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In this study, H∞ optimization is conducted for a tuned inerter damper (TID) with negative stiffness device (denoted as
TID_NSD) subjected to harmonic support excitation. *e study shows that there are still two nonzero-frequency fixed points
independent of the damping of the TID_NSD; therefore, the optimum tuning frequency and damping ratio for the TID_NSD are,
respectively, derived based on the well-known fixed points theory. By imposing the zero-frequency fixed point having the same
amplitude as the other two nonzero-frequency fixed points, the optimum negative stiffness ratio, which makes the primary system
with a TID_NSD remain stable, is obtained. Moreover, the role of a negative stiffness device of a TID_NSD system in response
control of a single degree-of-freedom (SDOF) structure is evaluated through parametric study. Also, a numerical analysis is
conducted on both a SDOF andmultiple DOFs structure to validate the feasibility of the derived formulas by simulations with real
earthquake records. Numerical results demonstrate that the maximum displacement and the maximum absolute acceleration of
the structure equipped with TID_NSD system are reduced by increasing the absolute value of negative stiffness ratio. *e results
also show that the optimally designed TID_NSD system outperforms the optimally designed TID system in terms of the
displacement and absolute acceleration mitigation control. *e closed-form solutions proposed in this study can be useful for the
optimal design of the structure equipped with TID_NSD.

1. Introduction

*e tuned mass damper (TMD) is a handy passive device
and widely used in the domain of vibration control. And the
fixed points theory was established to derive the optimum
tuning frequency and damping ratio of TMD in terms of H∞
optimization [1]. Recently, the inerter, a new passive me-
chanical element, was proposed by Smith in order to
complete the force-current analogy between mechanical and
electrical elements [2]. As a two-terminal device, inerter has
the property that the resisting force applied at its two ter-
minals is proportional to the relative acceleration between
them. And this constant of proportionality is defined as the
inertance with a unit of a kilogram. Since the initial ap-
plication in Formula One racing car suspension systems [3],
inerters have been successfully applied to other mechanical
systems, such as vehicle suspensions [4–6], motorcycle

steering systems [7], and train suspension [8, 9]. *ere are
various ways of mechanical realization of inerters such as the
rack-and-pinion mechanisms [2], ball-screw mechanisms
[10], electromagnetic devices [11], hydraulic devices [12, 13],
and inerter with a clutch [14]. By using the realizations
above, an elaborately designed inerter can provide higher
mass ratios required by TMD. *erefore, several tuned
inerter-based dampers, namely, viscous mass damper
(VMD) and tuned viscous mass damper (TVMD) [15, 16],
tuned inerter damper (TID) [17], tuned mass-damper-
inerter system (TMDI) [18–20], and multituned mass
damper inerter (MTMDI) [21], have been theoretically in-
vestigated and numerically verified based on the concept of
TMD with mass replaced partly or entirely by inerter.

Moreover, the idea of introducing a negative stiffness
device for vibration control has been investigated and
verified to have a better vibration control performance; see,
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for example, [22–32]. Unlike a conventional positive stiff-
ness element that resists the motion, a negative stiffness
device exerts the force that supports the motion of a
structure [22, 23, 25]. In their study, Wang and Lakes [30]
analyzed several spring systems’ stability with a negative
stiffness device. Zhou et al. [31] proposed and analyzed a
quasi-zero-stiffness (QZS) strut with a negative-stiffness
mechanism.Wang et al. [29] analytically investigated the use
of a negative stiffness device and inerter for enhancing the
performance of dynamic vibration absorber (DVA). *e
detailed results revealed superior performance in reducing
the peak amplitude frequency of the primary system and
broadening the frequency range of vibration suppression. To
control the seismic response of a single-degree-of-freedom
(SDOF) systems, Wang et al. [28] suggested a negative
stiffness amplifying damper (NSAD). It was concluded that
introducing a negative stiffness device to the SDOF system
could substantially decrease both displacement and accel-
eration responses. Using the stability maximization criterion
(SMC) and the fixed-points theory, Zhou et al. [32] de-
rived analytical solutions for the optimal parameters of
DVAs with a negative stiffness device. After conducting
numerical simulations under harmonic excitation, it was
demonstrated that the incorporation of a negative stiffness
device could be beneficial in reducing the maximum vi-
bration amplitude and the stroke length in addition to
increasing the frequency range of vibration suppression.
Another study conducted by Saha and Misra [24] ex-
amined the feasibility of employing the nonconventional
TMD adopting an adaptive negative stiffness device
(ANSD) for seismic control of vulnerable tall buildings.
Shi et al. [26] conducted a comparative study to reveal the
similarity and differences between a negative stiffness
device and an inerter in the vibration control application.
*e related results indicated that both a negative stiffness
device and an inerter could efficiently decrease the H∞
norm. Moreover, it was revealed that the negative stiffness
device could also decrease the H2 norm, whereas the H2
norm could not converge under the effect of inerter. *eir
findings supported the reason why a TID is more com-
monly adopted in vibration control systems.

