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Milling stability not only reduces the surface quality of the workpiece but also seriously restricts the high-speed development of
CNCmachine tools. ,e electric spindle rotor system with the active magnetic bearing has a strong gyro coupling effect, and with
the increasing rotor speed, it will become a major unfavorable factor for the stability of the system during high-speed milling. ,e
strong gyro coupling effect makes the stability region narrow at the time of high-speed milling. So, a modal decoupling control
method that can reduce the effects of the gyro effect on the magnetic levitation milling system under high-speed milling is
proposed. ,e effects of the gyro coupling of the magnetic bearing rotor on the milling stability region before and after the
decoupling control are studied, which show that the modal decoupling control technology can reduce the effects of the gyro effect
on the magnetic levitation milling system.

1. Introduction

,e high-speed milling is the only way to improve milling
efficiency, and the magnetic suspension support technology
is one of the world’s recognized high technology and, of
course, the first choice for high-speed milling machines. ,e
high-speed magnetic suspension electric spindle rotor sys-
tem has a strong gyro coupling effect at high speed, which
will greatly affect the stability of the high-speed machining
system and then affect the efficiency of milling processing
and product quality. When the electric spindle rotor system
is treated as the rigid rotor system, the modes of rotation and
translation motion will occur. When the rotor of the electric
spindle rotates at high speed, the rotational mode can be
divided into positive precession mode and opposite pre-
cession mode under the action of the strong gyro coupling
effect of the rotor. In the actual magnetic suspension electric
spindle rotor system, the bandwidth of the power amplifier
and the sensor is limited, which will lead to a time delay of
the electromagnetic force, and the force produced by the
magnetic bearing will put energy into the electric spindle
rotor; the energy of the opposite precession mode will be put

into the positive feedback and be accumulated, which will
lead to a unstable milling system. In addition, the damping
effect of the control force will also decrease as the precession
modal frequency decreases; especially, when the controller
includes the integral part, the phase advance of the low
frequency band is difficult to guarantee. When the preces-
sion mode frequency finally enters the range in which the
integral parameter acts, the precession mode will also cause
the milling system to be unstable [1].

In order to reduce the gyro coupling effect of the high-
speed magnetic suspension electric spindle rotor system on
milling stability, it is necessary to suppress the positive
precession mode and the opposite precession mode gen-
erated by the gyro coupling effect. In this regard, various
solutions have been proposed, mainly including control
methods based on modern control theory, such as sliding
mode control [2], μ synthesis [3], gain-scheduled H∞
control [4], Cholesky decomposition reduction [5], and LQR
control [6]. Although these control methods had played a
role in suppressing the gyro effect, these algorithms are
complex and computationally intensive and are difficult to
implement in engineering due to hardware conditions.
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,ere is also a cross-feedback control method based on the
traditional PD controller, in which the cross-feedback can be
divided into displacement crossover [7], velocity crossover,
velocity and displacement crossover [8], and displacement
crossover combined with electromagnetic force [9]. ,e ad-
vantage of cross-feedback, especially the speed cross-feedback
method, is that the structure is simple and is easy to be
implemented. ,e disadvantage is that there is still no effective
cross-feedback parameter designmethod. In addition, when the
traditional PD control is used, the characteristics of each mode
are difficult to be independently adjusted because there is the
strong coupling between the rotational mode and the trans-
lational mode of the magnetic electric spindle rotor. ,erefore,
the control methods based on this have certain limitations.

In view of this, based on the mathematical model of the
active magnetic bearing electric spindle rotor system, a modal
decoupling control method is proposed, which can decouple
the rotating mode and the translational mode of the active
magnetic bearing electric spindle rotor system, in order to
control the stiffness and damping of the translationalmode and
the rotation mode independently, which can reduce effectively
the influence of the gyro effect on the high-speed milling
stability area and then improve the stability area of the high-
speed magnetic suspension electric spindle milling system.

