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Transverse vibration of rectangular composite plates with multiple distributed composite patches is analyzed in this paper.
Because of the geometric discrepancy between the plate and patch, analytical solutions are usually hard to achieve. -e present
model is formulated by using the Rayleigh–Ritz method and adopting various types of modal shape functions of uniform beam as
admissible functions for different boundary conditions. -e total system energies are calculated by adding the energies of the
substrate plate and the energies of the patches. By imposing the displacement-matching condition at the patch domains, the
coordinate systems of the substrate plate and patches are coupled. By means of the present method, it is very convenient and
efficient to build the system governing equations and solve the eigenvalue problem. For the composite patches, they are also
assumed to be symmetrically layered and have the same layer stacking sequence with the substrate laminate. -e effects of layer
stacking sequence, modulus ratio, aspect ratio, and boundary conditions on the natural frequencies are investigated and discussed.
-e results are also compared with the existed benchmark solutions and FEM solutions for validation. -e numerical results
demonstrate that the proposed approach is computationally very efficient and accurate and can be used as a tool to solve transverse
vibration problems of composite plate with multiple composite patches.

1. Introduction

Composite patch structures have been widely used in the
repair of aircraft, marine ships, and so on, and they are
usually used to reinforce structures or repair damaged
parts [1, 2]. By using the patch technology, it can quickly
repair and enhance the strength and rigidity of the
components, which is beneficial to delay the generation
and expansion of cracks in the damaged structures. Since
we know it is more effective to connect the patches and the
composite substrates by pasting or embedding than the
threaded bolt and rivet connection because of the need to
open holes that cause stress concentration, composite
patch structures play a very important role in many fields.
It can not only withstand large loads but also locally
strengthen the structures and transfer the strain energy of
the stress concentration point.

In recent years, research on layered composite patch
structures has received more and more attentions [3, 4].
-ere are numerous theoretical and experimental works on
the application of composite patch structures which dem-
onstrate the engineering significance of their application
[5, 6]. Some scholars have studied the mechanical response
of structures after pasting composite patch on the metal
substrate through experiments and numerical calculation
methods, revealing the complex three-dimensional stress
distributions near the free edge of composite patch, where
damage such as delamination or crack propagation may be
initiated. Ivañez et al. [7] conducted an experimental study
of the impact behavior of patch-repaired laminates which
are subjected to a broad range of low-velocity impact en-
ergies. -ey made a comparison between intact laminates
and double-sided patch repairs in terms of contact load,
absorbed energy, and damage area. Mathias and Grediac [8]
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pasted composite patches on the metal substrate of Airbus
aircraft, which greatly improved the strength and service life
of the metal substrate. Baker [9] used composite patches to
repair the cracked aircraft wings, which effectively prevented
the cracks from spreading and improved the service life.
Schubbe and Mall [10] also found that the use of boron/
epoxy resin composite patches can effectively prevent the
propagation of cracks in aluminum plates. -eir experi-
mental results showed that the service life of aluminum
plates increased four to five times. Cho and Sun [11] studied
the thermal stress caused by the use of composite patches for
aircraft structural maintenance.-ey studied the methods of
lowering thermal stress through experiment and calculated
the thermal residual stress by using a finite element model.
Lee et al. [12, 13] studied the free-edge stress distributions of
composite patch bonded to an isotropic substrate under
extension and bending loads. -ey adopted a simple shear
lag model to model the shear stress in the adhesive layer and
predicted the three-dimensional stresses based on the stress
function-based approach. -rough the abovementioned
studies, it can be found that the use of patch technology can
significantly decrease the stress concentration, increase the
strength of substrate with cracks, slow the spread of cracks,
and significantly improve the local strength of structures.

With additional patches on substrate composites, it not
only affects the structural strength, stress distribution, and
failure evolution but also affects the dynamic characteristics
of structures [14]. -ere are many works related to the
piezoelectric patches on composite substrates for the anal-
ysis of vibration suppression [15], optimal control [16],
energy harvesting [17], and structure healthmonitoring [18].
Huang and Kim [19–21] investigated the transient vibration
of composite laminate with surface-bonded piezoelectric
actuators and sensors. -ey found the effect of delamination
and debonding of actuator and sensor on the vibration
characteristics. Araujo et al. [22] investigated the vibration of
laminated soft core sandwich plates with piezoelectric
patches by the finite element method. Paknejad et al. [17]
provided an analytical solution of piezoelectric patch on
multilayer composite beams for energy harvesting. Schulz
et al. [23] investigated the optimal piezoelectric patch al-
location on composite structures for vibration control based
on GA and modal LQR and found the best position of patch
around the center of the shell.

