,
. . ., sm] with m samples of variable HIs, the optimum pa-
rameter θ can be learned by the normal parameter esti-
mation function with given confidence intervals. Once SGM
is learned from those FCIs, the corresponding PDF is further
employed to assess the bearing health condition online. For a
new input, the unconditional probability density p(s/θ)

indicates the level of the input following the probability
distribution of the healthy state.,e value p of an input from
the degenerated bearing will be beyond the value region of
the healthy data (out of control from a threshold).,erefore,
the value p can be taken as an effective monitored indicator
for assessing the bearing performance. Generally, to improve
its legibility and intelligibility, negative log likelihood
probability (NLLP) of the density value p is also calculated as
the monitor HI in this study:

Npt � −log p
st

θ
􏼒 􏼓􏼒 􏼓, t � 1, 2, . . . , T. (8)

In statistical quality control (SQC), a threshold is needed
to provide an alarm for the beginning of bearing perfor-
mance degradation at the slight level. Kernel density esti-
mation (KDE) [26] is used to define the alerting operating
line. In this study, using kernel-smoothing method, the
density estimate can be calculated by the function “ksden-
sity” of the Matlab software. With the confidence level 99.5%
(that means the false alarm rate is 0.5% for healthy data), the
up/low warning line (UWL/LWL as the threshold) can be

further obtained to confirm the confidence bound/threshold
for indicator Np.

2.5. Monotonicity Evaluation for Feature Clustering Chart.
In the application of bearing health monitoring, for an
accurate detection and precise monitoring, the monotonicity
of the degradation profile is also very important for system
monitoring and maintenance. According to the mechanism
of bearing health degradation, an HI with monotonicity over
time is critical to machine PDA. In general, spearman co-
efficient (SC) [27] was applied to evaluate the monotonic
relationship between two stochastic sequences. ,is study
employs this coefficient to assess the monotonicity of the
indicator over the operating time. ,e SC can be described
by the following monotonic function:

Cs � 1 −
6􏽐 D2

N N2 − 1( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (9)

where Cs is the spearman rank correlation coefficient
(SRCC),D is the difference between the two given sequences,
and N is the length of the sequences. Generally, a higher SC
illustrates a strong monotonic relationship between the HI
and the operating time of bearing performance degradation.
,erefore, the effectiveness of the proposed FCC for rolling
bearing health PDA can be characterized by SC value.

3. Experimental Verification

3.1. Experimental Data Description. To verify the effective-
ness of the proposed FCA using reference model, a case of
bearing running to failure experiment is tested in this study.
,e experimental data was downloaded from Prognostics
Center Excellence (PCE) [28]. As plotted in Figure 5, there
were totally four test Rexnord ZA-2115 double row bearings
on the shaft of the bearing test rig. A radial load of 6000 lbs
was added to the shaft and bearing by a spring mechanism,
where the rotation speed is constantly kept at 2000 rpm. Test
would stop once the accumulated debris adhered to the
magnetic plug exceeded a certain level and caused a switch to
close. ,e data length was 20480 points with the sampling
frequency rate of 20 kHz. In this study, bearing 2 (2#) and
bearing 4 (4#) of testing 2 with outer-race failure and bearing
3 (3#) of testing 1 with inner-race failure were used to il-
lustrate the performance of the proposed FCC and SGM-
based FCC.

3.2. Feature Clustering Results. In the application of rolling
bearing health prognosis and fault diagnosis, one important
issue is early detection and quantitative analysis for rolling
bearing health PDA. Actually, it is seen that there will be no
prior information about the defect severity except for the
healthy state. ,erefore, the main idea of the proposed FCA
is to import the healthy data as the reference state and the
defect severity of the monitor data at each moment can be
exposed via the feature clustering distribution based on the
reference model. Here, the healthy data size n0 and the
monitor data size nt are both set to be 20 with the sample
length of 1024. ,e total number of each reference model is
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40 and then LLE algorithm is implemented based on these
16-dimensional matrices combined with healthy data and
the monitor data together. ,e dimension d is kept as 5.
,us, a reference matrix of size 5× 40 is achieved at the
monitoring time t (t� 1, 2, . . ., T). It should be noted that the
same healthy dataset is employed in whole monitoring
process. ,e FCI is later calculated from these mapped
coordinates to assess the performance degradation of the
monitored bearing at each corresponding moment.