2. Mathematical Model of Four-Degree-of-
Freedom Magnetic Suspension Electric
Spindle Rotor System

,e structure of the magnetic bearing rigid electric spindle
rotor system is shown in Figure 1. Ideally, the axis of the
rotor coincides with the center of the two radial bearings. In
order to describe the mutual position between the rotor, the
sensor, and the electromagnetic bearing, the main coordi-
nate system oxyz is set up, in which the coordinate origin is
at the centroid point c of the rotor, and ,e z-axis coincides
with the center line of the two radial bearings. ,e distance
from the center of the left and right radial electromagnetic
bearings A and B to point c is, respectively, lmA and lmB, and
lmA is a negative number, while lmB is a positive number.,e
distances of the left and right sensors A and B to c are,
respectively, lsA and lsB; lsA is negative, and lsB is positive. In
order to make the analysis easy, three coordinate systems of
radial planes are established, which are the sensor coordinate
system, the active magnetic bearing coordinate system, and
the centroid coordinate system; the coordinate origin is set
on the center line of the two radial bearings. When the rotor
rotates, the coordinates at the center of mass of the rotor are
x, y, θx, and θy.,e coordinates at the left and right sensors
are xsA, xsB, ysA, and ysB, and the coordinates of the left and
right active magnetic bearings are xmA, xmB, ymA, and ymB,
respectively. ,e ignorance of the sensor and magnetic
bearing installation position error canmake xsA � xmA � xa,
xsB � xmB � xb, ysA � ymA � ya, ysB � ymB � yb,
lsA � lmA � la, lsB � lmB � lb, and l � lsA − lsB. When the
displacement of the rotor is xa, ya, xb, and yb in the xa, ya,
and yb in the y, α, β, and directions, the displacement of the
rotor geometric center O is

x �
lb

L
xa −

la

L
xb,

y �
lb

L
ya −

la

L
yb.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

,e angle at which the rotor rotates counterclockwise
about the x-axis is

θx �
yb − ya

L
. (2)

,e angle at which the rotor rotates counterclockwise
around the y-axis is

θy �
xa − xb

L
. (3)

When themotion equation of the four-degree-of-freedom
electric spindle rotor system with active electromagnetic
bearing is established, since the bearing air gap is small, it can
be assumed that (1) the rotor is an axisymmetric rigid rotor;
that is, the moments of inertia around the x and y axes are
equal. (2) ,e structure and parameters of the radial four-
degree-of-freedom are exactly the same; (3) the magnetic field
in the electromagnet is evenly distributed, the magnetic flux
leakage is ignored, and the magnetic material does not exhibit
saturation characteristics; (4) the influence of the magnetic
resistance and loss of the core material are ignored. Without
considering the influence of external damping factors, it is
easy to establish the motion equation of the axially symmetric
active magnetic bearing electric spindle rotor system
according to the rotor dynamics theory [10]:

m €x � FmxA + FmxB,

m €y � FmyA + FmyB,

J€θy − Jzω _θx � FmxAla − FmxBlb,

J€θx − Jzω _θy � − FmyAla + FmyBlb,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)
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Figure 1: Active magnetic bearing-supported motorized spindle
milling system.

2 Shock and Vibration



where m is the electric spindle rotor quality， Jx � Jy � J is
the rotor moment inertia around x and y axis， and yz is the
rotor moment inertia around z axis.
FmxA, FmxB, FmyA, andFmyB are, respectively, the electro-
magnetic force of the end A and end B in the direction of x

and y of the active electromagnetic bearings.
Equation (4) is transformed into a matrix:

M€q + G _q � LfF. (5)

Here，M �

J 0 0 0
0 m 0 0
0 0 J 0
0 0 0 m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the mass matrix of the rotor

system, G �

0 0 JzΩ 0
0 0 0 0

− JzΩ 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the gyro effect matrix of

the rotor system, Lf �

la − lb 0 0
1 1 0 0
0 0 − la lb
0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is force arm coef-

ficient matrix, F � (FmxA, FmxB, FmyA, FmyB)T is the elec-
tromagnetic force vector of the active magnetic bearing, and
q � (θy, x, θx, y)T is the coordinate of the centroid of the
rigid electric spindle.

