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Monitoring the vibrations of high-speed rotating blades is significant to the security of turbomachineries. Blade tip timing (BTT)
is considered as a promising technique for detecting blade vibrations without contact online. However, extracting blade vibration
characteristics accurately from undersampled BTTsignals measured at varying rotational speed (VRS) has become a big challenge.
)e existing two methods for this issue are restricted within the order bandwidth limitation and require prior information and
precise sensor installation angles, which is often unpractical. To overcome these difficulties, a compressed sensing-based order
analysis (CSOA) method was proposed. Its feasibility comes from the sparsity of BTT vibration signals in the order domain. )e
mathematical model for the proposedmethod was built, and the optimizing principles for sensor number and sensor arrangement
were given. Simulated and experimental results verified the feasibility and advantages of the proposed method that it could extract
order spectrum accurately from BTT vibration signals measured at VRS without the drawbacks in the existing two methods.

1. Introduction

High-speed rotating blades are critical components in tur-
bomachinery, such as gas turbine engines and aircraft en-
gines [1]. )ey often suffer from multifrequency vibrations
resulted from various exciting forces, including centrifugal
force, aerodynamic force, and impact force. )ese vibrations
reduce the service life of the blades and may lead to cracks
and even fractures, resulting in catastrophic accidents [2].
)us, it is quite necessary tomonitor blade conditions online
to find the damages in time. )e traditional approach is to
install strain gauges on the blades, which is rather costly
because it requires high-quality telemetry units or slip rings
and complex installation process [3, 4].

BTT technique is an alternative to strain gauges and has
become a hot issue due to its advantages of noncontact mea-
surement, easy installation, and the ability to monitor all the
blades simultaneously [5]. )e BTT system precisely measures
the time of arrival (TOA) of each blade tip at each sensor which
is installed in the casing around the bladed disk [6]. A reference

sensor is mounted near the spindle to provide a reference time
once per revolution, fromwhich the TOAof nonvibrating blade
can be derived [7]. )e vibration displacement can be obtained
via the difference in the TOAs of the vibrating blade and
nonvibrating blade through which blade parameters including
vibrating frequency and mode can be analyzed [8]. However,
the BTT vibration signal is undersampled because the overall
sampling frequency, which is determined by rotational speed
and limited sensor number, is usually less than twice the
maximum blade vibrating frequency [9–11].

Until now, some methods have been proposed to extract
blade vibration characteristics from undersampled BTT
signals. Witos and Wisnioch [12] in the Polish Air Force
have been studying the BTT technique since 1993 and
conducted excellent researches. )ey extracted TOA signal
components and diagnostic symptoms by a numerical
process. Moreover, they employed a phase mapping method
for analysis. Beauseroy and Lengellé [13] proposed a new
analytical method for multifrequency BTT signals with a
group of regularly spaced optical sensors. Salhi et al. [14]

Hindawi
Shock and Vibration
Volume 2020, Article ID 8328345, 12 pages
https://doi.org/10.1155/2020/8328345

mailto:yangyongmin@163.com
https://orcid.org/0000-0002-9500-6610
https://orcid.org/0000-0002-2916-723X
https://orcid.org/0000-0003-3699-1603
https://orcid.org/0000-0001-7150-7640
https://orcid.org/0000-0002-7914-9953
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8328345


introduced a subspace modelling method to identify the
natural frequency of blades using two sensors installed at the
interval of 180°. Lin et al. [15] presented a reconstruction al-
gorithm for multimode blade vibration signals based on the
sparse representation theorem. Hu et al. [9] reconstructed BTT
signals measured by nonuniformly placed sensors by consid-
ering it as a bandpass signal. Pan et al. [16] proposed a method
to extract the spectrum of multifrequency blade vibrations and
alleviate the measurement uncertainties of BTT signals. )ese
methods are all based on time domain and constant speed
assumption. However, the rotational speed may change fre-
quently and result in inconstant sampling frequency, which
invalidates these methods. Besides, the methods in [13–16]
require strictly precise sensor installation angles, which are
difficult to realize.

