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Classical absorber for vibration suppression of a continuous structure is constructed as a spring-mass oscillator, which only
provides coupling force to suppress the vibration of primary structure. In this study, absorber beam is introduced and coupled on
the continuous primary beam with magnetic interaction.(us, the magnetic interaction and coupling bending moment affect the
responses of primary beam. Based on the model of the system and Galerkin truncation, the natural frequencies for different
magnetic parameters are obtained, which demonstrates that the fundamental frequency can be reduced to zero and the vibration
of primary beam can be suppressed in a wide frequency band. Considering the vibration suppression on frequency band, we
propose two criteria to evaluate the vibration suppression effect: one is the width of band for vibration suppression and the other is
the width for vibration absorption. (e two criteria not only show the vibration reduction effect but also correspond to different
vibration suppression mechanism. Due to the advantages of zero fundamental frequency induced by the proposed magnetic
interaction coupling and wide vibration suppression frequency band, utilizing absorber beam in vibration suppression of
continuous structure has potential applications for flexible aim in the fields of manufacturing and aerospace.

1. Introduction

Due to urgent requirements and harsh conditions in the
vibration suppression techniques in the fields of aerospace
[1], shipping engineering [2], and ocean platforms [3, 4], it
needs the remarkable vibration suppression effectiveness in
a wide frequency band. For the vibration suppression and
reduction of a vibration system, tuned vibration absorber
(TVA) is designed according to different requirements in
practices. Usually, the TVA is a single degree-of-freedom (1-
DOF) spring-damper-mass vibration oscillator designed
with adjustable stiffness or damping [5, 6]. When the tar-
geted frequency for vibration suppression of the primary
system is in the region of antifrequency band induced by the
vibration absorber, the vibration energy can be transmitted
effectively. However, in the analysis and applications of
TVA, there are mainly two limitations and issues in design
and realization. First, the vibration suppression effectiveness
is strongly dependent on the structural parameters of the
TVA, especially the mass. For smaller mass of TVA, the

vibration suppression is less sufficient or effective. But, in the
practices, the mass of absorber is required lighter than 10%
mass of the primary system. Second, the stiffness and
damping of the vibration absorber should have tunable
property to result in antiresonance at the required fre-
quencies for the realization of optimal vibration suppression
effectiveness. When the primary system has ultralow natural
frequency or variable characteristics, the structural reali-
zation of TVA is required to match the characteristics of
primary system.

Recent studies of vibration absorptionmainly focused on
the bottleneck techniques for the realization of adjustable
and adaptive properties. (e methods include passive vi-
bration device, active control methodology, and hybrid
control devices. Based on the remarkable tunable properties
for equivalent stiffness and damping of the so-called quasi-
zero stiffness system [7–9], the structure is transplanted to
the absorber structure for the required vibration absorption
frequencies [10]. It also discovers that the vibration per-
formances of nonlinear tuned vibration absorber (NTVA)
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may result in some beneficial dynamical phenomena in
vibration suppression, such as saturation properties and
internal resonances, which cannot exist for linear vibration
systems [11–13]. Furthermore, for vibration suppression in a
frequency band rather than just on specific frequency point,
periodic structures are applied on continuous primary
system and designed for wide bandgap based on local res-
onance theory [14, 15]. Recently, in order to extend the
bandgap to low frequency band, the QZS system is utilized as
the TVA [16, 17]. With the periodical assembly of oscillators
with QZS property on a continuous beam, a low-frequency
bandgap is realized due to the negative-stiffness structural
design. But, with the reduction of bandgap to low frequency
band, the width of bandgap reduces. On one hand, these
studies are concentrated on the frequency tuning technol-
ogies by structural design to adapt to the targeted fre-
quencies or frequency bands. On the other hand, the
vibration amplitudes, especially at resonances, should be
attended to and suppressed. Commonly, the most direct
method to reduce the resonance peak is increasing the
equivalent damping effect of the system. However, although
increasing the equivalent damping strength can reduce the
resonance peaks, the amplitudes at the nonresonance bands
would be raised, inducing deterioration of vibration sup-
pression. In order to harmonize the contradiction on the
response amplitude, the most traditional method to design
the TVA is the H∞ criterion to minimize the vibration
amplitudes of the primary system around resonance band
[18–21]. (e optimal parameters obtained by the H∞
strategy work very well since the resonance peaks of the 2-
DOF system are minimum and equal [19–22]. (en, for
continuous structure such as beam, the TVA is also designed
as a beam, connected on the continuous primary beam by
spring and damper [23]. Simplifying the model as a 2-DOF
system and applying the fixed-point theory, the vibration of
primary beam is reduced, but the vibration suppression is
dependent on the mass ratio between the primary beam and
absorber beam. In [24–26], an absorber beam with/without
lumped mass is fixed on a primary beam on perpendicular
position. (e proposed structural assembly of the proposed
absorber beam can achieve more vibration reduction with
same mass ratio compared with the traditional spring-
damping-mass absorber.

From the previous studies, it can be seen that the structural
design or control strategy for vibration suppression by both
frequency tuning and amplitude reduction is well needed. In
addition, it also requires lightweight TVA with appropriate
nonlinearity.(us, this study proposes an absorber beam with
negative stiffness components, which is coupled on a primary
beam. In the proposed structure, the tunable negative stiffness
components are engendered by magnetic interaction. (e
negative stiffness components are two pairs of magnets with
very small mass assembled symmetrically on the absorber
beam and the free end of the primary beam, adjustable for
different structural parameters. Due to the negative stiffness
coupling, the stiffness and coupled stiffness of the absorber
beam change cooperating with different equivalent stiffness of
the primary beam. For vibration, the motion of the free end of
the primary beam amplifies the coupling force in each modal,

and thus the mass of the absorber beam can be very tiny. Since
it has been verified that the nonlinear interaction force can
suppress the vibration energy and reduce the resonance peaks
[27–30], the nonlinearity introduced into the system can
benefit the reduction of resonance frequency and amplitude
reduction. (erefore, combining the advantages of linearity
and nonlinearity, the absorber beam, with very small mass,
can induce a wide nonresonance frequency band and low
resonance peaks.