,e electromagnetic force generated by the active
magnetic bearing is a quadratic function of the coil current
and the air gap between the stator and rotor [10], as follows:

Fm �
μ0AaN2

4
i2

δ2
, (6)

where μ0 is air permeability, Aa is the cross-sectional area of
the iron core and air gap, N is the number of turns, i is the
coil current, and δ is the length of the air gap.

When the structure parameter is constant and the rotor
moves in a small range near its static equilibrium position,
equation (6) can be expanded as Taylor at the static equi-
librium point, and the high-order small amount is omitted.
,e electromagnetic force can be expressed as a linear
function of the current stiffness coefficient and the dis-
placement stiffness coefficient [12]. Since the rotor is placed
vertically, the bias currents on all the poles can be the same.
,e electromagnetic force can be expressed as

F �

FmxA

fmxB

fmyA

fmyB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

ks 0 0 0

0 ks 0 0

0 0 ks 0

0 0 0 ks

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xa

xb

ya

yb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

ki 0 0 0

0 ki 0 0

0 0 ki 0

0 0 0 ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

imxa

imxb

imya

imyb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Ksqs + Kii.

(7)

Here, qs � (xa,xb,ya,yb)T is the displacement of the
active magnetic bearing relative to the equilibrium point, i �

(imxa,imxb,imya,imyb)T is control current, Ks � diag(ks,

ks, ks, ks) is the matrix of electromagnetic bearing dis-
placement stiffness coefficient， and Ki � diag(ki, ki, ki, ki) is
the matrix of the current stiffness coefficient of the elec-
tromagnetic bearing.

After the structural parameters of the electromagnetic
bearing, the current and the gap at the operating point are
determined; the current stiffness coefficient and the dis-
placement stiffness coefficient of the electromagnetic bearing
are both constant.

Putting equation (7) into equation (5), the following
equation is obtained:

M€q + G _q � Lf Ksqs + Kii( 􏼁. (8)

In order to unify the coordinate system, the sensor
coordinate system qs on the right side of equation (8) is
converted into a centroid coordinate system q. ,e coor-
dinate conversion relationship can be obtained as follows:

xa

xb

ya

yb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

la 1 0 0

− lb 1 0 0

0 0 − la 1

0 0 lb 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θy

x

θx

y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

,at is,
qs � Tbq. (10)

Here, Tb �

la 1 0 0
− lb 1 0 0
0 0 − la 1
0 0 lb 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the transformation matrix

of the electromagnetic bearing B coordinate to the centroid
coordinate.

,e matrix Tb is the transpose of the matrix Lf:

Tb � L
T
f. (11)

Putting equations (9) and (11) into equation (8), the
following equation is obtained:

M€q + G _q � LfKsL
T
fq + LfKii. (12)

,en, Kss � LfKsL
T
f, and the following equation can be

obtained:

M€q + G _q − Kssq � LfKii. (13)

Here,

Kss �

ks l2a + l2b( 􏼁 ks la − lb( 􏼁 0 0

ks la − lb( 􏼁 2ks 0 0

0 0 ks l2a + l2b( 􏼁 ks − la + lb( 􏼁

0 0 ks − la + lb( 􏼁 2ks

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

,en, KT
ss � (LfKsL

T
f)T � LfKsL

T
f � Kss.

3. Modal Decoupling Principles

,e purpose of the modal decoupling controller is to achieve
the independent control between the rotational mode and
the translational modal of the electromagnetic suspension
spindle system. Firstly, the displacement signal at the four
sensors of the input modal decoupling controller is con-
verted into the translational displacement signal and the
rotational angle signal at the center of mass of the rotor.,at
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is, the coordinates of the sensor coordinate system xa, xb, ya,
and yb are converted into the coordinates of the centroid
coordinate system x, y, θx, and θy, In this way, the rotor
modes can be controlled independently. ,e PD control
algorithm is still used in the modal decoupling controller to
produce control signal.