However, with regard to composite laminate with single
or multiple composite patches, there are few works con-
sidering both the effects of patch mass and stiffness on the
vibration characteristics. -e discrepancy of geometric di-
mensions results in the difficulty of analytical modeling of
patch structures. -us, the patch structures are usually
treated as point mass or distributed mass. Alibeigloo et al.
[24, 25] investigated the free vibration and forced vibration
of antisymmetric laminated plates with distributed patch
mass by using the third-order shear deformation theory.
-ey investigated the effects of size and location of the area
of the patch, frequency ratio, and mass ratio on the response
of the plate. However, they neglected the effect of patch

stiffness on the dynamic characteristics although it may be
very weak. Vaziri and Nayeb-Hashemi [26] studied the
dynamic response of a repaired composite with bonded
patch under a harmonic peeling load and found the elastic
modulus of the adhesive layer dominates the mechanism of
deformation of the repaired beam and its vibration char-
acteristics. In a word, it can be clearly found there is not
many works focusing on themodeling of multiple composite
laminated patches on composite substrates considering the
effects of both mass and stiffness.

In this work, we will investigate the transverse vibration
behaviors of composite laminate with surface-bonded
patches considering both patch mass and patch stiffness by
using the Rayleigh–Ritz method. Although there are a lot of
plate and shell theories, such as Reddy’s first-order shear
deformation theory (FSDT), nonlocal theories, and four-
variable theory, which are very efficient in solving free vi-
bration and nonlinear vibration, dynamic stability and
viscoelastic behavior of composite laminates, functionally
graded carbon nanotube-reinforced structures (FG-CNT),
and porous microplates and skew plates under thermal and
mechanical loadings, the Rayleigh–Ritz method is still very
simple and efficient in solving free vibration of patched
structures [27, 28]. -e mathematical model is built with
various modal shape functions of uniform beam with dif-
ferent boundary conditions. Because of the geometric dis-
crepancy, the present method uses different coordinate
systems for the substrate plate and patches, but they are
coupled by applying the displacement-matching conditions
[29, 30]. By using the independent coordinates, it is
mathematically more convenient to build the model. We
solve the transverse vibration problem with multiple patches
on the substrate laminate. -e cross-ply and angle-ply
laminates with clamped and simply supported boundary
conditions are chosen for numerical analysis. -e effects of
parameters, such as patch number and patch size, aspect
ratio, and modulus ratio, on the natural frequencies are also
investigated. -e present results are compared with those
well-known published results and FEM results. -e pro-
posed method is very efficient in predicting the transverse
vibration of composite laminates with multiple composite
patches and can be used as a design tool for modeling of
patched composite structures.

2. Mathematical Modeling

In this work, we consider a rectangular composite plate with
surface-bonded composite patches, as shown in Figure 1. For
simplicity, we assume that the patch and composite plate
have the same layer stacking sequence and thickness. -eir
dimensions and the relative location of kth patch are also
shown in the figure. -e plate has length a in the x direction
and width b in the y direction. -e dimension of kth patch is
apk by bpk. Two independent coordinate systems (x, y, z) and
(xpk, ypk, zpk) are used for the composite plate and kth patch,
respectively. By defining the nondimensional coordinates
for plane axes, we can have the following relation:
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ξ �
x

a
,

η �
y

b
,

(1a)

ξpk �
xpk

apk
,

ηpk �
ypk

bpk
.

(1b)

We can build the relation between the two coordinates as
follows and further use it to couple the two systems:

ξ �
dxk

a
+

apk

a
ξpk,

η �
dyk

b
+

bpk

b
ηpk.

(2)

For a composite laminate with general orthotropic
material properties, the constitutive equation for kth lam-
inate can be given by
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where σ, ε, andQ are the stress, strain, and stiffness matrices,
respectively. -e superscript (k) represents kth lamina.

For transverse vibration analysis, the kinematic and
potential energies can be calculated for the plate and patch
separately. And then, the sum of them is the total system
kinematic and potential energies. -erefore, they have the
following forms for the substrate composite plate and the kth
composite patch:

T �
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Figure 1: Geometry of a composite plate with surface-bonded composite patches and coordinate systems.
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where w(x, y, t) and wpk(x, y, t) represent the deflections of
the composite plate and kth patch. ρ is the material density
andDij is the bending stiffness which can be calculated by the
following equation:

Dij � 
h/2

− h/2
Qijz

2dz

� 
N

k�1


zk+1

zk

Q
(k)
ij z

2dz �
1
3
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k�1
Q

(k)
ij z

3
k+1 − z

3
k .