Compared with the proposed FCI, three typical HIs,
including RMS (f3), Kurtosis (f6), and the frequency energy
ratio (f9), are first calculated for three tested bearings on their
whole life, which are plotted in Figures 6(a)–6(c), respec-
tively. It can be easily seen that there is a long stable interval
in the RMS-based HI profile for the bearing on its whole life
while the period of failure development is relatively short.
And the other HIs f3, f6, and f9 have inconsistent degradation
patterns for the tested bearings under the same working
conditions. Simultaneously, these HI profiles show no clear
monotonicity along with the bearing performance degra-
dation over working time. Moreover, it is not easy to further
confirm their health degradation levels, such as the accurate
failure occurrence. According to the conventional HI con-
struction way, another widely used FE method PCA is
additionally employed on the original healthy feature sets
and the corresponding 1st principal component (PC) is
calculated as the final HI for eachmonitor moment. And this
PCA-based PC profile is displayed as Figure 6(d), which
shows the same shortcomings as illustrated in the original HI
profiles. It should be noted that these four HI profiles are
subjected to traditional HI construction approaches (not the
reference model). ,is means that there is a demand for a
prognostic approach, which can be able to identify the slight
degradation at the early level, so that effective maintenance
can be taken to rebuild its operating health condition. It is
hoped to get a monotonic HI profile to accurately detect the
bearing health condition degradation statuses.

,e proposed FCC based on reference model is different
from the above traditional FE deterministic models. As
displayed in Figure 7, FCI profiles for these three bearings
reveal a much more stable and clearer degradation trend
with goodmonotonicity, and the corresponding degradation

levels are obviously exposed and quite clear in the their full
cycle-life process of health performance degradation, which
will bring benefits in the application of bearing health
monitoring. ,erefore, compared to other HI profiles, four
conclusions can be drawn as follows: (1) a phased degra-
dation can be obviously found in the bearing degradation
processes, including healthy status, slight degradation status,
and severe degradation status; (2) a significant and sharp
change in the FCC would occur once the monitored bearing
degenerates from healthy status to slight degradation as
drawn in the blocks of Figure 7. Generally, these changing
points in the short period can be used to timely and ac-
curately verify the occurrence of faults, which are beneficial
to identifying the degradation at an early level. In this
manner, an early alarm can be sent and effective mainte-
nances can be arranged to restore bearing health. Simul-
taneously, there is a duration period from slight degradation
to severe degradation, so we can accurately master the
bearing conditions before effective maintenance is taken; (3)
the proposed HI profiles show an outstanding monotonicity
with the time, which is critical for effective monitoring of
bearing health monitoring and accurate prediction of
bearing residual life; (4) a particularly interesting phe-
nomenon can show that there is a stabilized level from the
slight degradation status to the severe degradation status for
bearing 2 and bearing 3, and at the same level, the rising
trend of the performance degradation in bearing 4 slows
down. In these special periods, their FCIs will not rise or fall
too much and stay in a relatively stable range. Actually, these
results are well consistent with the physical mechanism of
bearing wear.,e local contact surface of the bearings will be
hardened again by the energy in the premature wear process.
And this will effectively improve the abrasion performance
of the bearings. ,us, after the bearings have been into the
slight degradation level, the degradation trend will slow
down or just enter into a stable area. As the working time
going, the hardened surface of the bearing will be worn and
destroyed at last. Under this operation, the bearing will be
continuously worn in an irreversible process until failure.
,erefore, after these stable degradation areas, the bearing
will rush into another rapid degradation area and the
degradation speed will be faster than the early degradation.
,e above analysis means that the actual bearing health
condition is in phased degradation. According to the fact
that the degradation speeds are mutative in the whole
bearing life, many researchers used the piecewise prediction
models for health monitoring and residual life prediction.
,is further strengthens the rationality and reliability of our
proposed FCC as it clearly reveals different levels of the
health degradation. ,erefore, it is meaningful that the FCI
provides a comprehensible HI in the real-word application
of bearing health monitoring.