Since the action point of control signal is at the mass
center of the rotor, the actual electromagnetic bearing is
located at both ends of the rotor; it is also necessary to
convert the control signal at the center of mass of the
rotor into a control signal of the electromagnetic force at
the left and right electromagnetic bearings. ,at is, the
coordinates of the centroid coordinate system are con-
verted into the coordinates of the bearing coordinate
system. Finally, the obtained electromagnetic force
control signal together with the negative stiffness com-
pensation signal is added to the power amplifier, which
will generate the control current to control the stability
of the milling process [13].

,e control flow is shown in Figure 2.
,e specific process of the modal decoupling controlled

and its mathematical expression is designed. As shown in
Figure 1, if lmA ≠ − lmB, the distance between the A and B
electromagnetic bearings to the origin of the coordinates is
different, and the negative stiffness matrix Kss is not a di-
agonal matrix, which will weaken the effect of modal
decoupling. After the translation of the centroid of the rotor,
an electromagnetic force of the same magnitude is generated
at the bearing positions. If it is an asymmetrical bearing, a
nonzero torque is generated with respect to the centroid c,
which will cause the rotor to rotate. In order to make the
proportional and differential parameters of the PD con-
troller act more directly on the modal stiffness, the negative
stiffness Kss must be compensated.

If the current signal input to the power amplifier is
divided into a current ic of the modal decoupling controller
and a negative stiffness compensation current ik, the current
signal i which will be input to the power amplifier by the
controller is

i � ic + ik. (15)

Putting equation (15) into equation (13), the following
equation can be obtained:

M€q + G _q + Kssq � LfKiic + LfKiik. (16)

As shown in equation (16), in order to make equation
Kssq � LfKiik established, it is necessary to compensate the
negative stiffness. Putting equation (10) into Kssq � LfKiik,
ik can be expressed as

ik � K
− 1
i B

− 1
KssL

− 1
s qs. (17)

What will be discussed is the expression of the current
signal ic of the modal decoupling controller. For the input of
the controller, the output current signal by the conventional
distributed PD controller is

ic � − Pqs − D _qs. (18)

Here，P � diag(pxA, pxB, pyA, pyB) is the proportional
coefficient matrix and D � diag(dxA, dxB, dyA, dyB) is a
differential coefficient matrix.

It can be known from equation (15) that the input change
of any one control channels of the controller will cause the
change in the rotation angle and the displacement of the
center of mass of the rotor, which makes the rotational mode
and the displacement mode coupled to each other at the
input end. ,erefore, the coordinates, xsA, xsB, ysA, and ysB

of the sensor coordinate system, should be converted into
the coordinates of the centroid coordinate system, x, y, θx,
and θy; that is, the matrix qs should be converted into a
matrix q. ,e previous deduction leads to q � (LT

f)− 1qs,
which means a coordinate transformation link with a re-
lation matrix (LT

f)− 1 is added before the sensor and the PD
controller. In the physical sense, the direct adjustment of the
modal offset signals by the PD control algorithm is
accomplished.

For the output, the expression LfKi is.

LfKi �

KilbA KilbB 0 0

Ki Ki 0 0

0 0 KilbA KilbB

0 0 Ki Ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

It can be seen that since LfKi is not a diagonal matrix,
there is a coupling between the rotational mode and the
translational mode. In order to decouple the rotational mode
and the translational mode at the output, it is also necessary
to set a transformation matrix T to make LfKiT converted
into a diagonal matrix. ,ere are many different expressions
for this kind of diagonal matrix. If LfKiT � I, the matrix T is
obtained:

T � K
− 1
i L

− 1
f �

1
ki lbA − lbB( 􏼁

− 1 lmB 0 0

1 − lmA 0 0

0 0 − 1 lmA

0 0 1 − lmA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

From the physical point of view, modal decoupling
control algorithm can directly adjust the modal of the rotor
after the decoupling of the input end, but the output control
signal, at this time for on the center of mass of the rotor, is
the signal required for the stability of the rotor, not the
electromagnetic force signal required for the two radial
bearings. ,erefore, a conversion link must be provided to
convert the torque signal into the electromagnetic force
signal of the electromagnetic bearing, in which way the
decoupling between the input and output of the controller is
realized, and finally, the current command signal of the PD
controller is obtained as follows:

ic � − K
− 1
i L

− 1
f (P + D) L

T
f􏼐 􏼑

− 1
qs. (21)