(5)

-e assumed mode method assumes a solution of the
boundary-value problem and uses it in conjunction with
Lagrange’s equations to obtain an approximate formulation
of the equations of motion. -e solution is assumed as

w(ξ, η, t) � Φ(ξ, η)q(t), (6a)

wpk ξpk, ηpk, t  � Φpk ξpk, ηpk qpk(t), (6b)

where the admissible functions Φ and Φpk and the gener-
alized coordinates q (t) and qpk (t) consist of n and npk terms
and have the following matrix forms for the plate and kth
patch:

Φ(ξ, η) � Φ1 Φ2 . . . Φn 1×n, (7a)

q(t) � q1 q2 . . . qn 
T
n×1, (7b)
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T

npk×1. (7d)

By using the nondimensional coordinates, equation (1),
and substituting it into equation (4), the kinematic and
potential energy functions can be expressed by the matrix
form for the plate,

T �
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and for the kth patch,
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-e length-to-width ratios α and αpk are defined by α� a/b
and αpk� apk/bpk in the above equations. -e admissible
functions are further separated into the admissible functions in
each direction as follows:

Φi(ξ, η) � ϕi(ξ)ψi(η), i � 1, 2, . . . , n, (10a)

Φpki ξpk, ηpk  � ϕpki ξpk ψpki ηpk , i � 1, 2, . . . , npk.

(10b)

Substituting the admissible function, equation (10a), into
the nondimensionalized mass and stiffness matrices of the
plate, equations (9e) and (9f), these matrices can be
expressed in terms of the following integrations:

Mij � X1ijY1ij, (i, j � 1, 2, . . . , m), (11a)
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and the superscripts (’) and (’’) represent the first and second
derivatives, respectively.

If we choose N admissible functions χi(i � 1, 2, . . . , N)

and ci(i � 1, 2, . . . , N) as follows in x and y directions,
respectively, the total combination of admissible functions
equals N2.

ϕk �

χ1, 1≤ k≤N,
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Substituting equation (12) into equations (11c) and
(11d), the coefficients can be calculated by the following
integrations:

Σij � 
1

0
χiχjdξ, (13a)
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′χj
′dξ, (13b)
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1
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1
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′dη, (13f)
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0
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1

0
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(13h)

-erefore, the matrices (X1, X2, X3, X4) and (Y1, Y2, Y3,
Y4) can be approximated with proper assumption of ad-
missible functions. -e next step is to choose proper ad-
missible functions for plates with different boundary
conditions. We firstly choose three types of modal shape
functions of uniform beam as admissible functions in the x
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direction. -e details of modal shape functions are given as
follows:

(i) Simply supported boundary condition:

χi �
�
2

√
sin(iπξ), i � 1, 2, . . . , N. (14)

(ii) Clamped boundary condition:

χi � cosh λiξ(  − cos λiξ(  − σi sinh λiξ(  − sin λiξ( ( ,

i � 1, 2, . . . , N.

(15)

where λi � 4.730, 7.853, 10.996, 14.137, . . . , and
σi � (cosh(λi) − cos(λi))/(sinh(λi) − sin(λi)).

(iii) Free-free boundary condition:

χ1 � 1, (16a)

χ2 �
��
12

√
(ξ − 1), (16b)

χi+2 � cosh λiξ(  + cos λiξ(  − σi sinh λiξ(  + sin λiξ( ( ,

i � 1, 2, . . . , N − 2.

(16c)

-us, substituting equations (14)–(16) into the inte-
gration equation (13), we can obtain the coefficient matrices
(X1, X2, X3, X4). Similarly, we can also calculate the co-
efficient matrices (Y1, Y2, Y3, Y4) by assuming proper
admissible function and performing the integrations in the y
direction. After solving these matrices, we can obtain the
nondimensionalized mass matrix M and stiffness matrix K

from equations (11a) and (11b) for different boundary
conditions. By the same method, we can obtain the non-
dimensionalized mass and stiffness matrices for the patch
domain, but only with the free-free boundary condition. For
the sake of brevity, it will not be introduced again.

-e displacement-matching condition has to be applied
for all the patches. For the kth patch, it must satisfy the
following relation:

wpk ξpk, ηpk, t  � w(ξ, η, t). (17)

By means of equations (6) and (10), the above equation
becomes



npk

j�1
Φpkj ξpk, ηpk qpkj(t) � 

npk

j�1
ϕpkj ξpk ψpkj ηpk qpkj(t)

� 
n

k�1
Φk(ξ, η)qk(t) � 

n

k�1
ϕk(ξ)ψk(η)qk(t).