(e paper is organized as follows. First, the model of
magnetic interaction is established and its effect is discussed
in Section 2. Next, the dynamical model of the nonlinear
coupling system is established and all coefficients in the
model are defined in Section 3. (en, based on the dy-
namical model, the natural frequencies and solutions are
solved. Also, the evaluation criteria for effective vibration
suppression are proposed in Section 4. (e evaluation cri-
teria provide conditions for mechanisms of vibration ab-
sorption and design method for structural parameters. (e
experimental setup and results are discussed in Section 5.
(e conclusion is given in the final Section.

2. Structure of System Coupled by
Magnetic Interaction

2.1. Structure. Traditionally, for the vibration suppression of
a continuous structure such as cantilever beam, spring-
damper-mass oscillator is applied on the cantilever beam as
the TVA. Considering the moment can directly induce
bending deformation of continuous beam, the absorber is
designed to result in both force and moment interactions on
the primary system in this study. (erefore, an absorber
beam, which has much smaller mass than the primary beam,
is introduced and coupled on the primary beam by con-
straint and magnetic interaction, as shown in Figure 1. All
the structural parameters in the system are listed in Table 1
in Appendix.

As shown in Figure 1(a), the primary beam is excited by
an excitation force f(t) and the absorber beam is coupled
with the primary beam under magnetic interaction. As
shown in Figure 1(b), the vibrations of the primary beam
and absorber beam are w1 (ξ1, t) and w2 (ξ1, t) with coor-
dinates ξ1 and ξ2, respectively. Since the motion of free end
of the primary beam is w1 (L1, t) and the angle of rotation is
θ1(L1, t), the vibration motion of absorber beam consisted of
three parts as shown in Figure 1(b), written as

w2 ξ2, t( 􏼁 � w1 L1, t( 􏼁 + θ1 L1, t( 􏼁ξ2 + 􏽢w2 ξ2, t( 􏼁. (1)

In equation (1), 􏽢w2(ξ2, t) is the deflection vibration and
w1 (L1, t) + θ1(L1, t)ξ2 is the rigid displacement.(e values of
structural parameters are fixed as given in Table 1 in Ap-
pendix. As shown in Table 1, the mass of the primary beam is
ρ2A2L2 � 0.0216 kg, which is about 120 times the mass of
absorber beam equal to ρ2A2L2 � 0.00018 kg. By coupling the
absorber beam with cross section constraint and magnetic
interaction, the effect and mechanism of absorber beam are
estimated in this study. (e model of magnetic interaction is
established in the following section.
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2.2.Magnetic Interaction. As shown in Figure 1(a), two pairs
of magnets are assembled on the primary and absorber
beams. Using one pair of magnets to analyse the interaction
force, we obtain the relation between the positions of the two
magnets and deflections of the beams. Here, two commoving
coordinates are established on the two magnets as (x, y, z)
and (x′, y′, z′), where x and x′ are coincided with axial
direction of beams ξ1 and ξ2, and y and y′ are coincided with
w1 and w2. (us, for vibration deflections w1 and w2, the
locations of the magnet on the primary beam and absorber
beam are as shown in Figure 2.

As shown in Figure 2, according to the directions of
coordination, the motion 􏽢w2(L2, t) occurs in y direction. For
the two pairs of magnets, the components of interaction
force on magnet-2 are equilibria in x and z direction, while
the components of interaction forces in y direction are not
equilibria.(e interaction force of one pair of magnets in the
deflection direction is in the same direction of y, which is
written as Fmag-y, expressed as

Fmag− y �
JJ′
4πμ0

􏽘
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ŵ2(ξ2, t)

θ1(L1)×L2

ξ1 ξ2

(b)

Figure 1: (a) (e model of primary beam and absorber beam coupling with constraint and magnetic interaction; (b) the deformations of
system.

Table 1: Structural parameters of primary beam and absorber
beam.

Structural parameter Value (unit)
ρ1, ρ2 1200 kg·m3

A1 0.03m× 0.002m� 60×10− 6m2

L1 0.3m
I1 20×10− 12mm4

c1 0.1N·s·m− 1

E1, E2 3×109 Pa
A2 0.005m× 0.0006m� 3×10− 6m2

L2 0.05m
I2 0.4167×10− 12mm4

c2 0.1N·s·m− 1
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According to the property of interaction of magnets in
[31, 32], the interaction force Fmag-y in equation (1) is a
complex function with more than 200 terms. To simplify the
magnetic interaction force Fmag-y for theoretical analysis and
structural design, we utilize high-order polynomial function
Fy (rather than the Taylor series expansion) to fit the original
expression, which is written as

Fy � 􏽘
H

h�1
α2h− 1 􏽢w2

􏼌􏼌􏼌􏼌 L2
􏼐 􏼑

2h− 1
, (4)

where α2h− 1 (h� 1, 2, 3, . . ., H) are fitting coefficients and H
reflects the fitting order with sufficient accuracy. Utilizing
the Least Square Method (LSM) to find the values of co-
efficients α2h− 1 (h� 1, 2, 3, . . ., H), the error between the
original function Fmag-y and fitting polynomial function Fy is
defined as

ER �
􏽐

H
1 Fmag− y − Fy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 􏽢w2

􏼌􏼌􏼌
L2�wi

􏼔 􏼕
2

H 􏽐
H
1 Fmag− y

􏼌􏼌􏼌􏼌􏼌 􏽢w2

􏼌􏼌􏼌
L2�wi

􏼒 􏼓
2 . (5)

For different structural parameters d, the magnetic in-
teraction force Fmag-y for one pair of magnets, the com-
parison between the original function Fmag-y and fitting
polynomial Fy, and the relative error ER for various fitting
orders H are shown in Figure 3.