Combining equations (15), (18), and (21), the following
equation is obtained:

4 Shock and Vibration



i � ic + ik � − K
− 1
i L

− 1
f P + D − kss( 􏼁 L

T
f􏼐 􏼑

− 1
qs. (22)

Putting equations (19) and (22) into equation (8), then

M€q + G _q + Pq + D _q � 0, (23)

P � diag pr, pp, pr, pp􏼐 􏼑, (24)

D � diag dr, dp, dr, dp􏼐 􏼑, (25)

where pr and dr are, respectively, the proportional and
differential coefficients in the rotational mode control
channel, while pp and dp are, respectively, the proportional
and differential coefficients in the translational mode control
channel.

It can be seen from equations (24) and (25) that the
translational mode and the rotational mode control channel
are independent of each other so that the stiffness and
damping of each mode can be adjusted by changing pr, pp,
dr, and dp. In addition, the gyro matrix G only has a
coupling effect on the rotatingmodal control channel and no
influence on the translational modal control channel, and
the gyro coupling effect is significantly reduced.

4. Influence of Cross-Coupling Effect of Active
Magnetic Bearing Gyro on Grinding Stability

4.1. Dynamic Milling Force Model. ,e dynamic milling
process with four cutter cylindrical end mills is shown in
Figure 3 [11].

,e feed direction of the tool is defined as the x direction,
and the coordinate direction is shown in Figure 4. ,e ϕj

shows the angular position of the tooth. ,e tangential and
radial cutting forces of the tooth j are expressed as Ft,j and
Fn,j; the angle between the radial cutting force and the vector
cutting force is expressed as β. ,e transient cutting force of
the jth tooth of the end mill can be expressed as follows [11]:

Fx,j � − Ktbg ϕj􏼐 􏼑
Δx sin ϕj􏼐 􏼑cos ϕj􏼐 􏼑 + Knsin2 ϕj􏼐 􏼑􏼐 􏼑

+Δy Kn sin ϕj􏼐 􏼑cos ϕj􏼐 􏼑 + cos2 ϕj􏼐 􏼑􏼐 􏼑

⎛⎝ ⎞⎠,

(26)

Fx,j � Ktbg ϕj􏼐 􏼑
Δx − Kncos ϕj􏼐 􏼑sin ϕj􏼐 􏼑 + sin2 ϕj􏼐 􏼑􏼐 􏼑

+Δy sin ϕj􏼐 􏼑cos ϕj􏼐 􏼑 − Kncos2 ϕj􏼐 􏼑􏼐 􏼑

⎛⎝ ⎞⎠.

(27)

,e cutting force vector FA,x and FA,y of each of the
cutter end mills with Nt teeth in the x and y directions is

Negative stiffness compensation

Centroid 
coordinates
converted to

magnetic 
bearing 

coordinates Po
w

er
 am

pl
ifi

er Magnetic 
bearing 

coordinates
converted to

centroid
coordinates

El
ec

tr
ic

 sp
in

dl
e r

ot
or

 sy
ste

mx

y

θx

θy

PD

PD

PD

PD

xa

xb

ya

yb

x∗

y∗

θ∗

x

θ∗

y

ix
ixa 

iya 

iyb

ixbiy

iθx

iθy

Figure 2: Modal decoupling control system.

β

Fn,j

Fj

Ft,j

Fj
x

y

j – 1

j

n

ϕj

Figure 3: Dynamic milling process.

Shock and Vibration 5



FA,x � 􏽘

Nt

j�1
Fx,j,

FA,y � 􏽘

Nt

j�1
Fy,j.