It can be noted from the above-reported research
works that the use of inerter, negative stiffness device, or
inerter and negative stiffness concurrently could improve
the performance of DVAs. However, to the best of the
authors’ knowledge, the optimal design and performance
benefits of DVAs with a dual combination between inerter
and negative stiffness device have not been widely in-
vestigated. *erefore, this study presents a detailed ana-
lytical and numerical investigation of a TID with a
negative stiffness device (denoted as TID_NSD). First, an
H∞ optimization is conducted to minimize the resonant
vibration amplitude of a SDOF system under harmonic
ground excitation. Based on the well-known fixed points
theory, the closed-form solutions of the optimum pa-
rameters of the TID_NSD are then presented. Moreover,
the effect of a negative stiffness device on the seismic
response control of the TID system is investigated
through a parametric analysis. Also, the effectiveness of

the derived design formulas is validated through nu-
merical simulation with 20 real earthquake records. Fi-
nally, a numerical application is provided in which a
TID_NSD system is installed in a case study building.

2. Mechanical Model and Equations of
Motion of TID_NSD

*e analytical mechanical model of the TID_NSD mounted
on an undamped primary system is shown in Figure 1, where
the primary system is simplified as a lumped mass mP with
stiffness kP. *e TID_NSD is shown as an inerter with
inertance mI, stiffness kTID, damping cTID, and negative
stiffness kN.

A schematic representation for the physical realization of
the TID_NSD is shown in Figure 2, where an inerter and a
negative stiffness device (NSD) are connected in parallel to
form a subsystem, which is then conjoined in series with
another subsystem of a spring element and dashpot element
in parallel. For the construction of the TID_NSD, a ball-
screw inerter [15] and a negative stiffness device [23] are
recommended.

Although the negative stiffness device mainly exhibits
geometrical nonlinearity, the negative stiffness device, if
properly designed, is approximately linear in a given dis-
placement range [31]. *erefore, for convenience of ana-
lytical derivation, the force-displacement relationship of the
negative stiffness device is assumed to be linear in this study,
which was also adopted by some research works on the
negative stiffness device [22, 33]. Let uP represent the dis-
placement of the primary mass relative to the ground and uI
be that of the TID_NSD. *e equation of motion for the
entire system excited by the support acceleration ag can be
expressed as

mP 0

0 mI
􏼢 􏼣 €uP €uI􏼈 􏼉 +

cTID − cTID

− cTID cTID
􏼢 􏼣

_uP

_uI
􏼨 􏼩

+
kP + kTID − kTID

− kTID kTID + kN
􏼢 􏼣

uP

uI

􏼨 􏼩 � −
mP

0
􏼨 􏼩ag.

(1)

Define the following parameter transformation:

ωP �

����
kP

mP

,

􏽳

ωTID �

����
kTID

mI

,

􏽳

λT �
cTID

2mIωTID
,

μ �
mI

mP

,

β �
ωTID

ωP

,

θ �
kN

kTID
.

(2)
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Equation (1) can be rewritten as

1 0

0 μ
􏼢 􏼣 €uP €uI􏼈 􏼉 +

2μβλωp − 2μβλωp

− 2μβλωp 2μβλωp

⎡⎣ ⎤⎦
_uP

_uI

􏼨 􏼩

+
1 + μβ2􏼐 􏼑ω2

p − μβ2ω2
p

− μβ2ω2
p (1 + θ)μβ2ω2

p

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
uP

uI

􏼨 􏼩 � −
1

0
􏼨 􏼩ag,

(3)

where ωP and ωT are the natural frequencies of the primary
mass and the TID_NSD, respectively, and λP and λTare their
associated damping ratios. μ is the ratio of the damper mass
to the primary mass. β denotes the nondimensional tuning
frequency ratio, and θ represents the negative stiffness ratio
of the TID_NSD. When the support excitation is harmonic,
and its acceleration amplitude is fixed and independent of
frequency; that is, ag �Ageiωt; the steady-state response of the
system can be solved from

− ω2
+ 2iμβλωPω + 1 + μβ2􏼐 􏼑ω2

P − 2iμβλωPω − μβ2ω2
P

− 2iμβλωPω − μβ2ω2
P − μω2

+ 2iμβλωPω +(1 + θ)μβ2ω2
P

⎡⎢⎢⎣ ⎤⎥⎥⎦
uP

uI

􏼨 􏼩 � −
1

0
􏼨 􏼩Age

iωt
. (4)

*us, the dynamic amplification factor (DAF), defined as
the ratio of vibration amplitude of the main mass to the
input amplitude, can be solved as