Figure 3 shows the variation of one-pair-magnetic in-
teraction force on magnet-2 in y direction for different
structural parameter and the accuracy of the simplification.
From the results shown in Figures 3(a) and 3(b), the in-
teraction force varies nonlinearly around the motion
equilibrium, more obvious for smaller distance d. (e
gradient of the interaction force at equilibrium is negative,
which demonstrates that the magnetic interaction can in-
duce adjustable negative-stiffness property. For the increase
of distance d (weaker magnetic field), the gradient becomes
negative first and then tends to zero. (us, the interaction
induced by magnetic coupling occurs locally around the

equilibrium with adjustable negative-stiffness property and
nonlinearity. From the comparison of Fy and Fmag-y in
Figures 3(b) and 3(c), the fitting polynomial function Fy can
describe the original force function Fmag-y with high accu-
racy for H> 7. (erefore, in the following analysis, to obtain
the theoretical solution of the system and propose the design
approach, the magnetic interaction force function can be
expressed by high-order nonlinear function Fy.

3. Model, Analysis, and Structural
Design Criterion

3.1. Vibration Model. Separating the primary and absorber
beams and analysing the forces applied on them as shown in
Figure 4, the dynamical model can be obtained.

As shown in Figure 4, for the primary beam, it is a
cantilever beam which is fixed on the base; for the absorber
beam, it is also a cantilever beam fixed on the free end of the
primary beam, which is a vibration point rather than a fixed
point. According to D’Alembert’s principle of a small seg-
ment from the primary beam, the dynamical equation of the
primary beam is written as

V1 +
zV1

zξ1
dξ1 − V1 − ρ1A1

z2w1

zt2
+ c1

zw1

zt
􏼠 􏼡dξ1 � f(t)g ξ1( 􏼁,

(6a)

while, for the absorber beam, the dynamical equation of
small segment is written as

V2 +
zV2

zξ2
dξ2 − V2 − ρ2A2

z2w2

zt2
+ c2

zw2

zt
􏼠 􏼡dξ2 � 0. (6b)

(e shear force and the bendingmoment on each section
have the general relation as V � (zM/zξ) �

(z/zξ)(− EI(z2w/zξ2)). Substituting this relation and
equation (1) into the dynamical equation of absorber beam
and rearranging the two equations, the model is written as

z′

x′

y′

J

Magnet-1
(on primary beam)

z

x

y

2a

2b

2c

2A

2B2C

O

O′

d + c + C

J′

Magnet-2
(on absorber beam)L2 – a – A
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Figure 2: (e position of one pair of magnets for deflection.
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(7)

According to the forces analysis on the beams shown in
Figure 4, at the free end of the primary beam, the inter-
action force of magnets Fy is applied on magnet-1; simi-
larly, for the absorber beam, the interaction force of
magnet Fy is applied on magnet-2 at its free end. At the
connection section ξ1 � L1 (ξ2 � 0), the forces V1(L1) and

V2′(0) are one pair of reaction forces, which are equal and
in the opposite direction, as similarly as the bending
moments M1(L1) and M2′(0). (us, we can obtain the
boundary conditions at ξ1 � 0 and ξ2 � L2, respectively, and
the compatibility conditions of the connection section at
ξ1 � L1 (ξ2 � 0) as
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Figure 3: (a) Magnetic interaction force Fmag-y for different distances d; (b) the comparison of the original interaction force Fmag-y (lines)
and fitting polynomial function Fy (dots) forH� 25 for d� 5mm, d� 10mm, d� 20mm, and d� 30mm; (c) the error ER between Fmag-y and
Fy for different fitting orders N.
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Since the primary beam and absorber beam are both
cantilever beams, the mode shape functions ϕ1i and ϕ2i are
set as

ϕ1i ξ1( 􏼁 � B1i cos
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where r1i � − (cos λi + cosh λi)/(sin λi + sinh λi) and
r2j � − (cos λj + cosh λj)/(sin λj + sinh λj). (e functions

ϕ1i and ϕ2j should satisfy the orthogonality and normali-
zation principle, written as
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Figure 4: (e forces applied on segment, boundary, and compatibility at connection section.
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Truncating the vibration responses of primary system for
Kth order and absorber beam for Nth order as
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and substituting equation (9) into the dynamical equation
(7) and applying partial integration, the following equations
can be obtained:
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� 􏽚
L1

0
f(t)δ ξ1 − l1( 􏼁ϕ1k ξ1( 􏼁dξ1,

E2I2 􏽢w
‴
2 ξ2, t( 􏼁ϕ2n ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌
L2

0
− E2I2 􏽢w2″ ξ2, t( 􏼁ϕ2n

′ ξ2( 􏼁
􏼌􏼌􏼌􏼌
L2
0 + E2I2 􏽘

j

􏽚
L2

0
ϕ2j
″ ξ2( 􏼁ϕ2n

″ ξ2( 􏼁dξ2q2j(t)

+ ρ2A2 􏽘
j

􏽚
L2

0
ϕ2j ξ2( 􏼁ϕ2n ξ2( 􏼁dξ2€q2j(t) + c2 􏽘

j

􏽚
L2

0
ϕ2j ξ2( 􏼁ϕ2n ξ2( 􏼁dξ2 _q2j(t)

� − c2 􏽘
i

􏽚
L2

0
ϕ1i
′ L1( 􏼁 + ϕ1i L1( 􏼁􏼂 􏼃ϕ2n ξ2( 􏼁dξ2 _q1i(t) − ρ2A2 􏽘

i

􏽚
L2

0
ϕ1i
′ L1( 􏼁 + ϕ1i L1( 􏼁􏼂 􏼃ϕ2n ξ2( 􏼁ξ2dξ2€q1i(t).