(28)

By putting equations (26) and (27) into equation (28),
the cutting force expression shown in the following equation
can be obtained:

FA,x �
1
2

bKt cxxΔxi + cxyΔyi􏼐 􏼑,

FA,x �
1
2

bKt cyxΔxi + cyyΔyi􏼐 􏼑,

(29)

where

cxx �
1
2
cos(2φ) − 2Knφ + KnS􏼂 􏼃

􏼌􏼌􏼌􏼌
φe

φs
,

cxy � −
1
2
sin(2φ) + 2φ − Kn cos(2φ)􏼂 􏼃

􏼌􏼌􏼌􏼌
φe

φs
,

cyx � −
1
2
sin(2φ) − 2φ − Kn cos(2φ)􏼂 􏼃

􏼌􏼌􏼌􏼌
φe

φs
,

cyy �
1
2
cos(2φ) + 2Knφ + Kn sin(2φ)􏼂 􏼃

􏼌􏼌􏼌􏼌
φe

φs
,

(30)

where Kt is the tangential milling stiffness, Kn is the radial
milling stiffness, b is the milling width, and Δxi,Δyi is the
dynamic depth of cut in the x and y directions, and the start
and end angles of the tooth action are expressed as ϕs and ϕe,
respectively.

4.2. Stability Analysis. When the stability of the active
magnetic bearing cutting system is analyzed, it is mainly

about the dynamic displacement change of the workpiece
end; however, there is the gap between the workpiece
mounting position and the position of the electromagnetic
bearing B, and the control force of the electromagnetic
bearing is acted on the position of the electromagnetic
bearing. In order to reduce stability analysis error, the
displacement at the workpiece is corrected by the correction
factor kw, that is, xcw � kwxmB. ,erefore, the first step is to
use the displacement of the electromagnetic bearing to in-
dicate the following:

q �

θy

x

θx

y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1
L

−
1
L

0 0

lb

L

la

L
0 0

0 0 −
1
L

1
L

0 0
lb

L

la

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

xbA

xbB

ybA

ybB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Tsqs. (31)

Putting equation (31) into equation (23), the motion
equation of the magnetic suspension rigid electric spindle
rotor system can be obtained in magnetic bearing B coor-
dinates as

MTs €qs +(G + D)Ts _qs + TsPqs � 0. (32)

If Δe � [kwΔxmB,ΔymB]T is the dynamic cutting depth
of milling, equation (35) can be obtained by putting equation
(29) into equation (32):

MTs Δ€e{ } +(G + D)Ts Δ _e{ } + TsP Δe{ } �
1
2

bKt

Nt

2π
ΗΔe.

(33)
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Figure 4:,e displacement at the workpiece position based on the conventional PID: (a) displacement diagram in the x and y direction; (b)
running track at the position of the workpiece.
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,e dimension of the matrix H is 2 × 2, and the pro-
portional coefficient is cxx, cxy, cyx, cyy.

In order to analyze the effect of the gyro effect of the
active magnetic bearing on the region of the milled stability,
convert equation (33) as follows [14]:

− MTsω
2
c +(G + D)Tsωc + TsP􏽮 􏽯 Δe iωc( 􏼁􏼈 􏼉 �

Nt

4π
bKtH

· 1 − e
− iωcT

􏼐 􏼑 Δe iωc( 􏼁􏼈 􏼉.

(34)

If Γ(iωc) � 1/ − MTsω2
c + (G + D)Tsωc + TsP􏼈 􏼉, then

equation (34) is arranged out to obtain the closed-loop
dynamic milling characteristic equation:

I −
Nt

4π
bKt 1 − e

− iωcT
􏼐 􏼑[B]Γ iωc( 􏼁􏼚 􏼛 Δe iωc( 􏼁􏼈 􏼉 � 0. (35)

If ξ � − (Nt/4π)bKt(1 − e− iωcT), the eigenvalues of
equation (35) are

ξ � ξRe + iξIm. (36)

When the real part of all the eigenvalues of equation (35)
is less than zero, the milling process is stable. Otherwise, the
milling process is unstable.