DAF �
ω2
P uP
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Ag
�

������������������������������������������������������������������

(1 + θ)β2 − c
2

􏽨 􏽩
2

+(2λβc)
2

c
4

− 1 + β2 + μβ2 + θβ2􏼐 􏼑c
2

+(1 + θ)β2 + μθβ4􏽨 􏽩
2

+ 2λβc 1 + μθβ2 − (1 + μ)c
2

􏼐 􏼑􏽨 􏽩
2

􏽶
􏽴

, (5)

where c �ω/ωP represents the ratio of the exciting frequency
of ground motion to the primary fundamental frequency.
*e above equation is a function of the parameters μ, β, λ,

and θ. Changing these parameters can affect the value of
DAF. Let Γ denote c2, and the above equation can then be
rewritten as

mI

mp

mIu1 u2

FF

ag

F = mI (ü1 – ü2)

kp

kTID

cTID

up

kN

uI

Ideal inerter

1 2

Figure 1: Analytical mechanical model of TID_NSD under harmonic support excitation with fixed-acceleration amplitude.
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Figure 2: Schematic representation for the physical realization of TID_NSD.
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|DAF|
2

�
(1 + θ)β2 − Γ􏽨 􏽩

2
+(2λβ)

2Γ

Γ2 − 1 + β2 + μβ2 + θβ2􏼐 􏼑Γ +(1 + θ)β2 + μθβ4􏽨 􏽩
2

+ 2λβ 1 + μθβ2 − (1 + μ)Γ􏼐 􏼑􏽨 􏽩
2
Γ

. (6)

Furthermore, in order to sustain the stability of the entire
system due to the introduction of negative stiffness device,
the stability requirement is that the overall static stiffness of
the system should be positive; that is,

k � kP +
kTIDkN

kTID + kN
> 0. (7)

By the use of the notations defined in (2), the afore-
mentioned stability requirement in terms of θ is written as

θAllowable � −
1

1 + μβ2
< θ< 0. (8)

Alternatively, in terms of β, the stability requirement is
also written as

β< βAllowable �

���������

−
1 + θ
μθ

􏼠 􏼡

􏽳

. (9)

3. H‘ Optimization of TID_NSD Based on the
Fixed Points Theory

For a given mass ratio μ, the objective of H∞ optimization of
TID_NSD is to determine three design variables β, λ, and θ
that minimize the H∞ norm (i.e., the maximum of DAF in
Equation (5)), which is mathematically formulated as
follows:

min max
β,λ,θ

DAF(c)􏼠 􏼡. (10)

For given β, λ, and θ, the value of DAF can be calculated
based on equation (5). In Figure 3, the results under μ= 1.0,
β= 1.1, and θ= − 0.2 are shown. At the same time, the results
in several cases of damping ratios are also given in this figure.
It is clearly seen that there exist two common points (i.e., P
and Q) on all the curves, where the values of DAF are not
affected by the damping ratio. *ese points are referred to as
fixed points. *erefore, the optimum parameters of the
TID_NSD could be determined by use of the well-known
fixed points theory [1].

In the proceeding, the fixed points theory will be utilized
to derive the optimum design parameters of the TID_NSD
under study. It can be proved that equation (5) can be re-
written in the form

DAF �

�������

A + Bλ2

C + Dλ2

􏽳

, (11)

where

A � (1 + θ)β2 − c
2

􏽨 􏽩
2
,

B � (2βc)
2
,

C � c
4

− 1 + β2 + μβ2 + θβ2􏼐 􏼑c
2

+ (1 + θ)β2 + μθβ4􏽨 􏽩
2
,

D � 2βc 1 + μθβ2 − (1 + μ)c
2

􏼐 􏼑􏽨 􏽩
2
.

(12)

According to the fixed points theory, the fixed points are
independent of λ. *erefore, at the fixed points P and Q, the
condition A/C � B/D should be satisfied; that is,

(1 + θ)β2 − c
2

c
4

− 1 + β2 + μβ2 + θβ2􏼐 􏼑c
2

+(1 + θ)β2 + μθβ4

� ±
2βc

2βc 1 + μθβ2 − (1 + μ)c
2

􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦.

(13)

*e plus sign in the above equation gives a trivial root
c � 0 (discarded). With the minus sign, the above equation is
reformulated as

(2 + μ)c
4

− (1 + μ)θβ2 + 2(1 + μ)β2 + 2􏽨 􏽩c
2

+ μθ2β2 + 2μθβ2 + 2θ + 2􏼐 􏼑β2 � 0.
(14)

*is is a quadratic equation in c2 and has two positive
roots of c (i.e., cP and cQ), representing the horizontal
coordinates of the fixed point P and Q in Figure 3. *us, the
dimensionless frequency ratios of the fixed points P and Q
can be solved from equation (14) as

c
2
P �

1 + μθβ2 + μβ2 + θβ2 + β2 −

����������������������������������

μ2 + θ2 + 2μ + 2θ + 1􏼐 􏼑β4 − 2(1 + θ)β2 + 1
􏽱

2 + μ
, (15)

c
2
Q �

1 + μθβ2 + μβ2 + θβ2 + β2 +

����������������������������������

μ2 + θ2 + 2μ + 2θ + 1􏼐 􏼑β4 − 2(1 + θ)β2 + 1
􏽱

2 + μ
. (16)
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It is noted that cP and cQ are functions of μ, β, and θ.
*us, combining equation (15) and equation(16) gives

c
2
P + c

2
Q �

2 1 + μθβ2 + μβ2 + θβ2 + β2􏼐 􏼑

2 + μ
. (17)

