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As one of the important parts of modern mechanical equipment, the accurate real-time diagnosis of rolling bearing is particularly
important. Traditional fault diagnosis methods have some disadvantages, such as low diagnostic accuracy and difficult fault feature
extraction. In this paper, a method combining Wavelet transform (WT) and Deformable Convolutional Neural Network (D-
CNN) is proposed to realize accurate real-time fault diagnosis of end-to-end rolling bearing.-e vibration signal of rolling bearing
is taken as the monitoring target. Firstly, the Orthogonal Matching Pursuit (OMP) algorithm is used to remove the harmonic
signal and retain the impact signal and noise. Secondly, the time-frequency map of the signal is obtained by time-frequency
transform using Wavelet analysis. Finally, the D-CNN is used for feature extraction and classification. -e experimental results
show that the accuracy of the method can reach 99.9% under various fault modes, and it can accurately identify the fault of
rolling bearing.

1. Introduction

With the rapid development of science and manufacturing
industry, the rotating machinery is constantly improved in
the direction of large-scale, continuity, high precision, and
intelligence. Rolling bearing is a key and widely used
component in rotating machinery. During the operation of
bearings, improper assembly, invasion of foreign matters,
insufficient lubrication, pitting, and overload may lead to
premature failure and damage of the bearing, which will
have a serious impact on the mechanical equipment.
-erefore, it is very important to real-time diagnose the fault
of rolling bearing accurately. In recent years, with the
continuous improvement of monitoring methods, more
vibration signal data can be obtained. Fault diagnosis of
rolling bearing has entered the big data era [1].

Bearing fault diagnosis technology is mainly divided into
two categories: fault diagnosis based on signal analysis and
the one based on intelligent algorithm. -e former depends
on the analysis of vibration signal manually to realize fault
diagnosis. Reza et al. [2] put forward the background noise

removal operation by using Recursive Autocorrelation and
Autoregressive Analyses, which can make the fault signal
more clearly expressed, so as to realize fault diagnosis. Zhang
et al. [3] combined Ensemble Empirical Mode Decompo-
sition (EEMD) and Spectral Kurtosis analysis and applied to
the fault diagnosis of rolling bearing successfully. Geor-
goulas et al. [4] used the method of Empirical Mode De-
composition (EMD) and Hilbert Huang transform (HHT) to
extract the feature set of bearing fault signal, which can
realize the monitoring of fault signal. Li et al. [5] extracted 12
sensitive features of rolling bearing fault signals for fault
detection. Lei et al. [6] combined EMD and Wavelet Packet
analysis to extract features and then used them as input of
Radial Basis Function Networks (RBFNs) to classify faults.
Batista et al. [7] extracted 10 features that reflect the fault
state of bearing and classified them by Support Vector
Machine (SVM). Saidi et al. [8] calculated 8 higher order
spectral features to represent the bearing states and input the
dimension reduction features into SVM for fault classifi-
cation. Chen et al. [9] proposed dependent feature vector to
represent the rolling bearing characteristics of six failure
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modes and used the Probabilistic Neural Network (PNN) to
identify them. Vakharia et al. [10] calculated bearing signal
features through the weighted gainmethod, and the Random
Forest (RF) is used to classify the faults. Ferrenc and Lutovac
[11] used wavelet decomposition to get the 18 dimensional
characteristics of fault signals and used RF to classify them.
-ough these methods did work in fault diagnosis of rolling
bearing, they still have the following deficiencies. (1) -e
construction of the feature extraction method is more dif-
ficult and the features are manually depending on much
prior knowledge about signal processing techniques and
diagnostic expertise. (2) -ese manual features are extracted
according to a specific diagnosis issue and probably un-
suitable for other issues. (3) -e process of fault diagnosis is
divided into several steps, which will cause informational
loss. In view of the above problems, scholars put forward
fault diagnosis methods based on intelligent algorithms.