(18)

Multiplying ϕpki(ξpk)ψpki(ηpk) and performing inte-
gration to equation (18), we obtain



npk

j�1

1

0

1

0
ϕpki ξpk ψpki ηpk ϕpkj ξpk ψpkj ηpk dξpkdηpkqpkj(t)

� 
n

k�1

1

0

1

0
ϕpki ξpk ψpki ηpk ϕk(ξ)ψk(η)dξpkdηpkqk(t), i � 1, 2, . . . , npk .

(19)

We can simply equation (19) by using the orthogonal
property of eigenfunctions of the uniform beam and obtain
the following equation:

qpki(t) � 
n

k�1

1

0
ϕpki ξpk ϕk(ξ)dξpk 

1

0
ψpki ηpk ψk(η)dηpkqk(t)

� 
n

k�1
Spk 

ik
qk(t), i � 1, 2, . . . , npk .

(20)

-us, the generalized coordinate transformation equa-
tion for the kth patch can be expressed as follows:

qpk � Spkq, (21)
where Spk is npk by n transformation matrix describing the
relation between the global coordinate and the coordinate of

the kth patch that can be calculated with the help of equation
(2).

For the plate with Np patches, the total kinetic and
potential energies of the system can be obtained by the
summation of individual energy as follows:
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Ttotal �
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where

MT � M + 

Np

k�1
S

T
pkMpkSpk, (23a)

KT � K + 

Np

k�1
S

T
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Using the nondimensional variables, equation (23) can
be rewritten as

MT � ρhabMT, (24a)

KT �
b

a
3KT, (24b)

where

MT � M + 

Np

k�1
apkbpk S

T
pkMpkSpk, (25a)

KT � K + 

Np

k�1

bpk

a
3
pk

S
T
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apk �
apk

a
, (25c)

bpk �
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b
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By substituting the total energy equations into
Lagrange’s equation, we can obtain the following eigenvalue
problem:

KT − ω2
MT A � 0, (26)

where ω is the natural frequency, and the above eigenvalue
problem can be solved firstly by using the non-
dimensionalized mass and stiffness matrices as follows:

KT − ϖ2MT A � 0, (27)

where ϖ � ω
����
ρha4


is the nondimensionalized natural fre-

quency. -erefore, the eigenvalue problem in equation (26)
can be solved.

3. Numerical Results

To investigate the numerical results calculated by the present
approach, the following material properties and geometric
relations are used for the calculations [31]:

E1

E2
� 10 or 20,

E2

G12
� 2,

E2

G23
� 5,

G12 � G13,

V12 � V13 � 0.25,

(28a)

a

b
� 1 or 2,

h

b
� 0.1,

apk

a
� 0.1, 0.2 or 0.3.

(28b)

-e accuracy of the present approach for transverse
vibration analysis of composite substrate with distributed
multiple composite patches is validated by the finite element
method and other existed benchmark solutions. For the
FEM solutions, they are obtained by using the commercial
package ANSYS with shell elements. -ree cases of patch
numberings and locations are shown in Figure 2, where
CASE I represents single patch and CASE II and CASE III
represent two and four patches, respectively. We will ex-
amine the examples with different layer stacking sequences,
patch numbers, patch sizes, modulus ratios, aspect ratios,
and boundary conditions in the following sections.

3.1.Cross-PlyPlates ([0/90]s)withSingleandMultiplePatches.
We start by considering a cross-ply ([0/90]s) plate with
single and multiple composite patches and four-edge
clamped (CCCC) boundary condition.We firstly present the
first nine nondimensional frequencies of three cases with E1/
E2�10 and a� b� 10 h and various patch sizes for the
present approach in Table 1. It should be noted that the
natural frequencies obtained in this work are all non-
dimensionalized byΩ � ω(b2π2)

������
ρh/D22


. From the table, it

is found that, for the CCCC boundary condition, the plate
has smaller frequencies when it has single or multiple
patches compared with the plate without a patch. Moreover,
when increasing the patch size, it is found that the
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nondimensional frequencies decrease due to the mass effect.
It is also found that the nondimensional frequencies de-
crease when increasing the patch numbers. With four
patches in CASE III, the frequencies are apparently smaller
than those of CASE I and CASE II. -e first five nondi-
mensional frequencies calculated by the FEM are also
provided in Table 1 for comparison. Since we used the shell
element in the FEM modeling which has six degrees of
freedom (DOF) for each node, it has more frequency values
so that we have to pick out the corresponding frequencies by
comparing the modal shapes. -e FEM results are con-
vergent and obtained with very fine mesh size. We totally
used ten thousand elements and fixed boundary condition at
the edges. -e FEM results show that two methods have
tolerable margin of errors and they can be used to efficiently
validate the results provided by the present approach. -e
FEM results also demonstrate the same tendency of fre-
quencies regarding to the patch number and patch size.
-us, the correctness and accuracy of the present approach
for CCCC boundary condition are guaranteed. -e modal

shapes of cross-ply laminate with single patch and patch size
0.3×0.3 are shown in Figure 3, from the FEM results.