Moreover, in the case of λ=∞, adjusting the two fixed
points to equal amplitudes gives

DAF cP( 􏼁|λ�∞ � DAF cQ􏼐 􏼑|λ�∞⇒
1

1 + μθβ2 − (1 + μ)c
2
P

� −
1

1 + μθβ2 − (1 + μ)c
2
Q

,

(18)

where the minus sign is added because the horizontal co-
ordinates of the two fixed points, cP and cQ, are on different
sides of the point of infinity. Manipulating equation (18)
yields

c
2
P + c

2
Q �

2μθβ2 + 2
1 + μ

. (19)

From equation (17) and equation (18), the optimum
tuning frequency ratio is obtained as

βopt �

����������
1

(1 + μ)
2

+ θ

􏽳

. (20)

*is is the formula of the optimum tuning frequency
ratio in terms of mass ratio μ and negative stiffness ratio θ.
*e dimensionless frequency ratios of the fixed points P and
Q under this condition are determined by

c
2
P �

1 + μ + θ − (1 + μ)
��������
μ/(2 + μ)

􏽰

(1 + μ)
2

+ θ
, (21)

c
2
Q �

2(1 + μ + θ) − μθ +(1 + μ)
��
2μ

􏽰

2(1 + μ)
2

+(2 − μ)θ
. (22)

Under the condition of the optimum tuning frequency
ratio βopt, substituting equation (21) and equation (22) into
equation (5) yields the vertical coordinates of the fixed
points P and Q.

DAF cP( 􏼁 � DAF cQ􏼐 􏼑 �
(1 + μ)

2
+ θ

(1 + μ)
2

�����
2 + μ
μ

􏽳

. (23)

According to the fixed points theory [1], the DAF at fixed
point P or Q defined by equation (22) could be approxi-
mately taken as the maximumDAF (DAFmax) of the primary
system with TID_NSD. After the optimum tuning frequency
ratio βopt has been deduced, the subsequent step should be to
determine the optimum damping ratio, which makes fixed
points P andQ to be the maximum points on the DAF curve.
*e condition of fixed points P and Q being the maximum
means that the response curve should pass through the two
fixed points with a horizontal tangent; that is,

z

zΓ
|DAF(Γ)|2 � 0. (24)

By clearing the denominator of the right side of equation
(6),

A + Bλ2 � C + Dλ2􏼐 􏼑 · |DAF(Γ)|2. (25)

By differentiating this equation with respect to Γ and
considering the condition z|DAF (Γ) |2/zΓ= 0, the subse-
quent equation is derived as

(zA/zΓ) + λ2 · (zB/zΓ) � (zC/zΓ) + λ2 · (zD/zΓ)􏼐 􏼑 · |DAF(Γ)|2,

(26)

where

(zA/zΓ) � 2Γ − 2(1 + θ)β2,

(zB/zΓ) � 4λ2β2,

(zC/zΓ) � 2 − Γ2 + μβ2 + θβ2 + β2 + 1􏼐 􏼑Γ − 1 + θ + μβ2􏼐 􏼑β2􏽨 􏽩

· (1 + μ + θ)β2 − 2Γ + 1􏽨 􏽩,

(zD/zΓ) � 4λ2β2 1 + μθβ2 + μΓ + Γ􏼐 􏼑
2

+ 8λ2β2Γ

· 1 + μθβ2 + μΓ + Γ􏼐 􏼑(1 + μ),

(27)

Solving equation (26) with respect to λ yields

λ2 �
|DAF(Γ)|2 · (zC/zΓ) − (zA/zΓ)
(zB/zΓ) − |DAF(Γ)|2 · (zD/zΓ)

. (28)

*e optimum damping ratio λP corresponding to the
fixed point P is obtained by substituting equation
(21),equation (22), and equation (23) into equation (27):

λ2P �
[2 + 3μ −

�������
μ(2 + μ)

􏽰
]μ

4[(2 + μ)(1 + μ + θ) + (1 + μ)
�������
μ(2 + μ)

􏽰
]
. (29)

Similarly, the optimum damping ratio λQ corresponding
to the fixed point Q is obtained as
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Figure 3: DAF curves of undamped primary system with μ� 0.1,
β� 1.1, and θ� − 0.2.
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λ2Q �
[2 + 3μ −

�������
μ(2 + μ)

􏽰
]μ

4[(2 + μ)(1 + μ + θ) +(1 + μ)
�������
μ(2 + μ)

􏽰
]
. (30)

According to Brock’s definition of the optimum
damping ratio [34], a simple formula for the optimum
damping ratio for TID_NSD could be obtained as a function
of the mass ratio μ and negative stiffness ratio θ:

λopt �

�������

λ2P + λ2Q
2

􏽳

�
1
2

���������������������������������
μ(3 + 3θ + 3μ + 2μθ)

(2 + μ)θ2 + 2(1 + μ)(2 + μ)θ + 2(1 + μ)
2.