-e methods based on intelligent algorithms mainly
consist of Deep Belief Networks (DBNs), Convolutional
Neural Networks (CNN), and Stacked Autoencoders. CNN
is a kind of supervised deep learning method. Compared
with the traditional fault diagnosis methods based on signal
analysis, the method does not depend on the manual
feature extraction ability to automatically extract the deep
features of signals. Lécun et al. [12] constructed the early
CNN structure by alternately combining the convolution
layer and pooling layer. In recent years, CNN has achieved
a great success in image recognition, semantic segmenta-
tion, target positioning, and other fields. Zhu et al. [13] used
short-time Fourier transform (STFT) to make one-di-
mensional signal into two-dimensional image and then
used capsule CNN for fault diagnosis. Janssens et al. [14]
used distributed Fourier transform to transform time-
domain information to frequency domain and used CNN
for fault diagnosis. Huang et al. [15] established a multi-
scale cascade convolutional neural network structure,
which can adaptively extract the fault characteristics from
raw signal of rolling bearing and automatically classify the
bearing health conditions into different groups. Lu et al.
[16] directly input the original signal into the improved
hierarchical CNN for bearing fault diagnosis and achieved
good results. Zhang et al. [17] also took the original time-
domain signal as the input of CNN directly and deeply
analysed the reason of high performance of the model.
Abdeljaber et al. [18] input the original vibration signal into
one-dimensional CNN for fault diagnosis. Eren et al. [19]
used the same rolling bearing data from CWRU as in this
paper. -ey input the original signal directly into the
compact adaptive 1 D-CNN for fault diagnosis. According
to the experimental results, the fault recognition rate of
their experimental method is 92.33%, which is lower than
the recognition rate of this algorithm. -e practice shows
that the fault diagnosis methods based on intelligent al-
gorithms can effectively overcome the shortcomings of the
signal analysis methods, and the recognition rate is better
than the traditional methods. However, most of the in-
telligent algorithm methods still exist in the fault diagnosis
of rolling bearing, and the network model is not deep
enough to extract features comprehensively, which leads to

the diagnosis accuracy not reach the ideal accuracy rate,
and there are still some errors.

-is paper presents an intelligent fault diagnosis method
based on WT and D-CNN. Firstly, the harmonic compo-
nents which will affect the identification of impact com-
ponents are removed. -en, the time-frequency map
including the time-domain and frequency-domain infor-
mation is obtained by WT to enrich the fault feature in-
formation carried by the signal. Finally, the time-frequency
map is directly used as the input of CNN. In the CNN, the
deformable convolution kernel which can adapt to the
complex image is used to enhance the deep feature ex-
traction ability and complete the fault diagnosis of rolling
bearing. -e simulation results show that the recognition
rate can reach 99.9% under various fault modes, and our
methods proposed in this paper is feasible.

2. Harmonic Removal

2.1. Signal Composition. In the manufacturing and instal-
lation process, there exist some defects for most bearings
such as low manufacturing accuracy of bearings, eccentric
quality, unbalanced rotor, and improper bearing, which lead
to periodic harmonic vibration in the work.-ese vibrations
are composed of the vibration of basic speed frequency and
the vibration of integral time harmonic frequency, which can
be expressed as follows:

Sh(t) � A0 + A1 cos ωt + φ1(  + · · · + AN cos Nωt + φN( 

� 
N

n�0
An cos nωt + φn( ,

(1)

where ω � 2πf, An and φn represent the amplitude and
phase of nth harmonic vibration, respectively, and f rep-
resents the fundamental frequency of bearing. When a fault
occurs, it will generate an impact signal, which is recorded as
Si(t). In the actual working condition, the noise often oc-
curs, which is recorded as Sn(t). -erefore, the vibration
signal S of rolling bearing caused by fault can be described as
three parts: harmonic vibration, impact vibration, and noise,
which are described by the mathematical formula as follows:

S � Sh(t) + Si(t) + Sn(t). (2)

-e vibration signal is accompanied by the harmonic
signal, which submerges the impact components and pro-
duces modulation effect and affects the extraction of fault
feature information [20]. -e existence of noise can enhance
the generalization ability and stability of the model.
-erefore, the harmonic components are removed from the
vibration signal firstly, and only the impact components and
noise are retained.