We next investigate the effects of modulus ratio and
aspect ratio on the nondimensional frequencies of cross-ply
laminate with CCCC boundary condition, as given in Ta-
bles 2 and 3, respectively. When the modulus ratio E1/
E2� 20, the natural frequencies increase compared with
those of E1/E2�10. When the aspect ratio a� 2b, the
nondimensional frequencies significantly decrease com-
pared with those in Table 1 and the fundamental frequency
decreases to 2.612 for the plate without a patch.-e effects of
patch number and patch size can be observed in Tables 2 and
3, and similar conclusions can be achieved as discussed
before.

Four-edge simply supported (SSSS) boundary conditions
are also investigated for cross-ply laminates with single and
multiple composite patches. We also examine the effects of
patch number, patch size, modulus ratio, and aspect ratio on
the natural frequencies, and the results are given in
Tables 4–6. Table 4 gives the results of SSSS plate with E1/

CASE I CASE II CASE III

dx

dx2

dx1

dy dy
1

dy
2

Patch
1

Patch
1

Single
patch

Patch
2

Patch
2

Patch
3

Patch
4

Figure 2: Patch numbering and locations on the substrate composite plate.

Table 1: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with CCCC boundary condition, E1/E2�10, and a� b� 10 h and
for different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

CASE I

0× 0 Present 5.288 8.178 13.220 13.618 15.079 19.171 21.347 25.409 25.831
FEM 5.337 8.013 12.693 13.171 14.390 / / / /

0.1× 0.1 Present 5.226 8.173 13.214 13.504 15.097 19.164 21.318 25.199 25.861
FEM 5.205 8.064 12.416 13.119 14.506 / / / /

0.2× 0.2 Present 5.067 8.121 13.131 13.322 15.124 19.096 21.018 24.865 25.851
FEM 4.942 8.284 12.243 13.102 14.708 / / / /

0.3× 0.3 Present 4.878 7.951 12.860 13.301 15.046 18.997 20.504 24.853 25.556
FEM 4.650 8.476 12.299 13.021 14.242 / / / /

CASE II

0.1× 0.1 Present 5.180 8.170 13.209 13.423 15.110 19.158 21.296 25.039 25.883
FEM 5.085 7.788 11.798 12.895 15.463 / / / /

0.2× 0.2 Present 4.916 8.079 13.063 13.137 15.157 19.041 20.772 24.518 25.865
FEM 4.928 7.174 11.992 12.559 15.160 / / / /

0.3× 0.3 Present 4.624 7.790 12.599 13.131 15.022 18.886 19.958 24.565 25.355
FEM 4.858 6.849 11.895 12.117 13.678 / / / /

CASE III

0.1× 0.1 Present 5.106 8.165 13.201 13.294 15.131 19.150 21.260 24.772 25.918
FEM 4.998 7.767 11.749 12.708 15.103 / / / /

0.2× 0.2 Present 4.690 8.009 12.883 12.951 15.208 18.954 20.370 24.051 25.889
FEM 4.801 7.087 11.955 12.221 14.971 / / / /

0.3× 0.3 Present 4.274 7.536 12.185 12.925 14.982 18.730 19.201 24.230 25.030
FEM 4.650 6.799 11.956 12.409 14.217 / / / /
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Modal shapes of the cross-ply laminate ([90/− 90]s) with single patch (CASE (I) 0.3× 0.3) on the composite substrate and CCCC
boundary condition by the FEM.

Table 2: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with CCCC boundary condition, E1/E2� 20, and a� b� 10 h and
for different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Present 0× 0 5.711 8.350 13.622 14.602 16.094 19.709 21.263 25.955 28.241

CASE I
0.1× 0.1 5.643 8.346 13.508 14.595 16.105 19.702 21.234 25.974 27.990
0.2× 0.2 5.471 8.292 13.327 14.502 16.114 19.633 20.932 25.944 27.581
0.3× 0.3 5.266 8.117 13.308 14.199 16.007 19.537 20.423 25.642 27.599

CASE II
0.1× 0.1 5.593 8.343 13.426 14.590 16.113 19.697 21.212 25.988 27.781
0.2× 0.2 5.306 8.248 13.145 14.427 16.129 19.578 20.687 25.935 27.130
0.3× 0.3 4.989 7.950 13.142 13.905 15.942 19.431 19.886 25.415 27.258