(12)

In equation (12), by considering the boundary condi-
tions and compatibility conditions as equation (8), the terms
by definite integration are

E1I1w
‴
1 ξ1, t( 􏼁ϕ1k ξ1( 􏼁

􏼌􏼌􏼌􏼌􏼌
L1

0
� E1I1w

‴
1 ξ1, t( 􏼁

􏼌􏼌􏼌􏼌ξ1�L1
ϕ1k L1( 􏼁 − E1I1w

‴
1 ξ1, t( 􏼁

􏼌􏼌􏼌􏼌ξ1�0ϕ1k(0)

� E2I2 􏽢w
‴
2 ξ2, t( 􏼁

􏼌􏼌􏼌􏼌􏼌 ξ2�0 +2mmag1 €w1 ξ1, t( 􏼁
􏼌􏼌􏼌􏼌􏼌 ξ1�L1

+ 2Fy 􏽢w2 L2, t( 􏼁( 􏼁􏼔 􏼕ϕ1k L1( 􏼁,

E1I1w1″ ξ1, t( 􏼁ϕ1k
′ ξ1( 􏼁

􏼌􏼌􏼌􏼌
L1
0 � E1I1w1″ ξ1, t( 􏼁

􏼌􏼌􏼌􏼌ξ1�L1
ϕ1k
′ L1( 􏼁 − E1I1w1″ ξ1, t( 􏼁

􏼌􏼌􏼌􏼌ξ1�0ϕ1k
′ (0)

� E2I2 􏽢w2″ ξ2, t( 􏼁
􏼌􏼌􏼌􏼌ξ2�0ϕ1k
′ L1( 􏼁,

E2I2 􏽢w
‴
2 ξ2, t( 􏼁ϕ2n ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌
L2

0
� E2I2 􏽢w

‴
2 ξ2, t( 􏼁

􏼌􏼌􏼌􏼌􏼌ξ2�L2
ϕ2n L2( 􏼁 − E2I2 􏽢w

‴
2 ξ2, t( 􏼁

􏼌􏼌􏼌􏼌􏼌ξ2�0
ϕ2n(0)

� 2mmag2
€􏽢w2 ξ2, t( 􏼁

􏼌􏼌􏼌􏼌 ξ2�L2
+ €θ1 L1, t( 􏼁L2 + €w1 L1, t( 􏼁􏽨 􏽩ϕ2n L2( 􏼁 − 2Fy 􏽢w2 L2, t( 􏼁( 􏼁ϕ2n L2( 􏼁,

E2I2 􏽢w2″ ξ2, t( 􏼁ϕ2n
′ ξ2( 􏼁

􏼌􏼌􏼌􏼌
L2
0 � E2I2 􏽢w2″ ξ2, t( 􏼁

􏼌􏼌􏼌􏼌ξ2�L2
ϕ2n
′ L2( 􏼁 − E2I2 􏽢w2″ ξ2, t( 􏼁

􏼌􏼌􏼌􏼌ξ2�0ϕ2n
′ (0) � 0.

(13)
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After simplification, the discretization equation of the
system can be written as

€q1k(t) +Ω21kq1k(t) + C1k _q1k(t)

� f(t)ϕ1k l1( 􏼁
􏽼√√√√√􏽻􏽺√√√√√􏽽
external excitation

− 2Fyϕ1k L1( 􏼁
􏽼√√√√√􏽻􏽺√√√√√􏽽

magnetic interaction onmagnet− 1

− 2mmag1 􏽘
i

ϕ1i L1( 􏼁€q1i(t)⎡⎣ ⎤⎦ϕ1k L1( 􏼁

􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽
inertia force of magnet− 1

− E2I2 􏽘
j

ϕ‴2j(0)q2j(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ϕ1k L1( 􏼁

􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽
coupling shear force induced by absorber

+E2I2 􏽘
j

ϕ‴2j(0)q2j(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ϕ1k
′ L1( 􏼁

􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽
coupling bendingmoment induced by absorber

,

€q2n(t) + ω2
2nq2n(t) + C2n _q2n(t)

� +2Fyϕ2n L2( 􏼁
􏽼√√√√√􏽻􏽺√√√√√􏽽

magnetic interaction onmagnet− 2

− C3n 􏽘
i

ϕ1i
′ L1( 􏼁 _q1i(t) − mcn 􏽘

i

ϕ1i
′ L1( 􏼁€q1i(t)

􏽼√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√􏽽
effect of rotation at free end of primary beam

− C3n 􏽘
i

ϕ1i L1( 􏼁 _q1i(t) − mcn 􏽘
i

ϕ1i L1( 􏼁€q1i(t)

􏽼√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√􏽽
effect of displacement at free end of primary beam

− 2mmag2 􏽘
j

ϕ2j L2( 􏼁€q2j(t) + 􏽘
i

ϕ1i
′ L1( 􏼁€q1i(t)L2 + 􏽘

i

ϕ1i L1( 􏼁€q1i(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ϕ2n L2( 􏼁

􏽼√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√􏽽
ineria force of magnet− 2

,

(14)

where

C1k � c1 􏽚
L1

0
ϕ1i ξ1( 􏼁ϕ1k ξ1( 􏼁dξ1 � c1δik,

C2n � c2 􏽚
L2

0
ϕ2j ξ1( 􏼁ϕ2n ξ2( 􏼁dξ2 � c2δjn,

C3n � c2 􏽚
L2

0
ϕ2n ξ2( 􏼁dξ2,

mcn � ρ2A2 􏽚
L2

0
ϕ2n ξ2( 􏼁ξ2dξ2.

(15)

According to equation (14) and the definitions of co-
efficients (15), for Kth order and Nth order truncation for the
primary beam and absorber beam, respectively, the dis-
cretization equation is written as

M€q(t) + Kq(t) + C _q(t) � F(t) + G(q), (16)

whereM is the mass matrix,K is the linear stiffness matrix,C
is the linear dampingmatrix, F is the excitation vector, andG
is the vector for nonlinear terms, expressed as follows. (e
mass matrix is

M �
Mik 0

Mji Mjn

⎡⎣ ⎤⎦,

mik �
1 + 2mmag1ϕ1i L1( 􏼁ϕ1k L1( 􏼁, i � k,

2mmag1ϕ1i L1( 􏼁ϕ1k L1( 􏼁, i≠ k,

⎧⎨

⎩

mji � 2mmag2 ϕ1i
′ L1( 􏼁L2 + ϕ1i L1( 􏼁􏼂 􏼃ϕ2j L2( 􏼁 + mcnϕ1i L1( 􏼁,

mjn �
1 + 2mmag2ϕ2j L2( 􏼁ϕ2n L2( 􏼁, j � n,

2mmag2ϕ2j L2( 􏼁ϕ2n L2( 􏼁, j≠ n.