􏽳

(31)

However, there still exists an adjustable parameter in the
mathematical expression for the optimum tuning frequency
ratio and damping ratio, that is, the optimum negative stiffness
ratio. *erefore, the final step is to determine the optimum
negative stiffness ratio. As shown in Figure 3, besides fixed
points P and Q, which are nonzero-frequency points, there is
another intersection point O, which is also independent of
damping of the TID_NSD. Since the fixed point O is zero-
frequency point, substituting c=0 into equation (17), the value
of DAF at the fixed point O is formulated as

DAF cO � 0( 􏼁 �
1 + θ

1 + θ + μθβ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (32)

*us, under the condition of the optimum tuning fre-
quency ratio βopt defined by equation (20), the value of DAF
at the fixed point O is obtained by substituting equation(20)
into equation (32):

DAF cO � 0( 􏼁 �
(1 + μ + θ) (1 + μ)

2
+ θ􏽨 􏽩

θ2 + (1 + μ)(2 + μ)θ + (1 + μ)
2. (33)

It is noted that DAF (cO=0) is a monotonically decreasing
function with a negative stiffness ratio θ if the stability re-
quirement is satisfied. Moreover, based on equation (23),
DAFmax is a monotonically increasing function with negative
stiffness ratio θ. *us, in order to find the optimum negative
stiffness ratio of TID_NSD for undamped systems, a suitable
choice of negative stiffness ratio θ could be determined,
whereby all fixed points P, Q, and O are adjusted to equal
heights. Imposing equal DAFs on all three fixed points gives

(1 + μ + θ) (1 + μ)
2

+ θ􏽨 􏽩

θ2 + (1 + μ)(2 + μ)θ + (1 + μ)
2 �

(1 + μ)
2

+ θ
(1 + μ)

2

�����
2 + μ
μ

􏽳

.

(34)

Solving equation (23), five possible roots for the negative
stiffness ratio can be obtained as follows:

θ1 � − (1 + μ)
2
,

θ2 � − (1 + μ) + (1 + μ)

��������

μ/(2 + μ)

􏽱

,

θ3 � − (1 + μ) − (1 + μ)

��������

μ/(2 + μ)

􏽱

,

θ4 � − (1 + μ)
2

+ (1 + μ)

�������

μ(2 + μ)

􏽱

,

θ5 � − (1 + μ)
2

− (1 + μ)

�������

μ(2 + μ)

􏽱

.

(35)

Among the five negative stiffness ratios, only negative
stiffness ratio θ4 could meet the stability requirement.
*erefore, the negative stiffness ratio θ4 should be consid-
ered as the optimum negative stiffness ratio of the
TID_NSD, namely,

θopt � θ4 � − (1 + μ)
2

+(1 + μ)

�������

μ(2 + μ)

􏽱

. (36)

4. Parametric Analysis and
Performance Evaluation

In this part, a parametric analysis on the seismic response of
the TID_NSD system is conducted. *e effect of a negative
stiffness ratio and inertance ratio on the control perfor-
mance is analyzed in detail.

By setting θ= 0 in (20) and (31), it is observed that the
optimum tuning frequency ratio βopt and the optimum
damping ratio λopt of the TID system derived by Den Hartog
[1] and Shen et al. in Case 1 [35] can be retrieved as follows:

βopt(θ � 0) �
1

(1 + μ)
, (37)

λopt(θ � 0) �

�������
3μ

8(1 + μ)

􏽳

. (38)

*erefore, based on the above limit case of θ� 0, it could
be easy to compare the TID_NSD system optimization
results in this study against the recent TID system opti-
mization proposed by Shen et al. [35]. Moreover, to assess
the effectiveness of the optimally designed TID_NSD sys-
tem, the time history analysis (THA) is conducted using 20
real earthquake records, previously developed by Somerville
et al. [36]. *e same earthquake records, as detailed in
Table 1, were also used in [35].

*e maximum displacement and the maximum absolute
acceleration, which are the two main response indicators
useful and have practical significance for design engineers,
are selected to analyze the role of a negative stiffness device
in vibration control performance. For this purpose, the
results of time history analyses using the real earthquakes
records presented in Table 1 are averaged to get the mean
values of the maximum displacement and the maximum
absolute acceleration (i.e., ap � €up + ag). *e optimum
tuning frequency ratio βopt, optimum damping ratio λopt,
and optimum negative stiffness ratio θ of the TID_NSD
system are calculated by using the derived formulas defined
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in (20), (31) and, (36), respectively. On the other hand, the
corresponding optimal parameters of the TID system are
calculated by setting θ� 0 in the design formulas derived in
this study (i.e., (20), (31), and (36)). Moreover, the subse-
quent parameters are used in numerical analysis: the natural
period of the primary system, TP (�2π/ωP)� 1.0 s; the
damping ratio of the primary system λP � 5%; and the
inertance ratio μ� 0.1.