Although extracting blade vibration characteristics from
BTT signals measured at VRS has become an obstacle, few
methods were proposed for solving this problem. Zhan et al.
[17] proposed an interpolation algorithm to reconstruct
blade vibration signals measured by uniformly arranged
sensors, which made compensation for the effects of VRS.
However, this method required strictly precise sensor in-
stallation angles and prior information, including central
frequency and signal bandwidth. Chen et al. [18] improved
the work in [17] and proposed two-order analysis-based
reconstruction methods for BTT vibration signals at VRS by
considering the signals as bandpass. Compared to [17], the
first method in [18] substituted angular domain for time
domain and still required uniformly installed sensors. )e
second method accurately captured high-engine orders of
blade vibrations by using two sensors with arbitrary in-
stallation angles. However, neither of them can reconstruct
vibration signals without the prior information of the central
engine order and order bandwidth of the signal. Besides, the
order bandwidth is quite limited by a sensor number.

Compressed sensing (CS) theory was proposed to ac-
curately reconstruct spectrum-blind (no prior information)
sparse signals from undersampled samples [19–22]. Since
the BTT signals measured at VRS have sparsity in the order
domain, this paper proposed an order analysis method to
obtain the order spectrum of BTT vibration signals at VRS
based on CS theory. Compared to the existing methods for
BTT vibration signals at VRS in [17, 18], the proposed
method has three major advantages: firstly, it requires no
prior information of the central engine order and order
bandwidth of signals; secondly, it is still feasible to the signals
exceeding the order bandwidth limitation as stated in [18];
and thirdly, it allows considerable installation angle errors.

)is paper is organized as follows: the BTTmechanism
was elaborated in Section 2. A CSOA mathematical model
was built in Section 3.)en, the optimizing principles for the
number and arrangement of the sensors were provided in
Section 4. )e existing methods in [18] were described in
detail in Section 5. Simulations in Section 6 and experiments
in Section 7 were conducted to verify the feasibility of the
proposed method and the advantages over the existing
methods. Finally, conclusions were drawn in Section 8.

2. BTT Mechanism

As shown in Figure 1, several sensors are mounted in the
stationary casing around a rotating bladed disk to
measure the TOAs of each blade at each sensor. Sensor r
is installed close to the spindle with a reflective tape to
provide a reference time for each revolution. )e time
pulse signals are recorded for the first time when the
reflective tape passes Sensor r. )e TOAs and the ref-
erence time are usually acquired by extracting the rising
edge time or falling edge time from the recorded time
pulse signals.

Considering Sensor r as the reference position, the
angular positions of the ith sensor (Sensor i) and the bth
blade (Blade b) at the time when the reflective tape passes
Sensor r are represented as αi and θb, respectively. At the nth
revolution, the actual TOA of Blade b at Sensor i and the
duration of rotation are denoted as ti,b[n] and T[n], re-
spectively. If the blades do not vibrate, the TOA of Blade b at
Sensor i during the nth revolution is termed as the expected
TOA, ti,b[n], which can be derived by

ti,b[n] �
αi − θb

2πfr[n]
+ 

n− 1

k�0
T[k], T[0] � 0, (1)

where fr[n] is the average rotational frequency from the
time the nth revolution starts to the expected TOA, which
can be derived by the spline interpolation method.

Practically, the blades usually vibrate under various
incentives, causing a deflection when arriving at the sen-
sors, which results in a time difference between the actual
TOA and expected TOA. )e deflection of Blade b when it
arrives at Sensor i during the nth revolution can be ob-
tained by

yi[n] � 2πfr[n]Rb
ti,b[n] − ti,b[n] , (2)

where Rb denotes the distance from the axis to the tip of
Blade b. )us, by matching the sequences ti,b[n]  and
yi[n] , a time-based vibrating displacement sequence of
Blade b arriving at Sensor i can be acquired. )rough an-
alyzing all the sequences, the vibrating characteristics of
blades can be obtained, thus providing information for
detecting blade damages in real time.