2.2. Harmonic Removal. Because of the difference in fre-
quency between harmonic signal and impact signal, it is
necessary to find a dictionary with frequency as variable to
distinguish harmonic components and impact components.
-e waveforms of harmonic signals are mostly sine or cosine
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waves. Fourier dictionary is a frequency dictionary com-
posed of sine and cosine functions, so it can effectively match
the harmonic components in frequency without affecting the
impact components. -e OMP algorithm can match the
complete harmonic components with the Fourier dictionary.
-rough the OMP algorithm, the sparse representation of
signals can be obtained as follows:

S � Sh(t) + R
k
s . (3)

Combining equations (2) and (3),

S � Sh(t) + Si(t) + Sn(t) � Sh(t) + R
k
s , (4)

where Rk
s � Si(t) + Sn(t). It represents the residual after

matching the harmonic components, which only contains
the impact signal and noise with fault information. Record
the Fourier dictionary as dictionary D, and the flowchart of
algorithm is shown in Figure 1:

-us, residual Rk
s can be obtained.

In order to show the effect of harmonic removal, the
simulation experiment is carried out with the simulated
harmonic signal Sh(t) � 2 cos(2πfht + (π/4)) and impact

signal Si(t) � exp(− (ξ/
������

1 − 2ξ2


)2πfit)sin(2πfit) as ex-
amples, where fh � 50Hz, fi � 500Hz, ξ � 0.005, and
t ∈ (0, 1) s. Noise is set to 0.2 dB. Based on the Fourier
dictionary, the effect of harmonic component removal using
OMP algorithm is shown in Figure 2.

It can be seen clearly from Figure 2 that the OMP al-
gorithm with the Fourier function as the dictionary can
effectively eliminate the harmonic signal components and
only retain the impact signal components and noise.

3. Time-Frequency Analysis

Time-frequency analysis is an important technology in the
field of modern signal processing. In the early days, the STFT
method, which was simple and intuitive, was widely used.
According to Heisenberg principle, the time frame and
frequency frame of the window function of Fourier trans-
form cannot be minimized at the same time, so the time
resolution and frequency resolution will not reach the best
together. -e window function of STFT is fixed. In practical
operation, we can only choose the appropriate window
function according to experience. -erefore, it is difficult to
obtain satisfactory results in processing nonstationary sig-
nals. However, WT solves this problem with its unique
multiresolution characteristics, which is very suitable for
nonstationary signal analysis.

-e definition of wavelet function is if the function φ(t)

satisfies 
∞
− ∞ φ(t)dt � 0 in the square integrable space L2(R),

then the function φ(t) is called the mother wavelet. Ana-
lytical wavelet is a function obtained by φ(t) through a series
of scaling and shifting transforms. -e equation is given as
follows:

φa,b(t) �
1
��
a

√ φ
t − b

a
, a> 0, (5)

where a is the scale factor, which controls the width of the
function and b is the translation factor, which controls the

position of the function on the axis. -e scale factor a

corresponds to the frequency f of the signal. -e translation
factor b corresponds to the time t and represents a signal by
the time scale joint function. When a increases, the fre-
quency resolution of the signal increases and the time
resolution decreases. When a decreases, the frequency
resolution decreases and the time resolution increases.
-erefore, for the abrupt signal, the WT with the ability of
“zoom” is very suitable for processing this kind of signal.

In WT, the choice of wavelet bases is very important.
Different wavelet bases have a profound influence on time-
frequency map. Among the commonly used wavelets, Meyer
wavelet and Morlet wavelet [21] are more suitable for en-
gineering signals. Among them, the waveform of Morlet
wavelet is more consistent with the characteristics of impact
signal when bearing failure occurs. In [22], the time-fre-
quency analysis simulation test of LFM signal was carried
out, and the result showed that the signal energy of Morlet
wavelet is more concentrated than that of Meyer wavelet.
-e time-frequency image is a two-dimensional image that
reflects the energy intensity. It has the characteristics of high
instantaneous energy for the impact signal, so it is more
suitable to use Morlet wavelet as the wavelet bases. -ere-
fore, the wavelet base chosen in this paper is the Morlet
wavelet.