⎧⎨

⎩

(17)

(e expression of K is
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K �
Kik Kkj

0 Kjn

⎡⎣ ⎤⎦,

kik �
Ω21k i � k

0 i≠ k

⎧⎨

⎩ ,

kkj � 2α1ϕ2j L1( 􏼁ϕ1k L1( 􏼁 + E2I2ϕ‴2j(0)ϕ1k L1( 􏼁 − E2I2ϕ2j
″ (0)ϕ1k
′ L1( 􏼁,

kjn �
ω2
2n + 2mmag2ϕ2j

″ L2( 􏼁ϕ2n L2( 􏼁 − 2α1ϕ2j L2( 􏼁ϕ2n L2( 􏼁 j � n,

2mmag2ϕ2j
″ L2( 􏼁ϕ2n L2( 􏼁 − 2α1ϕ2j L2( 􏼁ϕ2n L2( 􏼁 j≠ n,

⎧⎨

⎩

(18)

(e expression of C is

C �
Cik 0

Cin Cjn

⎡⎣ ⎤⎦,

cik �
c1, i � k,

0, i≠ k,
􏼨

cin � C3n ϕ1k
′ L1( 􏼁 + ϕ1k L1( 􏼁􏼂 􏼃 � c2 􏽚

L2

0
ϕ2n ξ2( 􏼁dξ2 ϕ1k

′ L1( 􏼁􏼂

+ ϕ1k L1( 􏼁􏼃,

cjn �
c2, j � n,

0, j≠ n.
􏼨

(19)

(e nonlinearity terms vector G is written as

G � g11, g12, . . . , g1K, g21, g22, . . . , g2N􏼈 􏼉
T
,

g1k � − 2Fyϕ1k L1( 􏼁 � − 2 􏽘
H

h�1
α2h− 1 􏽘

N

j�1
ϕ2j L2( 􏼁q2j(t)⎛⎝ ⎞⎠

2h− 1
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ϕ1k L1( 􏼁,

g2n � 2Fyϕ2n L2( 􏼁 � 2 􏽘
H

h�1
α2n− 1 􏽘

N

j�1
ϕ2j L2( 􏼁q2j(t)⎛⎝ ⎞⎠

2h− 1
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ϕ2n L2( 􏼁.

(20)

According to the dynamical model (16), coefficients
matrix, and nonlinearity terms in (17)–(20), the natural
frequencies and responses can be obtained for different
structural parameters under different excitations.

4. Isolation Effectiveness

4.1. Resonance Frequency Bands. First, the natural fre-
quencies of the system are obtained by the linearization
model of equation (14) to show the resonance frequency
bands after the assembly of absorber beam with magnetic
interaction. According to the defined matrixM andK as (19)
and (20), the natural frequencies for linearization can be
solved by

det M 􏽥Ω2β − K􏼒 􏼓 � 0, (21)

where 􏽥Ωβ (β�K+N) are the linearization natural fre-
quencies for the system.(en, the comparison of the natural
frequencies 􏽥Ωβ of the system with/without magnetic in-
teraction coupling is shown in Figure 5.

(e natural frequencies of the system for different orders
of Galerkin truncation are calculated and the relative errors
are shown and listed in Table 2 in Appendix. In Table 2,
when the truncation order of the absorber beam isN� 3, 􏽥Ω10
is missed; when the truncation order of the primary beam is
K� 4 or K� 5, 􏽥Ω7 and 􏽥Ω8 would be missed; when the
truncation order of the primary beam is set asK� 6, there are
no omissions for natural frequencies in the discussed fre-
quency band as shown in Figure 5. (e truncation order of
the primary beam is higher than the absorber beam since the
primary beam has lower stiffness than the absorber beam.

Figure 5 shows comparison among the cases for primary
beam without absorber beam (dot-dashed lines), with ab-
sorber beam but without magnetic interaction (dashed
lines), and with both absorber beam and magnetic inter-
action (lines with dots).(e two pairs of magnets installed in
the system mainly affect the resonance frequency of the first
few orders. (ey do not have much influence on the res-
onance frequency of higher orders. Figure 5(b) shows the
resonance frequency of the first three orders. Without the
absorber, there are only two modes in this frequency band,
which are plotted as dot-dashed lines. (e first natural
frequency of the primary system is 27.03 rad/s and the
second one is 169.4 rad/s. When the absorber beam is as-
sembled but without magnetic interaction (Fy � 0), the first
natural frequency equals 22.1 rad/s, the second one
66.46 rad/s, and the third one 190.6 rad/s. For the case with
both absorber beam and magnetic interaction, each order of
natural frequencies depends on the interaction field. For
increasing the distance d of one pair of magnets, the first
natural frequency reduces closely to zero and then increases
closer to 22.1 rad/s since the interaction is weakened for very
large distance d. Similarly, the second and third natural
frequencies increase for the increase of d and then reduce
closer to the values of 66.46 rad/s and 190.6 rad/s.

Since the first frequency of the system is very close to
zero and the second one reaches a maximum value for
d≈ 12mm, there is a wide frequency band from zero for
nonresonance where the vibration is suppressed effectively.
In the following analysis, the amplitude frequency curves of
the primary beam for different structural parameters are
solved by perturbation method to show the vibration sup-
pression effectiveness of absorber beam with nonlinear in-
teraction by magnetic field.