3. CSOA Method

Consider a real continuous angular-domain blade vibra-
tion signal x(θ) for Blade b, and m sensors are installed in
the casing. Here, the expected rotating angles (no blade
vibrations) at which the blades pass the sensors are con-
sidered as angular sampling points. Since the installation
angles remain unchanged during the measurement pro-
cess, the sampling intervals of a single sensor on the an-
gular domain are identical. A sampling vibrating signal of
Blade bmeasured by Sensor i(1≤ i≤m) can be described as
follows:
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yi[n] � 
∞

θ�− ∞
x(θ)δ θ − 2π(n − 1) − αi − θb( ( ,

n � 1, 2, . . . .

(3)

Let βi,b � αi − θb, then equation (3) can be rewritten as

yi[n] � 
∞

θ�− ∞
x(θ)δ θ − 2π(n − 1) − βi,b . (4)

)e sampling function can be expressed as

pi(θ) � 
∞

n�− ∞
δ θ − 2π(n − 1) − βi,b . (5)

Since pi(θ) is a periodic function with the sampling
interval, Ts � 2π, it has a Fourier expansion:

pi(θ) � 
∞

l�− ∞
ci,le

jlθ
, (6)

where ci,l is the Fourier coefficient, which can be given by

ci,l �
1
Ts


Ts

0
pi(θ)e

− j( 2π/Tslθdθ �
1
2π

e
− jlβi,b . (7)

Let xi(θ) � x(θ)pi(θ). Its Fourier transform can be
calculated as

Xi(E) � 
∞

− ∞
xi(θ)e

− jEθdθ � 
∞

− ∞
x(θ) 

∞

l�− ∞
ci,le

jlθ⎛⎝ ⎞⎠e
− jEθdθ

� 
∞

l�− ∞
ci,l 
∞

− ∞
x(θ)e

− j(E− l)θdθ � 
∞

l�− ∞
ci,lX(E − l),

(8)

where E is the engine order. )e discrete Fourier transform
(DFT) of yi[n] is given by

Yi(E) � 
∞

n�− ∞
yi[n]e

− j2πEn
. (9)

Equation (9) can be tied to equation (8) since they are
transforms of the identical signal, which can be formulated
as

Yi(E) � 

L0

l�− L0

ci,lX(E − l), E ∈
− 1
2

,
1
2

 , (10)

where E ∈ [− 1/2, t1/2] is set to avoid the aliasing effect
according to Shannon’s sampling theorem since the vi-
brating displacement of Blade b is sampled once per revo-
lution by Sensor i. L0 is an integer chosen to cover all the
nonzero terms in order spectrum, which can be obtained by

−
1
2

+ L0 + 1( ≥Emax

⇒ L0 ≥Emax −
1
2
,

(11)

where Emax is the maximum order of the signal. It can be
seen from equation (10) that Yi(E) can be considered as a
linear combination of shifted copies of X(E). )us, the
CSOA mathematical model can be derived as follows by
rewriting equation (10) in matrix form:

Y(E) � Φz(E), E ∈
− 1
2

,
1
2

 , (12)

where

Y(E) � Y1(E), Y2(E), . . . , Ym(E) 
T
, (13)

z(E) � z1(E), z2(E), . . . , zL(E) 
T

, (14)

L � 2L0 + 1, (15)

Sensor r

Blades Actual TOA

Expected TOA

Sensor 1

Sensor 2Sensor 3

Reference time 

Rotational 
direction

Casing 0
 

αi

θb

ti,b [n]

~ti,b [n]

T [n]

Figure 1: Schematic of BTT mechanism.
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zk(E) � X E + k − L0 − 1( , 1≤ k≤L. (16)

)e m × L sensing matrix Φ is constituted by

Φ i, L0 + l + 1(  � ci,− l �
1
2π

e
jlβi,b , 1≤ i≤m, − L0 ≤ l≤L0.

(17)

Since the BTT signal is sparse in order domain, the
analysis of the signal can be transformed into a typical CS
problem as follows:

P0: zopt(E) � argmin
z(E)

‖z(E)‖0 s.t.Y(E) � Φz(E),

E ∈
− 1
2

,
1
2

 .

(18)

Figure 2 provides a schematic of the proposed CS
mathematical model. )e abscissa and the ordinate of the
graph, respectively, denote E + k − L0 − 1 and zk(E) with
varying k. L0 is set to cover the order scale of the blade
vibration signal [− Emax, Emax]. It is considered the blade
vibration signal has several orders (E1, E2, . . . , Emax) arbi-
trarily distributed in the order domain. It can be seen that
the order spectrum of the blade vibration signal can be
extracted by finding the nonzero terms in the order scale,
which can be transformed into the typical CS problem
shown in equation (18) and solved by existing CS algorithms.