Equation (36) and e− iωcT � cos(ωcT) − i sin(ωcT) are
put into ξ � − (Nt/4π)bKt(1 − e− iωcT), and the critical
milling width blim is obtained:

blim � −
4π

NtKt

ξRe + iξIm􏼈 􏼉 +
ξIm sin ωcT( 􏼁 − iξRe + ξIm􏼈 􏼉

1 − cos ωcT( 􏼁
􏼨 􏼩.

(37)

Make the imaginary part zero:

ζ �
ξIm
ξRe

�
sin ωcT( 􏼁

1 − cos ωcT( 􏼁
. (38)

Equations (38) and (37) are arranged:

blim � −
2π

NtKt

ξRe 1 + ξ2􏼐 􏼑, (39)

where T � (π − 2tan− 1ξ + 2Nπ)/ωc is the number of ripples
between the two teeth and ωc chatter frequency.

5. Milling System Stability Area Analyses

,e influence of the traditional PID controller and modal
decoupling control on the displacement of the workpiece at
the milling position is analyzed by simulation. ,e influence
of the gyro effect on the milling stability region is analyzed.
,e parameters of the electric spindle rotor system used in

Table 1: Electric spindle parameters.

m Rotor mass 25.8 kg
la Radial electromagnet center distance 150mm
Jx, Jy Moment of inertia of the rotor around the x-axis 0.2251 kgm2

Jz Moment of inertia of the rotor around the z-axis 0.3388 kgm2

δ Radial electromagnetic bearing ideal air gap 0.4×10− 3m
Rs Spindle radius 50mm
ki Current stiffness coefficient 37.7N/A
ks Displacement stiffness coefficient 15.08e4N/m
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Figure 5: ,e displacement at the workpiece position based on modal decoupling: stability area of milling (a) without control and (b) with
modal decoupling control.
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the simulation are shown in Table 1, and the milling pa-
rameters are N4 � 4 and Kt � 2173N/mm2.

Figure 4 shows the displacement track at the workpiece
position under the PID controller. It can be seen from
Figure 4 that the rotor of the electric spindle cannot be stably
suspended at the operation starts. ,e PID controller is
turned on at 0.02 s, and the electric spindle rotor gradually
stabilizes under the action of the controller. ,e displace-
ment in the x and y directions of the workpiece position
gradually decreases, but there is fluctuation, which is due to
the influence of the gyro cross-effect of the electric spindle
rotor system. ,e modal of the electric spindle rotor is
decoupled on the basis of the PID controller, and the ro-
tational mode and the translational modal of the rotor
system of the electric spindle are independently controlled. It
can be seen from Figure 5 that the modal decoupling control
can make the displacement of the workpiece position rapidly
reduced and stable. Figure 5(a) shows when the modal
decoupling control is also turned on at 0.02 s, the dis-
placement at the workpiece position quickly approaches
zero (stable), and the fluctuations existing in the conven-
tional PID control are overcome.

Figure 6 shows the effect of gyro effect on the stability of
milling at different speeds: n� 6000 r/min and n� 15000 r/
min; the influence of gyro effect on the stability of milling is
analyzed.

It can be seen from Figure 6(a) that the gyro effect will
shift the milling stability to the right and move it slightly
upward. ,e higher the speed, the more the right shifts,
which indicate that the gyro effect makes the frequency of
the critical stability zone of milling frequency value increase.
And the higher the speed of the electric spindle rotor, the
higher the frequency of the critical stability zone of the
milling. ,is is because the gyro effect is related to the speed
of the electric spindle, and as the rotor speed of the electric
spindle increases, the gyro effect becomes more obvious.,e
modal decoupling control can greatly reduce the gyro effect

on the critical stability zone of milling, which is shown in
Figure 6(b).

6. Conclusions

Based on the mathematical model of electric spindle rotor
system with the active magnetic bearing, the influence of the
traditional PID controller and the modal decoupling control
on the displacement of the milling workpiece position are
analyzed. ,e displacement at the workpiece position
quickly approaches zero (stable) with the modal decoupling
controlling, and the fluctuations existing in the traditional
PID control are overcome.