(e first natural frequency first decreases and then in-
creases. It can decrease to approximately zero. (e second
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natural frequency increased to maximum. (erefore, the
magnetic interaction further optimized the effective ab-
sorption band, allowing it to start from approximately zero.
Without the absorber, frequency ranges within 22∼66 rad/s.
With the absorber, the frequency range is widened to
0∼150 rad/s. (is is the novelty of the structure design.
Moreover, there is no need to install or uninstall the magnets
while working. If the magnetic interaction is not needed,
increasing the magnetic distance d to a certain value can

eliminate the influence of the magnets and allow the
structure to turn back to its original state. (e system can be
easily optimized by adjusting d value.

4.2. Solutions on Frequency Band. Based on the discretiza-
tion equation (16), without considering the internal reso-
nance, the vibration solutions of the primary beam q1i(t) and
the absorber beam q2i(t) for different orders of modal are
written as

N
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Figure 5: (a) (e natural frequencies for different structural parameters d; (b) the first three natural frequencies and the comparison cases
with/without the absorber beam and with/without the magnetic interaction.

Table 2: Natural frequencies for different truncations K and N for α1 � − 100 (d� 23mm).

􏽥Ωβ(rad/s) K� 6, N� 4 K� 6, N� 3 K� 5, N� 4 K� 5, N� 3 K� 4, N� 4 K� 4, N� 3
􏽥Ω1 5.79 5.79 5.79 5.79 5.77 5.87
􏽥Ω2 119.57 119.59 119.79 119.82 120.2 119.65
􏽥Ω3 261.97 262.12 262.19 262.47 262.5 262.14
􏽥Ω4 565.72 566.04 565.93 566.25 566.6 570.9
􏽥Ω5 1110.3 1110.87 1113.35 1113.89 1121.47 1126.2
􏽥Ω6 1691.28 1692.22 1698.46 1703.2 1719.28 1692.1
􏽥Ω7 1904.95 1903.98 1911.77 1910.93
􏽥Ω8 2862.24 2861.98
􏽥Ω9 5533.08 5619.92 5540.21 5627.01 5547.1 5634.28
􏽥Ω10 11718.2 11717.9 11717.6
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q1i(t) � 􏽘
m

a1im cos(mΩt) + b1im sin(mΩt)􏼂 􏼃,

q2j(t) � 􏽘
m

a2jm cos(mΩt) + b2jm sin(mΩt)􏽨 􏽩.
(22)

Substituting the solution in (22) into equation (16) and
choosing the same order of harmonic components cos(mΩt)
and sin(mΩt), we obtain 2×m× β� 2×m× (K+N) alge-
braic equations for a1im, b1im, a2jm, and b2jm. In the following
analysis of amplitude-frequency curves, single harmonic
components for primary resonances are considered and the
super/subharmonic components are ignored; then, there are
2× β algebraic equations for solving the 2× β amplitudes.

According to the relation between the vibration response
w2 and vibration deflection 􏽢w2 in equation (1), the vibration
response w2 (ξ2, t) is written as

w2 ξ2, t( 􏼁 � 􏽘
K

i�1
ϕ1i L1( 􏼁q1i(t) + 􏽘

K

i�1
ϕ1i
′ L1( 􏼁q1i(t)ξ2

+ 􏽘
N

j�1
ϕ2j L2( 􏼁q2j(t).

(23)

(us, the maximum vibration response of the primary
beam w1 (L1, t), relative motion 􏽢w2(L2, t), and the maximum
vibration response of the absorber beam w2 (L1, t) are,
respectively, written as

w1 L1, t( 􏼁 �

��������������������������������

􏽘
i

ϕ1i L1( 􏼁a1i1
⎛⎝ ⎞⎠

2

+ 􏽘
i

ϕ1i L1( 􏼁b1i1
⎛⎝ ⎞⎠

2
􏽶
􏽴

�

����������������������������������������������������

ϕ11 L1( 􏼁a11 + ϕ12 L1( 􏼁a12 + L􏼂 􏼃
2

+ ϕ11 L1( 􏼁b11 + ϕ12 L1( 􏼁b12 + L􏼂 􏼃
2

􏽱

,

􏽢w2 L2, t( 􏼁 �

���������������������������������

􏽘
j

ϕ2j L2( 􏼁a2j1
⎛⎝ ⎞⎠

2

+ 􏽘
j

ϕ2j L2( 􏼁a2j1
⎛⎝ ⎞⎠

2
􏽶
􏽴

�

����������������������������������������������������

ϕ21 L2( 􏼁a21 + ϕ22 L2( 􏼁a22 + L􏼂 􏼃
2

+ ϕ21 L2( 􏼁b21 + ϕ22 L2( 􏼁b22 + L􏼂 􏼃
2

􏽱

,

w2 L2, t( 􏼁

�

�����������������������������������������������������������������������������

􏽘
i

ϕ1i L1( 􏼁 + ϕ1i
′ L1( 􏼁􏼂 􏼃a1i1 + 􏽘

j

ϕ2j L2( 􏼁a2j1
⎛⎝ ⎞⎠

2

+ 􏽘
i

ϕ1i L1( 􏼁 + ϕ1i
′ L1( 􏼁􏼂 􏼃b1i1 + 􏽘

j

ϕ2j L2( 􏼁b2j1
⎛⎝ ⎞⎠

2
􏽶
􏽴

.

(24)

(e vibration of the free end of the primary system is the
point with largest amplitude, which is the response point to
describe the vibration suppression effectiveness. Figure 6
shows the comparison of amplitudes of deflections of the
primary beam and absorber beam on frequency band for
different structural parameters of magnetic interaction.