Since the CS algorithms can find all the nonzero terms in
ignorance of their distribution, the proposed method re-
quires no prior information of central frequency and order
bandwidth of the blade vibration signal. In addition, the key
to solve this CS problem is constructing the sensing matrix
Φ, which comes down to the choices of m, L, and
αi(1≤ i≤m).

4. Parameter Optimization

It can be concluded from Section 3 that the parameter
optimization for the sensing matrix contributes greatly to
successfully extract the order spectrum from the blade vi-
bration signal. L can be chosen via equation (15), while the
optimizations of m and αi require further investigations.
)is is an optimizing problem of the number and ar-
rangement of the sensors.

4.1. Sensor Number Optimization. According to the CS
theory [19, 20], z(E) is the unique sparsest solution of
equation (18) and can be accurately extracted with a great
possibility if it satisfies in the following equation:

‖z(E)‖0 <
spark(Φ)

2
, (19)

where spark(Φ) is the smallest number of columns from Φ
which are linearly dependent [23–25]. According to this
definition, 2≤ spark(Φ)≤m + 1. )us, the sensor number
can be related to ‖z(E)‖0 as follows:

‖z(E)‖0 <
m + 1
2

. (20)

However, equation (20) is a sufficient but not necessary
condition for the unique sparsest solution of equation (18)
and great possibility of recovering z(E). )us, sensor
numbers which are smaller than 2‖z(E)‖0 − 1 may also be
allowable.

4.2. Sensor Arrangement Optimization. According to
[26, 27], z(E) can be accurately recovered by orthogonal
matching pursuit (OMP) [28, 29] or basis pursuit (BP)
[30, 31] algorithms if it satisfies the following condition [25]:

‖z(E)‖0 <
1
2

1 +
1

μ(Φ)
 , (21)

where μ(Φ)is the two-sided coherence [32] of Φ, which is
given by

μ(Φ) � max
1≤i,j≤L,i≠j

φT
i φj





φi

����
����2 · φj

�����

�����2

, (22)

where φi is the ith column vector of Φ. It can be inferred
from equation (21) that the smaller the μ(Φ) is, the larger the
‖z(E)‖0 is allowed, which in fact allows a greater number of
the blade vibration engine orders. )us, the sensor ar-
rangement principle is to choose proper installation angles
to minimize μ(Φ) as much as possible.

5. Detailed Description of the Existing Method

)e existing two methods presented by Chen [18] consid-
ered the blade vibration signals as bandpass based on
Shannon’s sampling theorem in the angular domain. )e
first method uses several uniformly mounted sensors to
obtain uniformly sampling signals in the angular domain
with a constant sampling interval 2π/m.)e first method can
be expressed as

ŝ(θ) � Re 
∞

n�− ∞
s[n] sin c Esθ − n( e

j2π( E0/Es Esθ− n( ),

(23)

where s(θ) is the reconstructed signal and s[n] is the Hilbert
transform of the sampled blade vibration signal. E0 is the
central order, and Es � m denotes the sampling order.
However, the order bandwidth of the signal cannot exceed
Es/2 in equation (23). Besides, this method requires strictly
precise installation angles to ensure uniform sampling in the
angular domain.

)e second method uses two nonuniformly mounted
sensors. It is based on the second-order sampling theorem
[33]. Its reconstruction formula is given by

s(θ) � 
∞

n�− ∞
s1[n]h θ −

n

B
  + s2[n]h − θ +

n

B
+
Δα
2πB

  ,

(24)

4 Shock and Vibration



where s1[n] and s2[n] are the blade vibration signals sampled
by the two sensors, respectively. Δα is the angle between the

two sensors. B � 1 is the order bandwidth, and h(θ) can be
given by

h(θ) �
cos 2π λB − Emin( θ − λΔα/2  − cos 2πEminθ − λΔα/2( 

2πBθ sin(λΔα/2)

+
cos 2π B + Emin( θ − (λ + 1)Δα/2  − cos 2π λB − Emin( θ − (λ + 1)Δα/2 

2πBθ sin[(λ + 1)Δα/2]
,

(25)

where λ � 2Emin/B. )e second method does not require
precise installation angles. However, it cannot reconstruct
blade vibration signal whose order bandwidth exceeds one.