Meanwhile, another traditional statistical T2 chart is also
obtained from these reference model based on LLE. ,e
result of the T2 chart is shown in Figure 6(e). It can be found
that there is a long stable level along the time for the healthy
status, and a sharp change appears along with the fault
happened. However, there is an obvious jitter in the period
from slight degradation to severe degradation.,erefore, the

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Accelerometers ThermocouplesRadial load

Figure 5: Bearing test rig.
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T2 chart profiles have no favorable monotonicity, which is
not beneficial to effectively online monitoring. In the cal-
culation of FCI from the discriminant factor, the EWMA
technique is used to detect the small shifts of the clustering
quantitation factor.,erefore, for a fair comparison, another
HI named as RE, which is the feature RMS (f3) based on
EWMA technique with the same parameter, is also calcu-
lated as shown in Figure 6(f). ,e smoothness and conti-
nuity of the monitor profiles become much better than those
in Figure 6(a). Nevertheless, the slight degradation occur-
rences are not effectively enhanced with obvious jumping
signature and there also exist severe jitter in the degradation
profiles. According to these results, the proposed FCI profile
calculated from reference model has competitive merits and
a good potential in bearing health monitoring.

3.3. Monotonic Comparison. To further quantify the effec-
tiveness of the proposed FCI chart, the SCs are calculated by
(7) for those HI profiles. As shown in Table 3 and Figure 8,
the HIs based on the reference model with manifold
learning, including T2, RE and s, have relatively better
monotonic profiles for bearing performance degradation.
,is further exposes that the proposed reference model
based on manifold learning shows a good potential in
extracting and enhancing the discriminative characteristics
between the reference state and the monitor data. Mean-
while, the SCs for the proposed FCI charts of bearing 2

and bearing 3 have bigger values than the ones of T2 chart,
which follow the same distributions as illustrated in
Figure 6(e) and Figure 7 for bearing 2 and bearing 3. And it
can be seen that the SC for the FCI chart of bearing 4 with
value 0.45 is bit smaller than the one for the T2 chart with
value 0.50. However, for HI profiles of bearing 4, the FCI
chart in Figure 7 shows a much better monotonicity overall
with clearer degradation levels while there is a big variance in
the severe degradation of T2 chart as shown in Figure 6(e).
Since SC is an overall evaluation coefficient for the whole-life
bearing health degradation and there is a long stable period
for the health status for T2 chart of bearing 4, the SC of T2

chart will go up in some cases. In general, this SC can il-
lustrate the good monotonicity of the proposed feature
clustering profiles. ,erefore, the proposed FCI chart from
reference model based on manifold learning is beneficial to
bearing health monitoring.

3.4. Assessment Performance Comparison. In this study, for
the purpose of accurate and reliable health monitoring, SGM
is later employed to give a probability of the monitor data
based on a smooth estimate of the FCIs of the healthy data.
,ese HIs of the healthy dataset (i.e., 300 samples) for each
bearing are used to train the SGM model and the corre-
sponding NLLPNp are calculated for each monitored signal.
Meanwhile, the threshold for the fault occurrence alarm
is determined by the KDE tool. ,erefore, the proposed
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Figure 6: ,e PDA results for the full cycle life of the tested bearings: (a) the feature RMS (f3), (b) the feature kurtosis (f6), (c) the feature
frequency energy ratio (f9), (d) the 1st PC feature, (e) the T2 chart, and (f) the indicator RMS_EWMA (RE).
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SGM-based FCC can be used to evaluate the monitored
bearing performance degradation. ,e profiles with the
values NLLP Np for the full cycle life are drawn in Figure 9.
In comparison with aforementioned HIs, the proposed
FCCs also well inherit the merits of the FCIs and have amore
stable and clearer trend of the performance degradation in
the whole cycle life. Specifically, as found in the local en-
largement of the assessment results in Figure 9, an early
degradation alarm is activated by the proposed chart for each
bearing, and the Np would cross the given threshold once a
fault happened. ,e trigger values for three bearings as
shown in Figure 8 are 502, 709, and 902, respectively.
Moreover, using locality preserving projections (LPP) and
GMM, Yu [7] also proposed a health assessment indication
to test these whole-life bearings, and the trigger values are
651, 826, and 1664, respectively. In comparison, it can be

easily found that the SGM-based FCC profiles give much
earlier and more distinct trigger values. Meanwhile, for
bearing 3 of testing 1, the regions between trigger value 902
and trigger value 1664 just correspond to the stabilized level
as mentioned in Figure 7, nearly from time point 900 to time
point 1750. ,is means that the proposed SGM-based FCC
delivers a much more accurate PDA and reveals the actual
bearing health condition in phased degradation, which was
easily ignored in other degradation profiles.