4. Convolution Neural Network

4.1.BasicNetworkStructure. CNN is a network model with a
multilayer structure [23], as shown in Figure 3; it includes
convolution layer, pooling layer, full connection (FC) layer,
and classifier. -e image enters the network from the input
layer, and the convolution layer performs the convolution
operation with the image through the convolution kernel to
obtain the important local features of the image. -e
function of the pooling layer is to reduce feature dimension,
keep feature invariable, and prevent overfitting to some
extent. In FC, all two-dimensional features are spliced into
one-dimensional features as the input of the full connection
layer. Finally, the classifier (output layer) is used to obtain
the classification results. Softmax is used as the classifier in
this paper.

4.2. Training Process of CNN. -ere are two stages in CNN
training: forward propagation of image information and
backpropagation of error. Forward propagation is a process
in which information is propagated layer by layer, and finally
classification results are obtained by the output layer.
Backpropagation based on the random gradient descent
method is one of the common methods in supervised
learning. It updates parameters according to training
samples and expectations, such as the convolution layer
parameter K, the convergence layer weight β, the full
connection layer weight ω, and the bias B of each layer [24].
Before the training starts, all weights and offsets in the
network need to be initialized. If the same initialization
parameters are used, the network will not have the ability to
learn [25]. Using small random number can make the
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network learn normally, and it will not lead to training
failure because the weight setting is too large.

4.3. Deformable Convolutional Neural Network. -e tradi-
tional convolution kernel is a fixed block shape. -e de-
formable convolution kernel has the ability of geometric
transformation and can capture image features better. -e

deformable convolution is realized by adding several offset
vectors to the convolution kernel, and the original sampling
points are replaced by offset sampling points. -rough offset
learning, the shape of convolution kernel can be self-ad-
justed according to the specific image characteristics [26].
-e deformable convolution effect is shown in Figure 4. It
shows that the deformable convolution can be sampled on
various scale transformations.

Input: signal S ; threshold value ε

Initialize: D0 = 0, k = 0, R0
s = s

Output: Rk
s

Procedure:
1. Create fourier dictionary D
2. Compute 〈Rk

s, gn〉, gn ∈ D/Dk
3. Find |〈Rk

s, gnk+1〉| ≥ αsup|〈Rk
s, gn〉|, o < α≤1

4. If |〈Rk
s, gnk+1〉| ≤ ε, then stop

5. Record the dictionary D, by applying the permutation k + 1 ↔ nk + 1 
6. Compute {bn

k}k
n=1, such that gk+1 = ∑k

n=1 bn
k gn + γk, and 〈γk, gn〉 = 0, n = 1, ··· , k

update the model sk+1 = ∑k+1 an
k+1 gn, Rk+1

s = s – sk+1, Dk+1 = Dk ∪ {gk+1}
8. Set k ← k + 1 and repeat 2-8.

7. Set αk+1 = αk = ||γk||–2 〈Rk
s, gk+1〉, an

k+1 = an
k – akbn

k, n = 1, ··· , k
n=1

n=1

Figure 1: Flowchart of algorithm.
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Figure 2: Simulated harmonic elimination algorithm. (a) Harmonic component. (b) Composite signal composed of harmonic component,
impact component, and noise. (c) Residual after harmonic removal, i.e., impact components and noise.
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4.4. Deformable Convolution Kernel. -e two-dimensional
convolution is generally composed of two steps [26]. (1) -e
regular grid R (which determines the size of the receptive
field) is used for sampling on the input feature map x. (2)
-e sampling value is multiplied by the weight ω and
summed.