As illustrated in Table 2, the effect of the absolute value of
negative stiffness ratio θ in reducing the displacement and the
absolute acceleration of the primary system becomes more
significant with the increase in the inertance ratio μ. For in-
stance, in the case θ� − 0.8, the mean value of the maximum
displacement and the absolute acceleration is significantly
suppressed by 35.52% and 34.81% on average compared with
the case without a negative stiffness device (i.e., θ� 0). Figure 4
displays the acceleration time history of the selected earthquake
ground record LA 16 used to evaluate the seismic response of
TID and TID_NSD in this section.

Moreover, the time histories of the maximum dis-
placement and absolute acceleration of the primary system
are illustrated in Figure 5 when both the TID_NSD and the

TID systems are subjected to a selected earthquake record
(LA16).*e succeeding parameters have been adopted in the
numerical analysis: μ= 0.1, βopt = 1.41, λopt = 0.36, and
θopt = − 0.71 for the TID_NSD system; μ= 0.1, βopt = 0.83, and
λopt = 0.25 for the TID system.

As shown in Figure 5(a), the maximum displacement of
the TID system is 25.50 cm, which is reduced to 18.96 cm in
TID_NSD system, corresponding to a 25.65% reduction
ratio. On the other hand, the maximum absolute accelera-
tion of the primary system (Figure 5(b)) decreases from
10.35m/s2 to 7.80m/s2 when the TID_NSD system is used
(24.64% reduction ratio).

Based on the above analysis results, it is clear that the
performance of the TID_NSD system is considerably
improved by the adoption of the negative stiffness device.

According to the analytical and numerical study con-
ducted by Shen et al. [35], it was revealed that the design of
the TID system using the design formula (39) and (40)
(denoted as Case 2) is more effective for seismic response
mitigation compared not only to the design formulas in (37)
and (38) (denoted as Case 1) but also to those proposed in
the previous study by Hu et al. [37].

Table 1: Los Angeles earthquake records with a probability of exceedance of 10% in 50 years.

Name Record Magnitude Distance (km) Scale factor Duration (s) Pga (m/s2)
LA01 Imperial valley, 1940, el centro 6.9 10 2.01 53.46 4.52
LA02 Imperial valley, 1940, el centro 6.9 10 2.01 53.46 6.63
LA03 Imperial valley, 1979, Array#05 6.5 4.1 1.01 39.38 3.86
LA04 Imperial valley, 1979, Array#05 6.5 4.1 1.01 39.38 4.79
LA05 Imperial valley, 1979, Array#06 6.5 1.2 0.84 39.08 2.96
LA06 Imperial valley, 1979, Array#06 6.5 1.2 0.84 39.08 2.30
LA07 Landers, 1992, barstow 7.3 36 3.2 79.98 4.13
LA08 Landers, 1992, barstow 7.3 36 3.2 79.98 4.17
LA09 Landers, 1992, yermo 7.3 25 2.17 79.98 5.10
LA10 Landers, 1992, yermo 7.3 25 2.17 79.98 3.53
LA11 Loma prieta, 1989, gilroy 7 12 1.79 39.98 6.52
LA12 Loma prieta, 1989, gilroy 7 12 1.79 39.98 9.51
LA13 Northridge, 1994, newhall 6.7 6.7 1.03 59.98 6.65
LA14 Northridge, 1994, newhall 6.7 6.7 1.03 59.98 6.44
LA15 Northridge, 1994, rinaldi RS 6.7 7.5 0.79 14.95 5.23
LA16 Northridge, 1994, rinaldi RS 6.7 7.5 0.79 14.95 5.69
LA17 Northridge, 1994, sylmar 6.7 6.4 0.99 59.98 5.58
LA18 Northridge, 1994, sylmar 6.7 6.4 0.99 59.98 8.01
LA19 North palm springs, 1986 6 6.7 2.97 59.98 9.99
LA20 North palm springs, 1986 6 6.7 2.97 59.98 9.68

Table 2: *e mean of maximum displacement and maximum absolute acceleration of the primary system subjected to the 20 ground
motions.

Damping system λopt βopt θ uP (cm) aP (m/s2)

TID 0.25 0.83 0 15.12 6.09
0.21 1.00 − 0.2 14.41 5.79

TID_NSD
0.24 1.11 − 0.4 13.53 5.40
0.29 1.28 − 0.6 12.18 4.86
0.52 1.56 − 0.8 9.75 3.97
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βopt �

������
1

(1 + μ)

􏽳

(39)

λopt �

�������
3μ

4(2 + μ)

􏽳

(40)

*erefore, it is reasonable to compare the TID_NSD
system results in this study and those of the TID system
designed by using formulas of Case 2 in [35]. Also, it is worth
presenting the results of the TID_NSD system for the limit
case of θ� 0 to retrieve the results of the TID system cor-
responding to Case 1.