For a sound exposition, the corresponding fault infor-
mation of these signals at the critical points is detected and
verified. First, the time-domain signal at the breakdown
values of the whole-life bearings 2#, 4#, and 3# is, respec-
tively, analyzed, and their envelope spectrums at point 960,
960, and 2000 are drawn in Figures 10(c), 11(c), and 12(c). It
can be easily found the corresponding fault frequencies are
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Figure 8: Spearman coefficient comparison of different HIs for different bearing failure on its whole life time.

Table 3: Spearman coefficients of different HIs for different bearing failure on its whole life time.

HI f3 f6 f9 1st PC T2 RE SS s
2# outer-race 0.81 0.54 0.75 0.44 0.85 0.84 0.86 0.96
4# outer-race 0.41 0.14 0.41 0.12 0.50 0.42 0.52 0.45
3# inner-race 0.59 0.34 0.39 0.33 0.79 0.81 0.74 0.88
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Figure 7: ,e cycle-life bearing PDA results of the proposed feature clustering chart based on the reference model.
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230.5, 63.48, and 57.62Hz, which shows the maximum
amplitudes. Meanwhile, the signals at the trigger values of
the proposed FCC and the compared method [7] are also

transformed. As demonstrated in Figures 10–12, it can be
seen that, compared to the ones mentioned in [6], the fault
information exposed by the proposed FCC has already
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Figure 10:,e envelope spectrums in the test for bearing 2# of testing 2 at different operatingmoments: (a) the trigger value of the proposed
method at point 502, (b) the trigger value of the compared method at point 651, and (c) the breakdown value of the whole-life bearing at
point 960.
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Figure 9: ,e assessment results and its local enlargement based on the proposed SGM-based FCC profile for the full cycle life of the three
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appeared in the spectrums with relatively small amplitude
values, which indicate that the proposed FCC can research a
much earlier failure warning for a much accurate moni-
toring performance. According to these experiments and
comparisons, the proposed SGM-based FCC is effective to
be employed in the application of rolling bearing PDA.

4. Conclusions

In this paper, a novel health monitoring scheme is proposed
to assess the bearing performance degradation, which uti-
lizes the feature clustering distribution of a reference model
to depict the bearing health condition. Based on the

reference model with the healthy state fused, the active role
of healthy state can be enhanced, while the otherness be-
tween healthy state and unhealthy state can be also activated
once a fault happened. Second, manifold learning is later
employed to further extract the discriminative characteris-
tics, so that a special feature clustering distribution of
reference model can be captured at each moment. Subse-
quently, the health performance degradation can be rep-
resented by the feature clustering distribution variation.
With the merits of good class-separable clustering measure
of this reference model, FCI is calculated to evaluate the
feature clustering distribution. Simultaneously, an SGM-
based FCC is later used to reach an accurate PDA. ,e
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Figure 12:,e envelope spectrums in the test for bearing 3# of testing 1 at different operatingmoments: (a) the trigger value of the proposed
method at point 902, (b) the trigger value of the compared method at point 1664, and (c) the breakdown value of the whole-life bearing at
point 2000.
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Figure 11:,e envelope spectrums in the test for bearing 4# of testing 2 at different operatingmoments: (a) the trigger value of the proposed
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experiments illustrates that the proposed FCC can provide a
monotonic degradation profile and obviously reveal a
phased degradation, which well depicts a comprehensibility
of the real-world bearing PDA. In addition, an early failure
warning can be sent by the significant and sharp change
point arising, which exposes the occurrence of fault.
Compared with other seven typical HIs, the calculated FCI
has relatively higher and clearer transformation than the
others. Meanwhile, compared to [7], the trigger values
provided by the proposed FCC are much earlier with an
effect for accurate detection. ,ese excellent results further
indicate that the SGM-based FCC is an applicable way to
assess the rolling bearing health PDA.

It can be known that the proposed FCCmainly addresses
evaluating the feature clustering distribution between the
reference state (healthy data) and the monitor data for
bearings under the given radial load. ,e feature clustering
analysis based on the reference model can well characterize
the bearing performance degradation. Nevertheless, due to
the variety of working conditions in the real world, including
radial loads and background environment, the insensitive
feature extraction is critical to this reference model for
feature clustering. To further improve the practicality of the
proposed reference model, the next study is to build an
experimental system and obtain the insensitive features for
feature clustering distribution regardless of different loads
and background noise. For an extension of the FCC, the
reference model can be further implemented in bearing PDA
of other key machine components and residual useful life
prediction.
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