From Figures 6(a)–6(e), it can be seen that not only are
the resonance bands and nonresonance changed, but also
the amplitudes dependent on the magnetic field are changed.
For the increase of distance d (reduction of magnetic field),
the first nonresonance frequency band increases and then
reduces, which conforms to the results for the variations of
natural frequencies in Figure 5. From the amplitude-fre-
quency curves of the primary beam shown in Figure 6, the
response at the first resonance frequency displays linearity,
while nonlinear phenomenon occurs at higher-order reso-
nance frequency, which is induced by the magnetic inter-
action. Compared to the case without magnetic interaction
in Figure 6(f), the resonance peaks for the cases with
magnetic interaction are much lower. In addition, for dif-
ferent values of d, the system displays hard-spring or soft-

spring properties at the high-order resonance frequencies.
(is phenomenon reveals that the vibration of the primary
beam is effectively suppressed because of the nonlinearity
coupling of magnetic interaction, especially at resonance
frequency band.

4.3. Width of Frequency Band-Based Design and Evaluation
Criteria. To design the structure and magnetic field, the
evaluation criteria are proposed according to the effect and
mechanism of vibration suppression of the primary system.
Here, we define two criteria to evaluate the vibration sup-
pression effect based on the width of frequency band for
vibration suppression.

Firstly, the absorber beam is considered effective when
the response amplitude of the primary beam is lower than
the case for nonabsorber. Similarly, the magnetic interaction
is considered useful when the response amplitude of the
primary beam is lower than the case for nonmagnetic
connection. (en, the width of frequency bands where the
vibration amplitude of primary beam is smaller than the case

Shock and Vibration 11



A
m

pl
itu

de
 (m

m
)

50 100 150 200 250 300

0

2

4

6

8

10

0

10

20

30

40

50

60

100 200 300 4000
Frequency (rad/s)
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Figure 6: (e amplitude-frequency curves when fixing the force amplitude f0 � 0.1N for different structural parameters of magnets as (a)
d� 5mm, (b) d� 10mm, (c) d� 20mm, (d) d� 30mm, (e) d� 40mm, and (f) the case without magnets.
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without absorber beam or magnetic interaction is expressed
as

I1 � R1
􏼌􏼌􏼌􏼌 w1
����

����≤ w0
����

����􏽮 􏽯, (25)

where w0 represents the vibration response of the primary
beam for the case without absorber beam or magnetic in-
teraction. (e frequency bands obtained by the above cri-
terion (25) show the band for effective vibration absorption.

Secondly, we only consider the requirement for the
vibration amplitude of the primary beam rather than the
comparison of the primary beam and absorber beam. (us,

we define the effective vibration suppression band when the
vibration amplitude of the primary system is less than an
acceptable value A0 which is required in engineering
practices. (e width of frequency band for response with
amplitude in the predefined value gives the guidance for the
design of magnetic interaction. (e width of frequency band
is expressed as

I2 � R2
􏼌􏼌􏼌􏼌 w1
����

����≤A0􏽮 􏽯, (26)
where A0 is fixed as A0 � 0.5mm in the following case
study.
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Figure 7: (a, c) (e amplitude-frequency curves for different distances d when fixing the force amplitude f0 � 0.1N; (b, d) frequency bands
for vibration absorption and vibration suppression.
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Figure 7 shows the comparison of amplitude-frequency
curves of the primary beam with and without magnetic
interaction. (e variations of the frequency bands width
defined by the vibration absorption criterion (25) and vi-
bration suppression criterion (26) for different distances d
are also shown in Figure 7.

From the amplitude-frequency curves shown in
Figures 7(a) and 7(c), the comparison between the cases with
and without magnets shows the effect of magnetic inter-
action on the resonance frequencies, resonance peaks, and
amplitudes of the primary system. (e assembly of absorber
beam with magnetic interaction induces an antiresonance
frequency band at the original first resonance frequency of
the primary beam. At the fundamental frequency, since the
response displays linear property, it is difficult to reduce the
resonance peak but the antiresonance frequency point can
be easily adjusted. In contrast, at the high-order resonance
frequency, the antiresonance frequency point is fixed, while
the resonance peaks can be significantly suppressed, which is
the effect of nonlinearity coupling. From the defined fre-
quency bands by the two criteria (25) and (26) as shown in
Figures 7(b) and 7(d), the first vibration suppression/ab-
sorption frequency bands are widest for d≈ 12mm. (e
comparison of amplitude-frequency curves among the cases
without absorber and with absorber for d� 50mm and the
optimal value d� 12mm is shown in Figure 8.

From the amplitude-frequency curves in Figure 8, for
d� 12mm, the beginning frequency of effective vibration
suppression band is close to zero and the resonance peaks
due to the negative stiffness property by the magnetic in-
teraction. In addition, the values of second and third res-
onance peaks for d� 12mm are nearly equal and are much
lower than the other two cases, which is the benefit brought
by the nonlinearity coupling between the primary and ab-
sorber beams. (us, the magnetic coupling absorber beam
has adjustable property for nonresonance frequency band

and also has significant effect on the vibration suppression,
especially for low-frequency resonance.

4.4. Discussions on the Superharmonic Resonance Induced by
Nonlinearity. Since the nonlinearity induced by the mag-
netic interaction is obvious at the equilibrium, it would bring
high-order harmonic components, which would not occur
in linear system. (erefore, we consider the high-order
harmonic components of responses as

q1i(t) � a1i1
cos(Ωt) + b1i1

sin(Ωt) + a1i2
cos(3Ωt)

+ b1i2
sin(3Ωt),

q2j(t) � a2j1
cos(Ωt) + b2j1

sin(Ωt) + a1i2
cos(3Ωt)

+ b1i2
sin(3Ωt).

(27)

By substituting the solution into dynamical equation and
separating harmonic components for cos(Ωt), sin(Ωt),
cos(3Ωt), and sin(3Ωt), there are 2× 2× (K+N) algebraic
equations. (e amplitudes of superharmonic components
for different structural parameters and the comparison of
amplitude-frequency curves between the cases considering
superharmonic components are shown in Figure 9.