CASE III
0.1× 0.1 5.513 8.338 13.298 14.581 16.126 19.688 21.175 26.011 27.415
0.2× 0.2 5.059 8.176 12.898 14.300 16.153 19.491 20.289 25.921 26.515
0.3× 0.3 4.609 7.688 12.945 13.438 15.834 19.147 19.288 25.054 26.858

Shock and Vibration 9



E2�10 and a� b. We observe that the nondimensional
frequencies of SSSS plate are much smaller than those of
CCCC plate. -e results of plate without a patch are vali-
dated by Reddy’s solution [32]. It is found that the results of
present approach are exactly as same as the reference so-
lutions. Table 5 gives the frequencies for the plate with
modulus ratio E1/E2� 20. -e nondimensional frequencies
are a bit higher than those in Table 4 when increasing the
modulus ratio. -e results of plate without a patch are also
well validated by Reddy’s solution. -e effect of aspect ratio

is also investigated, and the results are given in Table 6.
When a� 2b, the nondimensional frequencies are appar-
ently decreased. From these three tables, we can obtain the
following conclusions.-e plate with four patches, CASE III,
possesses smallest lower natural frequencies compared with
the other two cases, especially for the first three natural
frequencies. -e patch size also significantly affects the
natural frequencies. It can be explained by the fact that, with
surface-distributed patch, the system mass increases a lot,
while the system stiffness changes slightly. -is results in a

Table 3: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with CCCC boundary condition, E1/E2�10, a� 2b, and b� 10 h
and for different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Present 0× 0 2.612 4.114 6.483 6.913 7.453 9.582 10.873 12.444 13.023

CASE I
0.1× 0.1 2.597 4.114 6.481 6.882 7.458 9.580 10.871 12.392 13.032
0.2× 0.2 2.554 4.110 6.460 6.806 7.469 9.556 10.844 12.296 13.046
0.3× 0.3 2.495 4.096 6.384 6.727 7.475 9.486 10.754 12.274 13.024

CASE II
0.1× 0.1 2.585 4.114 6.480 6.859 7.462 9.578 10.869 12.353 13.038
0.2× 0.2 2.512 4.107 6.443 6.732 7.480 9.537 10.823 12.189 13.063
0.3× 0.3 2.416 4.083 6.311 6.614 7.490 9.420 10.666 12.166 13.025

CASE III
0.1× 0.1 2.566 4.113 6.478 6.821 7.467 9.576 10.867 12.287 13.048
0.2× 0.2 2.446 4.102 6.414 6.622 7.498 9.506 10.787 12.023 13.089
0.3× 0.3 2.297 4.061 6.188 6.463 7.515 9.320 10.520 12.019 13.026

Table 4: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with SSSS boundary condition, E1/E2�10, and a� b� 10 h and for
different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Present 0× 0 2.519 4.986 8.515 9.783 10.077 13.783 16.700 18.704 19.911
Ref. [32] 0× 0 2.519 4.986 8.515 9.783 10.077 13.783 / 18.704 19.911

CASE I
0.1× 0.1 2.500 4.985 8.513 9.714 10.088 13.780 16.685 18.568 19.906
0.2× 0.2 2.448 4.968 8.485 9.578 10.112 13.745 16.511 18.305 19.857
0.3× 0.3 2.379 4.908 8.383 9.507 10.107 13.671 16.115 18.193 19.771

CASE II
0.1× 0.1 2.486 4.984 8.511 9.663 10.096 13.777 16.674 18.466 19.903
0.2× 0.2 2.399 4.955 8.462 9.440 10.136 13.716 16.366 18.041 19.820
0.3× 0.3 2.287 4.851 8.285 9.344 10.129 13.592 15.704 17.912 19.699

CASE III
0.1× 0.1 2.463 4.982 8.509 9.581 10.109 13.773 16.654 18.297 19.897
0.2× 0.2 2.322 4.932 8.424 9.240 10.175 13.670 16.124 17.668 19.764
0.3× 0.3 2.155 4.760 8.127 9.131 10.163 13.473 15.089 17.573 19.615

Table 5: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with SSSS boundary condition, E1/E2� 20, and a� b� 10 h and for
different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Present 0× 0 2.638 4.917 9.355 9.637 10.554 13.826 16.524 19.668 20.752
Ref. [32] 0× 0 2.638 4.917 9.354 9.637 10.554 13.826 / / 20.752

CASE I
0.1× 0.1 2.618 4.916 9.352 9.569 10.560 13.823 16.509 19.681 20.598
0.2× 0.2 2.564 4.899 9.321 9.436 10.573 13.788 16.338 19.681 20.286
0.3× 0.3 2.491 4.841 9.209 9.367 10.553 13.715 15.953 19.533 20.164