6. Numerical Simulations

6.1. SimulatedBladeVibrationSignal. It is assumed that each
blade is identical and is not coupled with others. In addition,
they vibrate in a single degree of freedom under the sim-
ulated synchronous exciting force, which can be given by

F(t) � 
3

i�1
Fi cos Eiθ(t) + φi( , (26)

where Fi and Ei are the amplitude and the order of the force,
respectively. θ(t) is the rotating angle, which is calculated as
follows:

θ(t) � 2π 
t

0
fr(t)dt, (27)

where fr(t) is the rotational frequency varying with time.
Amathematical model for blade vibration can be derived

as

€x �
1

mb

· [F(t) − c _x − kx], (28)

where mb, c, and k are the equivalent mass, damping co-
efficient, and elastic coefficient of the blade. x is the blade tip
displacement.

Based on equations (26)–(28), a simulated signal ac-
quisition system for blade tip vibration at VRS was built, as
shown in Figure 3. Chirps 1∼3 generate swept frequency
cosine with instantaneous frequencies equal to E1, E2, and
E3 times the rotational frequency, respectively. Chirp 4
provides swept frequency sine with an instantaneous

frequency equal to the rotational frequency. )e switches
enable the system to output the blade tip displacements each
time it satisfies the following condition:

θ(t) � 2πn + αi − θb, n � 0, 1, . . . , (29)

where the angular position of the blade θb � 0 and the ith
sensor installation angle αi is set in hit crossings. Port 1
outputs the original blade tip displacements, Port 2∼j out-
puts the displacements measured by the sensors, and Port
j+ 1 is used for calculating the starting time sequences of
each revolution.

6.2. Simulation for theOrderBandwidthLimitation. To verify
that the CSOA method is still feasible to the BTT vibration
signals which exceed the order bandwidth limitation of the
existing methods in [18], simulated signals of different Ei

generated by the system in Figure 3 were analyzed. )e
simulation parameters are shown in Table 1 and have been
optimized according to the theoretical analysis in Sections 3
and 4. In addition, white Gaussian noise is added to the
simulated signals.

)e natural frequency of the blade can be calculated by

fn �
1
2π

���
k

mb



� 636.6198Hz. (30)

Figure 4 shows the simulated blade tip displacements
varying with the rotating frequency and the data sampled by
the sensors. )e blade vibrates resonantly when the exci-
tation frequency reaches fn/Ei.

Figure 5 shows the order spectrum obtained via the
CSOA method. It is obvious that the order spectrums of the
two sets of simulated blade tip displacements are accurately
obtained.

0–7/2 –5/2 –3/2 –1/2 1/2 3/2 5/2 7/2

–Emax Emax–E1 E1–E2 E2

E + k – L0 – 1

Zk (E) = X (E + k – L0 – 1)

–(L0 + 1/2) L0 + 1/2

... ...

Figure 2: Schematic of the CSOA mathematical model.
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For comparison, the data were also analyzed with the
existing methods. )e sensor number for the first method
and Δα for the second method in [18] are set to 7 and 25∘,
respectively. )e results are shown in Figure 6.

)e simulation results suggested that the two methods
in [18] failed to acquire the exact order spectrum of the
signal beyond the bandwidth limitation. In conclusion,
the CSOA method is effective whether the signal is within
or exceeding the order bandwidth limitation of the
existing methods proposed in [18]. Moreover, L in CSOA
can be enlarged to meet the needs of a larger order
bandwidth.

6.3. Simulation for Installation Angle Errors. To demonstrate
that the CSOAmethod allows considerable installation angle
errors, the angles were set as α′ � α + Δ, where Δ is the
deviation from the expected installation angles α and ran-
domly generated within [− 10∘, 10∘]. Other parameters are
shown in Table 1. )e simulation results via the CSOA
method are shown in Figure 7.