,e effect of the gyro effect on the stability of milling at
different rotor speeds of the electric spindle is analyzed. ,e
simulation results show that the gyro effect can shift the
stability area of themilling to the right. And this effect will be
more obvious as the rotor speed of the electric spindle in-
creases. ,e proposed modal decoupling control can reduce
the influence of gyro effect on the stability of milling by
separately adjusting the parameters of the translational
mode and the rotational mode.
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Figure 6: Effect of modal decoupling control on the stability of milling: stability area of milling (a) without control and (b) with modal
decoupling control.

8 Shock and Vibration



References

[1] C. Yue, H. Gao, X. Liu, S. Y. Liang, and L. Wang, “A review of
chatter vibration research in milling,” Chinese Journal of
Aeronautics, vol. 32, no. 2, pp. 215–242.

[2] S. Sivrioglu and K. Nonami, “Sliding mode control with time-
varying hyperplane for AMB systems,” IEEE/ASME Trans-
actions on Mechatronics, vol. 3, no. 1, pp. 51–59, 1998.

[3] A. Mystkowski, “Sensitivity and stability analysis of mu-
synthesis AMB flexible rotor,” Solid State Phenomena,
vol. 164, no. 133, pp. 313–318, 2010.

[4] S. Sivrioglu and K. Nonami, “An experimental evaluation of
robust gain-scheduled controllers for AMB system with gy-
roscopic rotor,” in Proceedings of the 6th International
Symposium on Magnetic Bearings, pp. 352–361, Cambridge,
MA, USA, August 1998.

[5] Y. C. Zhang, G. J. Sun, and Y. J. Zhang, “Experimental ver-
ification for zero power control of 0.5 kwh class flywheel
system using magnetic bearing with gyroscopic effect,” in
Proceedings of the 1st International Conference on Machine
Learning and Cybernetics, pp. 2059–2062, Beijing, China,
November 2002.

[6] P. Efrain, B. Douglas, and K. Edson, “Vibration control using
active magnetic actuators with the LQR control technique,” in
Proceedings of the 7th Brazilian Conference on Dynamics,
Control and Applications, pp. 1–6, Presidente Prudente, Brazil,
May 2008.

[7] K. Zhang and X. Dai, “Dynamic analysis and control of an
energy storage flywheel rotor with active magnetic bearings,”
in Proceedings of the 2010 International Conference on Digital
Manufacturing & Automation, pp. 573–576, Changsha,
China, 2010.

[8] B. Wang and Z. Deng, “Analysis of cross feedback control for
the magnetically suspended flywheel rotor,” in Proceedings of
the 12th International Symposium on Magnetic Bearings,
pp. 567–572, Nanjing, China, 2010.

[9] K. Zheng, L. Zhao, and H. Zhao, “Application of magnetic
force lead control on a flywheel suspended by AMS,” Chinese
Journal of Mechanical Engineering, vol. 40, no. 7, pp. 175–179,
2004.

[10] K. Jiang, “Active magnetic bearing—rotor vibration control
technology,” Ph.D. Zhejiang University, Zhejiang, China,
2011.

[11] X. Qiao and C. Zhu, “Active control of milling chatter based
on the built-in force actuator,” Journal of Mechanical Engi-
neering, vol. 1, no. 48, pp. 187–192, 2012.

[12] R. Siegwart, R. Larsouneur, and A. Traxler, “Design and
performance of a high speed milling spindle in digital con-
trolled active magnetic bearings,” in Proceedings of the 2nd
International Symposium on Magnetic Bearings, University of
Tokyo, Tokyo, Japan, pp. 197–204, 1990.

[13] Q. Zhang, “Research on the suppression of gyroscopic effect of
active magnetic bearing-flywheel energy storage system,”
2012.

[14] Z. Li and Q. Liu, “Modeling and simulation of chatter stability
for circular milling,” Journal of Mechanical Engineering,
vol. 46, no. 7, pp. 181–186, 2010.

Shock and Vibration 9