CASE II
0.1× 0.1 2.604 4.915 9.351 9.519 10.565 13.820 16.498 19.691 20.476
0.2× 0.2 2.512 4.886 9.296 9.303 10.587 13.760 16.197 19.690 19.957
0.3× 0.3 2.395 4.785 9.101 9.209 10.553 13.639 15.557 19.433 19.828

CASE III
0.1× 0.1 2.579 4.913 9.348 9.440 10.573 13.816 16.479 19.707 20.264
0.2× 0.2 2.432 4.864 9.110 9.254 10.609 13.714 15.963 19.481 19.704
0.3× 0.3 2.257 4.695 8.925 9.005 10.553 13.526 14.967 19.267 19.416
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Table 6: Nondimensional frequencies of the cross-ply laminate ([0/90]s) with SSSS boundary condition, E1/E2�10, a� 2b, and b� 10 h and
for different patch sizes and numbers.

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Present 0× 0 1.246 2.519 4.175 4.978 4.986 6.905 8.515 9.159 9.783

CASE I
0.1× 0.1 1.242 2.519 4.175 4.959 4.989 6.904 8.514 9.126 9.783
0.2× 0.2 1.228 2.518 4.167 4.910 4.996 6.893 8.500 9.055 9.780
0.3× 0.3 1.208 2.514 4.140 4.851 5.004 6.855 8.448 9.012 9.772

CASE II
0.1× 0.1 1.238 2.519 4.174 4.945 4.991 6.903 8.513 9.101 9.783
0.2× 0.2 1.215 2.517 4.162 4.862 5.003 6.884 8.488 8.979 9.777
0.3× 0.3 1.182 2.509 4.115 4.768 5.016 6.820 8.397 8.916 9.764

CASE III
0.1× 0.1 1.232 2.519 4.174 4.922 4.994 6.902 8.512 9.059 9.782
0.2× 0.2 1.194 2.516 4.152 4.788 5.015 6.869 8.469 8.859 9.773
0.3× 0.3 1.141 2.502 4.071 4.650 5.036 6.762 8.312 8.780 9.752
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Figure 4: Nondimensional frequencies of the angle-ply laminate ([45/− 45]s) with CCCC boundary condition, E1/E2�10, and a� b� 10 h
and for different patch sizes and numbers.
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significant reduction in the lower natural frequencies.
However, this effect is not clear for higher natural
frequencies.

3.2. Angle-Ply Plates ([45/− 45]s) with Single and Multiple
Patches. In this part, we investigate the natural frequencies of
angle-ply plates ([45/− 45]s) with single and multiple patches by
using the graphical descriptions. Angle-ply laminates are also
very important in engineering structures since they can sustain
large shear forces. We firstly examine the four-edge clamped

(CCCC) plate with different patch numbers and sizes, as shown
in Figures 4–6. We also present the first nine nondimensional
frequencies for each case, and they are drawn together to make
comparison. From these three figures, it is found that the
natural frequencies are smaller than those of cross-ply cases.-e
main tendency of the nondimensional frequency is that it
decreases with the increase in patch size, except for Ω4 in
Figures 4 and 5 and Ω6 andΩ9 in Figure 6. In general, most of
the frequencies of CASE I are larger than those of CASE II and
CASE III and the relative difference is very significant when the
patch size ac/a equals 0.2 or 0.3. -e modulus and aspect ratio
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Figure 5: Nondimensional frequencies of the angle-ply laminate ([45/− 45]s) with CCCC boundary condition, E1/E2� 20, and a� b� 10 h
and for different patch sizes and numbers.

12 Shock and Vibration



CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω1

2.4

2.5

2.6

(a)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω2

3.66

3.68

3.7

(b)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω3

5

5.1

5.2

(c)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω4

6.4

6.5

6.6

6.7

(d)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω5

7.1

7.2

7.3

(e)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω6

8

8.1

8.2

(f )

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω7

9.5

9.6

9.7

9.8

(g)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω8
9.8

10

(h)

CASE I
CASE II
CASE III

0.1 0.2 0.30
ap/a

Ω9

12.2

12.3

12.4

12.5

(i)

Figure 6: Nondimensional frequencies of the angle-ply laminate ([45/− 45]s) with CCCC boundary condition, E1/E2�10, a� 2b, and
b� 10 h and for different patch sizes and numbers.
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Figure 7: Nondimensional frequencies of the angle-ply laminate ([45/− 45]s) with SSSS boundary condition, E1/E2�10, and a� b� 10 h and
for different patch sizes and numbers.
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Figure 8: Continued.
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Figure 8: Nondimensional frequencies of the angle-ply laminate ([45/-45]s) with SSSS boundary condition, E1/E2� 20, and a� b� 10 h and
for different patch sizes and numbers.
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also have effects on the nondimensional frequencies as dis-
cussed before.