In Figure 7, the order spectrum is precisely acquired
despite the installation angle errors, which proves that the
CSOA method is still effective under the condition of in-
accurate installation angles.)is characteristic is quite useful
since the installation angle errors exist in practical
applications.

7. Experiments

For further verification on the effects of the proposed CSOA
method, an experimental rig was built, as shown in Figure 8.
)e rig consists of an electrical motor (installed under the
test bench), a bladed disk with 32 uniformly distributed
straight blades (labelled as Blades 1∼32), a spindle, a casing,
six uniformly distributed permanent magnets, and four
optical fiber sensors (Sensors 1∼3 were mounted on the
casing in precise alignment along the circumstance, and
Sensor r was the reference sensor). )e operating frequency
of a high-speed data acquisition card is 5MHz. Sensor r was
installed vertically, and the installation angles of Sensors 1∼3
were set as 15∘, 143∘, and 270∘, respectively. )ese angles

F1

F2

F3

> 0

> 0

> 0

+
+
+ +

–
–

1/mb

1

1

2

3

j + 1

Chirp 1

1/S1/S

Chirp 2

Chirp 3

Chirp 4

c

k

Sensor 1

Sensor 2

Sensor r

Hit crossing Switch

x

Figure 3: Simulated system for blade tip vibration at VRS.

Table 1: Simulation parameters.

Parameters Values
E1, E2, E3  {1,2,4} and {1,2,13}
F1, F2, F3  {6, 8, 10} N
φ1,φ2,φ3  {0, 0, 0}

mb 0.05 kg
C 10 N · s/m
K 8 × 105 N/m
Rotating frequency 30∼700Hz
Frequency sweep Linear
Time 100 s
Sensor number 7
Installation angles 32∘, 75∘, 105∘, 145∘, 197∘, 215∘, 324∘{ }

SNR 10
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Figure 4: (a, c) Simulated blade tip displacement with E1 � 1, E2 � 2, E3 � 4  and E1 � 1, E2 � 2, E3 � 13 , respectively; (b, d) data
sampled by the sensors with E1 � 1, E2 � 2, E3 � 4  and E1 � 1, E2 � 2, E3 � 13 , respectively.
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Figure 5: Order spectrums of the simulated blade tip displacements obtained via the CSOA method: (a) E1 � 1, E2 � 2, E3 � 4 ;
(b) E1 � 1, E2 � 2, E3 � 13 .
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method in [18].

0 5 10 15
Order

2

4

0

8

6

lo
g 2

 (a
m

pl
itu

de
 o

f o
rd

er
 sp

ec
tr

um
)

X = 0.9999
Y = 8.652

X = 2
Y = 7.369

X = 3.999
Y = 5.737

(a)

0

0

5 10 15

Order

2

4

8

6

lo
g 2

 (a
m

pl
itu

de
 o

f o
rd

er
 sp

ec
tr

um
)

X = 0.9999
Y = 8.724

X = 2
Y = 7.448

X = 13
Y = 3.368

(b)

Figure 7: Order spectrums of the simulated blade tip displacements obtained via the CSOA method with random installation angle errors:
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were corrected into 15.39∘, 143.07∘, and 270.51∘ using the
TOAs measured by the sensors at a constant speed. )e
parameters of the blades are presented in Table 2.

Finite element simulation analysis of the blade was
conducted according to the parameters in Table 2. Figure 9
shows that the modal shapes of the first three vibration
modes were bending, bending, and torsion, respectively.
And Figure 10 shows the Campbell diagram of the blade
model. Point A (4397, 2199) was selected, where the blade
resonated at the first mode and 30 times the rotating fre-
quency. )us, the rotating speed was varied around point A
to obtain blade resonant vibration.

According to the modal analysis result of the blade, the
rotating speed was increased continuously from 3850 rpm to
4850 rpm. Blade 27 was arbitrarily chosen for analysis. )e
blade tip displacement varied with the rotating speed and
maximized at the resonant speed range (RSR),
4422∼4426 rpm (Figure 11(a)), which was close to the modal
analysis result. Figure 11(b) shows that the blade vibrated at
30 times the rotating frequency. )e consistency of the
modal analysis and experimental result provided a strong
evidence for the validity of the CSOA method.