P0 is any position on the characteristic graph y, and we
can obtain

y p0(  � 
pn

ω pn(  × x p0 + pn( , (6)

where pn is any point in grid R.
In the deformable convolution, the regular grid R varies

according to the offset. -erefore, an offset
Δpn|tnn � q1h,... x, 7N , where N � |R|. Bring Δpn

into (6):

y p0(  � 
pn

ω pn(  × x p0 + pn +△pn( . (7)

Since sampling is carried out in an irregular position,
usually the offset Δpn is a decimal, so the calculation of Δpn

is carried out by bilinear interpolation, and the formula is as
follows:

x(p) � 
q

G(q, p) × x(q), (8)

where p is one of the decimal places,(p � p0 + pn + Δpn); q

is all the integral space positions on the characteristic graph

x; and G(q, p) represents the bilinear interpolation kernel,
where G is two-dimensional:

G(q, p) � g qx, px(  × g qy, py ,

g(a, b) � max(0, 1 − |a − b|).
(9)

By adding a convolution layer to the output feature, the
convolution kernel is consistent with the current convolu-
tion layer parameters. -e output offset has the same spatial
resolution as the input feature. When training, the de-
formable convolution can be realized by learning the output
feature and the offset at the same time. When learning the
offset, the gradient is learned by backpropagation through
equations (8) and (9) [26].

-e flow of deformable convolution is shown in Figure 5.

4.5. Pooling Layer in Deformable Convolution. -e defor-
mation of the convolution layer is similar to that of the
convolution layer. During the operation, all the values ob-
tained from the previous layer are averaged within the
coverage of each merging core as the output result. -e
average convergence formula is as follows [26]:

y(i, j) � 
p∈bin(i,j)

x p + p0( 

ni,j

, (10)

where ni,j is the total number of pixels in the region.

(a) (b) (c) (d)

Figure 4: Deformable convolution effect. (a) -e tradition conv kernel. (b) Irregular random offset conv kernel. (c) A regular offset conv
kernel. (d) Another regular offset conv kernel.

Input Convolution layer Pooling layer OutputFC

Figure 3: CNN structure.
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5. General Procedure of the Proposed Method

In this paper, we develop a novel rolling bearing intelligent
fault diagnosis method based on wavelet transform and
deformable convolution neural network. -e flowchart of
the proposed method is shown in Figure 6 and the general
procedures are summarized as follows.

Step 1: the vibration signals of rolling bearing are
measured by sensors and collected by the data acqui-
sition system.
Step 2: harmonic removal is adopted to reduce the
influence of harmonic components on fault diagnosis,
and then the harmonic removal signal can be obtained.
Step 3: WT is used to get the time-frequency diagram of
the harmonic removal signal, which can provide clear
information about the health conditions of rolling
bearing.
Step 4: without anymanual feature extraction, the time-
frequency diagram is divided into training and testing
samples separately.
Step 5: deformable convolution kernels are introduced
into the traditional CNN, and D-CNN can be built.
Step 6: the D-CNN is constructed with a series of
training samples, and then it is used for unsupervised
feature learning of the training samples. -e learned
features are fed into a Softmax classifier for the fault
pattern recognition of rolling bearing.
Step 7: the performance of the proposed method is
verified by using the test samples, and the diagnostic
results are reported.

6. Experiment and Analysis Results

6.1.ExperimentalData. In order to verify the effectiveness of
the proposed method, the standard database of the rolling
bearing experiment centre of Case Western Reserve Uni-
versity (CWRU) is used in this experiment. As shown in
Figure 7, the experimental platform consists of a 2 hp drive
motor (left), a torque transducer/encoder (centre), a dy-
namometer (right), and control electronics (not shown).-e
test bearings support the motor shaft. Single point faults
were introduced to the bearings using electro-discharge

machining. -e drive end bearing is 6205-2RS JEM SKF
deep groove ball bearing in Sweden. In the experiment, the
accelerometers attached to the motor housing with magnetic
base are used to collect the vibration signal.-ese sensors are
placed at the 12 o’clock position at both the drive end and
fan end of the motor housing. Table 1 lists the specific
parameters of the bearings.

-ere are three kinds of bearing faults: inner ring fault,
outer ring fault, and rolling element fault. Two kinds of fault
diameters for each fault are taken into consideration, i.e.,
0.1778mm and 0.3556mm. -erefore, there are 6 failure
modes in total, and there are 7 modes when the normal state
is taken into account.