*e effect of the inertance ratio on the seismic response
of the TID_NSD and TID systems is depicted in Figure 6. As
shown in Figures 6(a) and 6(b), the mean value of the
maximum displacement and absolute acceleration of both

systems degrade with the increasing inertance ratio, indi-
cating performance improvement. However, it is observed
that the smaller the inertance ratio, the better the perfor-
mance of the TID_NSD system. It should be noted that the
improvement of the performance of the TID system with the
increase in inertance ratio has been as well confirmed in the
previous study by Shen et al. [35].

To further verify the vibration control effect of the
TID_NSD and TID systems under optimal parameters,
dynamic THA is conducted using a real earthquake
signal corresponding to the LA16 earthquake record.
*ree inertance ratios, namely, μ� 0.45, 1.0, and 2.5, are
employed to investigate the vibration control effect. As
presented in Table 3, it is observed that setting the value
of θ� 0 in the design formulas of the TID_NSD system
yield approximately the same results as those of the TID
system designed using the formulas in Case 1. Moreover,
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it is demonstrated that the response of the primary
system for both systems decreases with increasing
inertance. When a small inertance ratio is considered
(i.e., μ� 0.45), the TID_NSD system outperforms the TID
system in terms of both the displacement and the ab-
solute acceleration control for both cases (i.e., Case 1 and
Case 2), suggesting the same conclusion obtained in
Figure 6. On the contrary, when a large inertance ratio is
considered (i.e., μ> 1.00), the results indicate that the
TID system provides better performance than the
TID_NSD system.

From the numerical analysis presented in this section, it
can be concluded that the negative stiffness device plays a
vital role in response control of the TID_NSD system. It is
also demonstrated that the proposed optimal design for-
mulas of the proposed system are effective for seismic re-
sponse mitigation.

5. Installation of the TID_NSD System in a Case
Study Building

In this section, a numerical application is given to confirm
the effectiveness of the proposed analytical design formulas
of the TID-NSD system when dealing with the design
problem of the multistory building. As shown in Figure 7, a
TID_NSD system is installed at the bottom story of a case
study building. *e building’s frame shown in Figure 7
represents the short direction plan of the Kajima Shi-
zuoka steel structure in Japan [38]. *e same building was
also employed to study the TID system in [35].

*e story heights, lumped story masses, and the lateral
stiffnesses for the short side direction of the building are
displayed in Table 4. *e damping coefficients of the super-
structure are determined by assuming Rayleigh damping such
that the first two damping ratios are equal to 2%. By using the

Table 3: Maximum displacement response and absolute acceleration of the primary system under earthquake record LA16.

Damping system Design method Μ λopt βopt θopt uP (cm) aP (m/s2)

TID Shen et al. (Case 1)

0.45

0.34 0.69 — 20.02 8.54
Shen et al. (Case 2) 0.37 0.83 — 18.68 7.66

TID_NSD *is study 0.34 0.69 — 19.98 8.52
*is study 0.51 0.81 -0.58 16.01 7.00

TID Shen et al.(Case 1)

1.00

0.43 0.50 — 16.41 7.56
Shen et al.(Case 2) 0.5 0.71 — 13.61 6.14

TID_NSD *is study 0.43 0.50 — 16.39 7.56
*is study 0.58 0.54 -0.54 13.78 6.59

TID Shen et al. (Case 1)

2.5

0.52 0.29 — 13.05 6.86
Shen et al. (Case 2) 0.65 0.54 — 7.83 5.25

TID_NSD *is study 0.52 0.29 — 13.01 6.85
*is study 0.65 0.29 -0.51 11.38 6.31
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Figure 6: Effect of inertance ratio μ on the response of the TID_NSD system under 20 earthquake records. (a) Mean displacement. (b)Mean
absolute acceleration.
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classical modal analysis, the five natural periods of the building
in the short side direction are calculated as [0.992, 0.354, 0.223,
0.173, and 0.148]. Besides, the firstmode shape is determined as
[− 0.0082,− 0.0183,− 0.0283,− 0.0368,− 0.0421].

*e optimal design formulas derived previously for the
SDOF structure can be appropriate for the MDOF structure
shown in Figure 7, provided that the MDOF structure is
simplified to an equivalent SDOF system characterized by
the equivalent mass (me) and the equivalent stiffness (ke).
*e equivalent mass (me) and the equivalent stiffness (ke)
can be calculated by using modal transformation given the
condition that the period and damping ratio of the MDOF
structure are, respectively, equal to the equivalent period and
equivalent damping ratio of the SDOF structure. Further-
more, in line with other research works relevant to the
design of the TID systems (see, e.g., literature [17]), the
equivalent mass and the equivalent stiffness (ke) are de-
termined, while targeting the first mode of vibration.