From Figure 9, the superharmonic components
would occur due to the nonlinearity from magnetic in-
teraction. Also, with the increase of excitation amplitude,
the superharmonic components are growing up. But,
with the comparison of the amplitudes between the
primary- and superharmonic components, the values of
superharmonic amplitudes are much smaller than the
primary-harmonic ones. (e primary-harmonic ampli-
tudes for the case considering the superharmonic
components have little error compared to the case
without considering superharmonic components. (us,
the structural parameters of absorber beam and magnetic
field can be designed according to the two proposed
criteria (25) and (26) for vibration suppression re-
quirements and the superharmonic vibrations can be
ignored in practices.

4.5. Experimental Setup and Results. (e corresponding
experimental prototype of the magnetic interaction based
vibration absorber for continuous beam is shown in Figure 10.
(e experimental setup is shown in Figure 10(a). (e mag-
netic field is shown in Figure 10(b). (e absorber beam with
different strengths of magnetic coupling is shown in
Figure 10(c). (e structures are mounted on a vibration table
(APS 400). A signal generator (RIGOL DG1022U) controls
the structures. An oscilloscope (Tektronix TDS 2002C)
measures and stores the output voltage signals. An absorber
beam, which has much smaller mass than the primary beam,
is introduced and coupled on the primary beam by constraint
andmagnetic interaction. Two pairs of magnets are assembled
on the primary and absorber beams.

(e experiment’s results are shown in Figure 11. (e left
and right parts of the figure show the vibration responses
and output voltage for the main structure, respectively.
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Figures 11(a) and 11(b) correspond to weak magnetic in-
teractions, 11(c) and 11(d) correspond to middle magnetic
interactions, and 11(e) and 11(f) correspond to strong
magnetic interactions. (e strength of magnetic interaction

can be adjusted by changing the magnetic parameters in the
connection region. (e frequency-sweep tests with a linear
sweep rate of 0.1Hz·s− 1 in the frequency range between 1Hz
and 5Hz are carried out with upward and downward
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Figure 11: For time-lasting external excitation, (a) vibration responses and (b) output voltage for the main structure for weak magnetic
interactions; (c) vibration responses and (d) output voltage for the main structure for middle strength magnetic interactions; (e) vibration
responses and (f) output voltage for the main structure for strong magnetic interactions.

16 Shock and Vibration



sweeping. In Figure 11(a), the resonant frequency of the
main structure for weak magnetic interactions is about
3.6Hz and the largest output voltage reaches 1.1 V. In
Figure 11(c) corresponding to middle strength magnetic
interactions, the peak voltage lies between 2.4 and 2.8Hz and
reaches 1.2V for the two times of sweeping, performing soft-
spring property. (e output signal shown in Figure 11(e),
corresponding to strong magnetic interactions, is beyond
1.4V, which is, respectively, 27% and 17% larger than the
voltages generated by lower-strength magnetic interactions.
Although the frequency band in Figure 11(e) is almost the
same as the one in Figure 11(c), the peak frequency is be-
tween 3 and 3.4Hz, wider than the second case due to its
hard-spring characteristic. Figures 11(b), 11(d), and 11(f)
show the voltages generated by the magnetic coupled ab-
sorber structures under fixed-frequency excitation, which
agrees with the results in frequency-sweeping results. (is
experiment proves that adjusting themagnetic parameters in
the connection region can change the absorber’s resonance
frequency to match the frequency and damping of main
structure effectively.

5. Conclusions

In this paper, a continuous beam as absorber is assembled on
a continuous primary structure to suppress the vibration.
(e absorber beam is coupled on continuous beam by cross-
section-fixed-connection and magnetic interaction; thus the
mutual effect of the primary beam and absorber beam
contains both shear force and bending moment. (e fol-
lowing conclusions can be drawn based on our results and
discussions:

(a) Based on the interaction force model of magnets and
the dynamical model of the system, discrete dynamic
equation for each order of the system is obtained. For
appropriate magnetic interaction field, the funda-
mental frequency of the system can be reduced
closely to zero, and the second and third natural
frequencies increase initially and then reduce. (us,
a wide frequency band for nonresonance exists from
zero.

(b) With the response solutions solved, since the mag-
netic interaction is local and nonlinear, the values of
the resonance peaks can be suppressed much lower
than the case without magnetic interaction for ap-
propriate magnetic structural parameters. (e am-
plitude-frequency curves for different structural
parameters reveal that the coupling interaction, es-
pecially the bending moment, applied on the pri-
mary beam by the absorber beam remarkably
suppresses the vibration responses of the primary
beam. Since the effect of the absorber beam is am-
plified by the motion of the primary beam in each
mode, the mass of absorber beam is much tinier than
the primary beam.

(c) According to the comparison of amplitude-fre-
quency curves for the cases with/without magnetic
interaction, two criteria are defined, which describe

the improvement effect of the nonlinearity coupling
induced by magnetic interaction. (e effective vi-
bration frequency bands are extended without in-
creasing the absorber mass.

In conclusion, for the proposed absorber beam with the
magnetic coupling and assembly, remarkable vibration
suppression can be obtained. (e responses and design
principle of the absorber beam with magnetic interaction are
obtained based on the modelling of system and magnetic
interaction. (e proposed vibration suppression method for
resonance vibration in wide frequency band has significant
applications as flexible aim for continuous structure in the
fields of manufacturing and aerospace.

Appendix

(is appendix presents the structural parameters and co-
efficients in the theoretical analysis and simulation and
natural frequencies for different truncation orders.

Assuming the primary beam and absorber beam are both
acrylic materials, the structural parameters are fixed and
shown in Table 1.

Nomenclature

w1: Vibration of the primary system
􏽢w2: Deflection vibration of the absorber beam
f(t): Force excitation
ξ1: Coordinate for the primary beam
􏽥Ωh: Natural frequencies of the system
ω2n: Natural frequencies of absorber beam
w2: Displacement of the absorber beam
θ1: Angle of rotation of primary beam
f: Force excitation amplitude
ξ2: Coordinate for absorber beam
Ω1k: Natural frequencies of primary beam
Ω: Excitation frequency.
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