-e vibration signal of bearing has periodicity. -e
number of sampling points in a cycle is N � (fs × 60/ns)

[27], where fs is the sampling frequency (Hz) and ns is the
bearing speed (r/min). When the sampling frequency of the
driving end of the experiment is 12 kHz and the bearing
speed is 1772 r/min, the number N of sampling points in one
cycle is 406. In order to ensure the integrity of the fault
information of the sampling data, sampling points with
more than two cycles are selected; therefore, the number of
sampling points selected in this paper is 1024. -e signal is
divided into 120 samples in each state signal. As a result,
there are 840 samples in total. Considering the small number
of samples, we use data enhancement methods such as
cutting and rotation to double the data; as a result, there are
1680 samples in total. 75% of all samples are set as training
sets and 25% are set as test sets, that is, there are 1260
training samples and 420 test samples.

All experiments in this paper are based on a PC platform
with Intel (R) Core (TM) i5-4590 CPU @ 3.30GHz, 8.00GB
of memory, and Windows 10 64-bit operating system. Py-
thon is the software used in this paper and its version is
Python3.7.

6.2. Convolution Neural Network Model. -rough many
experiments, the D-CNN model designed in this paper is
shown in Figure 8. -e model consists of 10 layers, in-
cluding 1 convolution layer (C), 3 deformable convolution
layers (D-C), 4 pooling layers (S), 1 FC, and a Softmax
classifier. -e characteristic parameters of each layer are
shown in Table 2. Input layer size is 150 × 150 (not listed in

Input

Conv
Offset field Offsets

OutputDeformation conv

Figure 5: Implementation flow of 3× 3 convolution kernel.

6 Shock and Vibration



Table 1: 6205-2RS JEM SKF deep groove ball bearing parameters.

Inner diameter
(mm)

External diameter
(mm)

Width
(mm)

Roller diameter
(mm)

Pitch diameter
(mm) Roller number Contact

Angle (°)
25 52 15 7.9 39 9 0

Input C1 S1 S2 S3 S4 FC Softmax OutputD-C2 D-C3 D-C4

Figure 8: Structure of D-CNN.

Wavelet transform

Train data Add

Deformable convolution D-CNN model

Fault classification

Results obtained

Test data

Harmonic removal Vibration data Rolling bearing

Figure 6: -e flowchart of the proposed method.

Figure 7: Bearing experimental platform of CWRU.
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Table 2). -e learning rate is set to 0.001, the parameters are
initialized randomly, Adam optimization algorithm is used
to train the network model, the activation function uses
ReLu, the regularization selection dropout is 0.5, and the
batch is 32.

6.3. Experimental Results andAnalysis. Firstly, the harmonic
components are removed from the original signal of all
sample sets. -e original signal and harmonic elimination
signal of 0.1778mm fault sample of rolling element and
inner ring are shown in Figure 9. Secondly, wavelet analysis
is performed on the original signal and the harmonic re-
moval signal to obtain the time-frequency diagram, as
shown in Figure 10.

We can see from the time-domain signals of 1024
sampling points with 0.1778mm fault in the rolling element
and inner ring in Figure 9 that the harmonic removal is
obvious. In Figure 10, the time-frequency diagram of rolling
element and inner ring 0.1778mm fault can clearly conclude
that the time-frequency diagram of the harmonic removal
signal is more concentrated in energy, and the signal impact
characteristics are obvious. Compared with the original
signal, the feature location in time is accurate and clear, and
the time-frequency focusing is better, which is conducive to
the CNN for feature classification.

Figure 11 shows the time-frequency diagram of outer
ring fault of 0.1778mm, and the time-frequency diagram of
normal signal. It can be clearly seen from Figures 10(a),
10(b) and 11 that the shapes of time-frequency diagrams of
inner ring fault, rolling element fault, outer ring fault, and
normal signal of 0.1778mm have very obvious difference,
which provides enough information for bearing fault di-
agnosis by the CNN method.