In this numerical application, an inertance ratio μ is
given as 0.2, while the equivalent mass is calculated as
912.8×103 yielding an inertance mI �me ×

μ� 182.56×103 kg. Consequently, the optimal design pa-
rameters of the TID_NSD system are determined as
kTID � 9.203×103 kN/m2, CTID � 1.099×103, kNs/m,
θ� − 0.644, and kN � − 5.927×103 kN/m2. For the practical
implementation of the TID_NSD system, practical accept-
able inerter’s size, negative stiffness device’s size, and
damping values should be within a reasonable limit. Taking
an inerter with a ball-screw mechanism as an example, the
inertance mI can be achieved by

mI �
2π
P

􏼒 􏼓
2
J, (41)

in which P is the pitch of the inerter assembly, and J rep-
resents the flywheel’s moment of inertia. For instance, if the

ag
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m5

k5, c5

k4, c4

k3, c3

k2, c2

k1, c1

m2

m1

kTID

cTID

kN

mI

Figure 7: Mechanical model of the 5-storey frame building with TID_NSD system installed at the ground floor.

Table 4: Structural parameters of the case study building.

Story
Height (m) Mass (103 kg) Damping (103 kN·s/m) Story stiffness (103 kN/m)

i hi mi ci ki
5th floor 5 3.6 266.1 c5 84
4th floor 4 3.6 204.8 c4 89
3rd floor 3 3.6 207.0 c3 99
2nd floor 2 3.6 209.2 c2 113
1st floor 1 4.2 215.2 c1 147
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value of the pitch is fixed, to achieve the amount of inertance
mI � 182.56×103 kg in this application, the moment of in-
ertia J of the flywheel can be determined from (41). By using
the calculated value of the moment of inertia J, the physical
dimensions of the flywheel can be computed, with which the
physical ball-screw inerter type can be designed and realized.
*is method has been used for realizing and applying the
TVMD to a 14-storey structure in Sendai, Japan [39]. It is
worth noting that an inerter can be designed to produce an
inertance thousands of times higher than its physical mass
[15]. It can be pointed out that the numerical values obtained
in this application are within acceptable technological ca-
pabilities and therefore render the implementation of the
TID_NSD system feasible.

*e seismic responses of the 5-storey building with the
TID-NSD system and TID system are calculated by linear
THA using the earthquake ground motions previously
employed (i.e., LA01-LA20). *e results of these 20 ground
motions are then averaged to get the mean maximum ab-
solute displacements and mean maximum absolute accel-
erations. For comparison, the same structure shown in
Figure 7 without a negative stiffness device (i.e., TID system)
is employed. For the considered earthquake motions, the
findings show that the average maximum absolute dis-
placement at the roof level is reduced from 0.7967m of the
TID system to 0.4202m of the TID_NSD system, corre-
sponding to roughly 38.30% decrease. Regarding the ac-
celeration performance, the results indicate that the absolute
acceleration at the roof is decreased from 26.36m/s2 to
16.45m/s2 (37.60% reduction) in a TID_NSD system.

Moreover, Figure 8 depicts the results of THA for the selected
earthquake motion (i.e., LA04) to illustrate the peak interstorey
drifts and the variation of the absolute floor accelerations across
the building height. It can be observed that the TID_NSD system
achieves an excellent level of response control compared to the
TID system. In particular, the interstorey drifts and the floor
accelerations are significantly reduced. Figure 8 depicts the results

of THA for the selected earthquakemotion (i.e., LA04) to illustrate
the peak interstorey drifts and the variation of the absolute floor
accelerations across the building height. It can be observed that the
TID_NSD system achieves an excellent level of response control
compared to the TID system. In particular, the interstorey drifts
and the floor accelerations are significantly reduced.

*e THA results in this section suggest that the derived
design formulas in this study are effective for seismic re-
sponse control of a practical MDOF structure subjected to
real earthquake records.

6. Conclusions

*e TID_NSD is presented in this study and investigated in
detail. *e optimum parameters of the TID_NSD are an-
alytically derived in terms of H∞ norm when the primary
undamped system is subjected to harmonic support exci-
tation. *e investigation shows that there are three fixed
points (two nonzero-frequency fixed points plus one zero-
frequency fixed point), all independent of the damping of
TID_NSD in the DAF curve of the primary system. In terms
of the two nonzero-frequency fixed points, the optimum
tuning frequency βopt and optimum damping ratio λopt for
the TID_NSD are obtained based on the fixed points theory.
Based on the definition of H∞ optimization, by imposing the
zero-frequency fixed point having the same height as the two
nonzero-frequency fixed points, the optimum negative
stiffness ratio θopt, which make the whole system with the
TID_NSD remain stable at the same time, is obtained.

Moreover, a parametric study has been carried out to
examine the role of a negative stiffness device on the control
performance of the TID_NSD system. It has been indicated
that the proposed optimal design formulas of the TID_NSD
are effective for seismic response mitigation of both SDOF
structure and MDOF structure. At the same time, numerical
results demonstrate that the TID_NSD outperforms the TID
in terms of displacement and absolute acceleration control.
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Figure 8: Maximum absolute interstorey drifts and absolute accelerations of the case study building subjected to LA04 earthquake record.
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*is study contributes to the analytical optimal design
formulas of the structure equipped with TID_NSD and gives
insight into the beneficial features of the TID_NSD in terms
of the vibration mitigation performance.
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