Finally, the results of four-edge simply supported (SSSS)
angle-ply plate with single and multiple patches are also in-
vestigated, and the results are shown in Figures 7–9. For this
example, we observe that CASE I also possesses larger fre-
quencies than CASE II and CASE III. However, for Ω6, the
conclusion is opposite where CASE III possesses largest values,
while CASE I possesses smallest values. -e results show that,
with more patches and larger patch size on the substrate angle-
ply laminate, the natural frequencies decrease as a consequence.
Readers need to be reminded that all conclusions obtained in
this work are based on the patches located at the center or
symmetrically located on the plate. For arbitrarily located
patches, we need to use the present approach for further
investigations.

4. Conclusions

In this paper, we investigated the transverse vibration problem
of composite plates with surface-distributedmultiple composite
patches by means of the Rayleigh–Ritz method and indepen-
dent coordinate systems. Numerical solutions of the non-
dimensionalized natural frequencies of rectangular plates with
various layer stacking sequences, modulus ratios, aspect ratios,
and boundary conditions are calculated and compared with the
existed benchmark solutions and FEM solutions.-e equations
of motion are obtained from Lagrange’s equation in which the
total energies are calculated by the summation of the energies of
substrate plate and the energies of composite patches in this
work. It is necessary to build the connections between different
coordinate systems by applying the displacement-matching
condition.-e benefit of using independent coordinate systems
is that it is more convenient to build the mathematical mod-
eling. -e convergent results are obtained by using only 10
admissible functions in both x and y directions. For the FEM
validation, it often requires to use very fine mesh to obtain
convergent frequency results, while it is still hard to acquire
accurate high frequencies and vibration modes. Computa-
tionally, it is very convenient and efficient to calculate the
natural frequencies of laminated plates withmultiple patches by

using the present method. -e numerical results are well val-
idated and demonstrate the feasibility of using the present
approach to solve the vibration problem of composite plates
with multiple patches.
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Figure 9: Nondimensional frequencies of the angle-ply laminate ([45/− 45]s) with SSSS boundary condition, E1/E2�10, a� 2b, and b� 10 h
and for different patch sizes and numbers.
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J.-D. Mathias, “-ree dimensional stress analysis of a com-
posite patch using stress functions,” International Journal of
Mechanical Sciences, vol. 52, no. 12, pp. 1646–1659, 2010.

[14] W.-C. Wang and C.-H. Chen, “Investigation of vibration
behavior of patched edge-cracked composite plates,” Journal
of Reinforced Plastics and Composites, vol. 21, no. 6,
pp. 533–557, 2002.

[15] I. S. Sadek, J. C. Bruch, J. M. Sloss, and S. Adali, “Feedback
control of vibrating plates using piezoelectric patch sensors
and actuators,” Composite Structures, vol. 62, no. 3-4,
pp. 397–402, 2003.

[16] T. Roy and D. Chakraborty, “Genetic algorithm based optimal
control of smart composite shell structures under mechanical
loading and thermal gradient,” Smart Materials and Struc-
tures, vol. 18, no. 11, p. 115006, 2009.

[17] A. Paknejad, G. Rahimi, A. Farrokhabadi, and M. M. Khatibi,
“Analytical solution of piezoelectric energy harvester patch
for various thin multilayer composite beams,” Composite
Structures, vol. 154, pp. 694–706, 2016.

[18] P. Tan and L. Tong, “Multiple delamination detection of a
composite beam using magnetostrictive patch,” AIAA Jour-
nal, vol. 44, no. 11, pp. 2547–2551, 2006.

[19] B. Huang, H. S. Kim, and G. H. Yoon, “Modeling of a partially
debonded piezoelectric actuator in smart composite lami-
nates,” Smart Materials and Structures, vol. 24, no. 7, Article
ID 075013, 2015.

[20] B. Huang, H. S. Kim, and B. D. Youn, “Active vibration
control of smart composite laminates with partial debonding
of actuator,” International Journal of Precision Engineering
and Manufacturing, vol. 16, no. 4, pp. 831–840, 2015.

[21] B. Huang, H. S. Kim, and G. H. Yoon, “Investigation of
actuator debonding effects on active control in smart com-
posite laminates,” Advances in Mechanical Engineering, vol. 7,
no. 4, Article ID 1687814015578363, 2015.
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