In order to verify the effectiveness of the method pro-
posed in this paper, a comparative experiment is carried out
under the same conditions between the rolling bearing fault
diagnosis using the method and the traditional CNN
method. -e traditional CNN method adopts the same
network structure and parameters as the method in this
paper, as shown in Table 2. During the experiment, each
method is trained 300 times. 20 batches, namely, 640
samples, are randomly selected from 1260 training samples
to train the network each time. After each training, 32
samples are randomly selected from 420 test samples to test
the network, and the recognition rate is output. -e ex-
perimental results are shown in Figure 12.-e above process
is repeated 5 times and the highest recognition rate are taken
each time to average the average recognition rate, as shown
in Table 3. At the same time, the training time of one it-
eration and the test time of a single sample are recorded in
Table 3.

It can be seen from Figure 12 that the recognition rate
of the traditional CNN method is higher than that of the
D-CNN method in the first 100 test results. -is is be-
cause the training mechanism of the D-CNN method is
more complex and the training parameters are more.
More training samples are needed to determine the model
completely. After 100 times training, the recognition
rates of the D-CNN method are higher and more stable
than the traditional CNN method. -is is because tra-
ditional CNN is fundamentally limited by the fixed
convolution kernel shape and lacks the geometry
transformation adaptation mechanism for complex im-
ages in actual training. Deformable convolution improves
the feature extraction ability of the network for complex
images, enriches the feature expression of the network,
and has the ability of adaptive learning in receptive field.
It can be seen from Table 3 that, in the stable state, the
recognition rate of the D-CNN method can reach 99.9%
on average, while that of the traditional CNN method can
only reach 96.8% on average. In terms of training time,
the training time of D-CNN is longer than that of CNN.
-e traditional CNN method only needs 51.53 seconds,
while the D-CNN method needs 216.32 seconds. -is is
because D-CNN has more convolution layers and offsets
than the traditional CNN. First, it will take some time to
obtain the offset position by bilinear interpolation. -en,
it will take more time to learn the offset position in
backpropagation. -erefore, the increase of the param-
eters and calculation amount of the D-CNN offset
learning results in its training time is longer than that of
the traditional CNN, but this problem can be solved by
offline training. In addition, the test time of D-CNN is
longer than that of traditional CNN. -e traditional CNN
only needs 7.9 milliseconds, while the D-CNN method
needs 33.8 milliseconds. -is is also due to the large
amount of calculation of the D-CNN method. -e real-
time performance of the method is slightly weak. Because
the test time is millisecond, there is not much influence in
the engineering application.

In order to further verify the superiority of the method
in this paper, it is compared with the traditional fault
diagnosis technology based on signal analysis. In the tra-
ditional fault diagnosis technology based on signal analysis,
we extract 16 time-domain features as feature vectors,
which are mean, variance, maximum value, minimum
value, peak value, RMS amplitude, standard deviation,
absolute mean value, kurtosis, skewness, waveform index,
pulse index, margin, peak index, kurtosis index, and
skewness index. We use three classifiers for fault recog-
nition, namely, BP Neural Network (BP), Random Forest
and SVM. -e detailed parameters of the three classifiers
are shown in Table 4. During the test, 50 samples are taken

Table 2: Network characteristic parameters.

Layer C1 S1 D-C2 S2 D-C3 S3 D-C4 S4 FC
Size 11 × 11 2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 1 × 1
Feature size 140 × 140 70 × 70 68 × 68 34 × 34 32 × 32 16 × 16 14 × 14 7 × 7 3136
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for each bearing state, and a total of 350 samples are taken
for 7 states. One sample contains 16 eigenvalues and 350
samples have 5600 eigenvalues in total. 315 samples from
the total sample are taken to form the training set and 35
samples are taken to form the test set. -e recognition
confusion matrices of three classifiers and two neural
networks in one of several experiments are shown in
Figure 13.

-e confusion matrix can clearly reflect the matching
degree of the real label and prediction label. It can be seen
from Figure 13 that, in a single test, the classification per-
formance of the D-CNN is the best, themethod is superior to
all other methods, and the SVM classification result is the
worst.