)e experimental data of all the blades were further
analyzed with the CSOA method and the two methods in
[18], as shown in Table 3. ECSOA represents the vibration
order obtained by the CSOA method. E

(i)
M1 and E

(i)
M2 are the

vibration orders identified, respectively, by the existing two
methods with the presupposed central order (PCO) equal to
i. )e RSRs were between 4387 rpm and 4448 rpm, which

suggested that the blades all vibrated at 30 times of the
rotating frequency. ECSOA varied from 29.97 to 30.06, which
further validated the proposed CSOA method. When the
PCO was set as 30, both existing methods identified the
vibration orders precisely. However, the changes in PCO
lead to incorrect results, which demonstrated that the
success of these methods depended on the PCO. )us, the
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Figure 10: Campbell diagram of blades.
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Figure 9: Modal shapes of the first three vibration modes of the blade model: (a) the first mode; (b) the second mode; (c) the third mode.

Table 2: Parameters of the blades.

Parameters Values
Material 40Cr
Length 34mm
Width 22mm
)ickness 3 mm
Blade tip radius 69mm
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Figure 11: Experimental result of Blade 27: (a) blade tip displacement varied with rotating speed and was sampled by Sensors 1∼3; (b) order
spectrum of blade vibration obtained by the CSOA method.

Table 3: Experimental results of all blades.

Blade RSP (rpm) ECSOA E
(30)
M1 E

(18)
M1 E

(30)
M2 E

(13)
M2

1 4405∼4413 30.06 30 18 30 14
2 4405∼4422 29.97 30 18 30 14
3 4403∼4438 29.99 30 18 30 14
4 4431∼4439 30.03 30 18 30 14
5 4400∼4408 30.02 30 18 30 14
6 4409∼4417 29.99 30 18 30 14
7 4410∼4417 30.01 30 18 30 14
8 4402∼4426 30.02 30 18 30 14
9 4387∼4403 30.04 30 18 30 14
10 4403∼4413 30.01 30 18 30 14
11 4413∼4414 30 30 18 30 14
12 4413∼4413 30.03 30 18 30 14
13 4404∼4413 30.01 30 18 30 14
14 4411∼4425 30 30 18 30 14
15 4403∼4433 30.01 30 18 30 14
16 4425∼4441 29.97 30 18 30 14
17 4420∼4426 30.02 30 18 30 14
18 4441∼4448 30 30 18 30 14
19 4409∼4409 30 30 18 30 14
20 4408∼4415 30.05 30 18 30 14
21 4423∼4424 30.05 30 18 30 14
22 4430∼4437 30.02 30 18 30 14
23 4416∼4440 29.99 30 18 30 14
24 4416∼4426 30 30 18 30 14
25 4406∼4433 29.97 30 18 30 14
26 4405∼4413 30.02 30 18 30 14
27 4422∼4426 30 30 18 30 14
28 4424∼4436 29.98 30 18 30 14
29 4407∼4439 29.99 30 18 30 14
30 4407∼4407 29.99 30 18 30 14
31 4408∼4436 30 30.05 18.05 30 14
32 4403∼4437 29.97 30 18 30 14
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CSOA method has an advantage over the existing two
methods when the central order of blade vibration is
unknown.

8. Conclusions

Currently, BTT is considered as a promising technique for
online monitoring blade vibrations at a high-rotational
speed. However, VRS brings obstacles to extracting blade
vibration characteristics from undersampled BTTsignals. To
solve this problem, this paper proposed a CSOA method for
BTT signals measured at VRS, which has good advantages
over the existingmethods. A CSOAmathematical model was
built. Simulations and experiments were performed to
demonstrate the advantages and validity of the CSOA
method. )e main results are summarized as follows:

(1) )e order spectrum of undersampled BTT vibration
signals measured at VRS can be accurately obtained
through the proposed CSOA method.

(2) No prior information of the central order and order
bandwidth of BTT signals is needed for analysis via
the CSOA method.

(3) )e CSOA method is effective whether the BTT
vibration signals are within or exceeding the order
bandwidth limitation of the existing methods in [18].

(4) )e CSOA method allows considerable installation
angle errors, which is more applicable to the actual
situation.
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