In order to further verify the stability of the method in
this paper, five experiments are carried out for all five
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Figure 9: Original signal and harmonic removal signal. (a) -e original signal of 1024 sampling points of the 0.1778mm rolling element
fault. (b) -e harmonic removal signal of 1024 sampling points of the 0.1778mm rolling element fault. (c) -e original signal of 1024
sampling points of the 0.1778mm inner ring fault. (d) -e harmonic removal signal of 1024 sampling points of the 0.1778mm inner ring
fault.
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methods, and the recognition results are shown in Figure 14.
-e average recognition rate and standard deviation of all
five experiments are shown in Table 5.

Combined with Figure 14 and Table 5, it can be con-
cluded as follows. (1) -e average recognition rate of SVM is
the lowest, only 80.2%. -e recognition rate of 5 tests is
between 68% and 84%. And the standard deviation is the
largest, which is 0.069. -erefore, the SVMmethod not only
has low diagnosis accuracy but also has unstable perfor-
mance. (2) -e average recognition rates of CNN and
random forest are the same, both of which are 96.8%.
However, the standard deviation of CNN is 0.008, while the
standard deviation of random forest is 0.029, which is lower

than CNN, which shows that CNN is better than random
forest in stability. (3) -e average recognition rate of BP is
97.2%, which is only lower than that of D-CNN. And the
standard deviation is relatively low, only 0.016. -is means
that this method not only has a high recognition rate but also
has stable classification performance. (4) -e average rec-
ognition rate of the proposed D-CNN method is 99.9%,
which is the highest among the five methods, and the
standard deviation of this method is also the lowest among
the five methods, which is 0.004. -e above experimental
results show that the proposed D-CNN method is superior
to the other four algorithms in both recognition rate and
stability.
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Figure 10: Time-frequency analysis of rolling element and inner circle 0.1778mm fault. (a) -e time-frequency diagram of the original and
harmonic removal 0.1778mm rolling element fault signal. (b)-e time-frequency diagram of the original and harmonic removal 0.1778mm
inner ring fault signal.
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Figure 11: Time-frequency analysis of two kinds of 0.1778mm fault signals and normal signal faults. (a)-e time-frequency diagram of the
harmonic removal 0.1778mm outer ring fault. (b) -e time-frequency diagram of the harmonic removal normal signal.
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Figure 12: Recognition rate of CNN and D-CNN after each training.

Table 3: Average recognition rate and time.

Model Recognition rate (%) Training time (s) Test time (ms)
CNN 96.8 51.53 7.9
D-CNN 99.9 216.32 33.8

Table 4: Detailed parameters of three classifiers.

Classifier BP neural network (BP) Random forest SVM

Parameter
-e number of neurons in the first layer is 100, the
number of neurons in the second layer is 50, and

the training times are set to 300 rounds

-e Gini coefficient is used to select
nodes, and the number of decision

trees is set to 100

-e kernel function is Gauss
kernel function, and the penalty

coefficient is 0.8
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Figure 13: Confusion matrix of three classifiers and two CNN.
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7. Conclusions

-is paper presents a bearing fault diagnosis method based on
WT and D-CNN. Firstly, the OMP algorithm based on the
Fourier basis is used to remove the harmonic component in the
signal and retain the impact component and noise. -en,
Morlet wavelet is used to analyse the signal with impact
component and noise, and the time-frequency map is obtained.
Finally, the deformable convolution kernel is introduced into
the 10 layers CNN to diagnose the rolling bearing fault.

-e experimental results show that the characteristics of the
vibration signal are more obvious from the time-frequency
diagram of the vibration signal after harmonic removal, and the
satisfactory classification result can be obtained by using them
as the input of D-CNN. By comparing CNN, SVM, random
forest, BP, and D-CNN in the same dataset, it is proved that
D-CNN can effectively improve the recognition rate and sta-
bility of rolling bearing fault diagnosis. However, the recog-
nition speed of the D-CNN is not ideal, which needs further
study.
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