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+is paper presents analytical solutions for nonlinear radial consolidation of soft soil with vertical drains under various cyclic
loadings. By considering the nonlinear variations of compressibility and permeability expressed by the logarithm relations
(e − log σ′ and e − log kh), the governing equation for nonlinear radial consolidation of the soil under equal strain and time-
dependent loading is established. +e analytical solutions are derived for nonlinear radial consolidation under haversine cyclic
loading, trapezoidal cyclic loading, rectangular cyclic loading, and triangular cyclic loading. +e presented solution is verified
through the degeneration into the existing solutions for nonlinear radial consolidation under constant and ramp loadings, which
shows the solution proposed in this paper is more general for nonlinear radial consolidation under time-dependent loading. +e
nonlinear radial consolidation behavior of the soil with vertical drains subjected to various cyclic loadings is investigated using the
solutions developed. +e proposed solutions can be effectively utilized in the analysis of nonlinear radial consolidation under
various cyclic loadings.

1. Introduction

In most coastal and marine areas, the soils beneath many
structures are highly compressible and may be subjected to
complicated cyclic loadings, such as filling and discharging
in silos, tanks, and reservoirs, traffic loads on embankments,
highways, railways, or airports, wave and wind actions for
offshore structures, pile construction, and machine vibra-
tions.+e consolidation behavior of the soft soil under cyclic
loadings is very complex and has been studied for many
years. In the past decades, a lot of scholars have conducted
research on one-dimensional (1D) consolidation of soft soil
subjected to cyclic loadings based on either the linear
consolidation theory [1–6] or the nonlinear consolidation
theory [7–16]. It is worth mentioning that Razouki and
Schanz [4] and Razouki et al. [5] studied 1D consolidation of
a clay layer subjected to haversine cyclic loading with and

without the rest period on the basis of linear assumptions.
More recently, Kim et al. [16] derived analytical solutions for
1D nonlinear consolidation of a saturated soil with variable
compressibility and permeability under various cyclic
loadings. On the contrary, Kim et al. [17] presented ana-
lytical solutions for 1D consolidation of unsaturated soils
under cyclic loadings.

Vertical drains are widely used for improvement of soft
soil, and the radial consolidation behavior of the soil with
vertical drains under cyclic loadings has also been investi-
gated by many researchers. Indraratna et al. [18] conducted a
large-scale triaxial test to examine the effectiveness of a
prefabricated vertical drain (PVD) installed in soft clay
subjected to cyclic loads, while Ni et al. [19, 20] proposed
new constitutive models to predict the radial consolidation
of soft soils under cyclic loading. Razouki [21] studied radial
consolidation behavior of clay soil with vertical drains under
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free-strain condition and haversine cyclic loading based on
the assumption that the consolidation coefficient in the
radial direction is constant during the consolidation process.

Although there are many studies on 1D consolidation of
the soil under cyclic loadings, research studies on radial
consolidation under cyclic loadings are very limited, and any
analytical solutions have hardly ever been proposed for
nonlinear radial consolidation of the soil with vertical drains
subjected to cyclic loadings with the consideration of var-
iable compressibility and permeability. Moreover, the effects
of different parameters on nonlinear radial consolidation
under cyclic loadings have not been investigated. +erefore,
this study is aimed to derive analytical solutions for non-
linear radial consolidation under various cyclic loadings and
investigate nonlinear radial consolidation behavior of the
soil under various cyclic loadings.

+is paper is organized as follows. Firstly, the mathe-
matical model and the governing equation for nonlinear
radial consolidation of the soil with vertical drains subjected
to time-dependent loading are presented in Section 2.
Secondly, analytical solutions for nonlinear radial consoli-
dation under cyclic loadings are derived in Section 3, and the
proposed solutions are verified through the degeneration
into special cases for nonlinear radial consolidation in
Section 4. +irdly, the effects of different parameters on
nonlinear radial consolidation behavior of the soft soil with
vertical drains under various cyclic loadings are investigated
in Section 5. Finally, conclusions are given in Section 6.

2. Mathematical Model and
Governing Equation

+e mathematical model for radial consolidation analysis of
soft soil with vertical drains is shown in Figure 1.
Figures 1(a) and 1(b) show the arrangement of vertical
drains and the cylindrical unit cell of the soil with a vertical
drain, where rw, rs, and re are the radii of the vertical drain,
the smear zone, and the influence zone, respectively. +e
parameters s, ks, and kh are the spacing of vertical drains and
the horizontal permeability coefficients of the soil within the
smear zone and the influence zone. q(t) is the uniformly
distributed time-dependent loading applied on the top
surface of the soil of thickness H. In order to obtain the
analytical solution for nonlinear radial consolidation of the
soil with vertical drains subjected to time-dependent load-
ing, the main assumptions are summarized as follows:

(1) +e soil layer is saturated and homogeneous.
(2) +e soil particles and pore water are incompressible.
(3) Only the radial flow of pore water is considered.

Darcy’s law is valid for the water flow.
(4) Both the loading and the settlement occur only in the

vertical direction, while the soil and the vertical drain

have an equal strain at any depth (i.e., the equal
strain condition).

(5) +e effect of the drain resistance is neglected.
(6) +e nonlinear variations of compressibility and per-

meability during the consolidation process are given by

e � e0 − Cclog
σ′
σ0′

􏼠 􏼡, (1)

e � e0 + Cklog
kh

kh0
􏼠 􏼡, (2)

where e and e0 are the void ratio at any time and the initial
void ratio, respectively; σ′ and σ0′ are the effective stress at
any time and the initial effective stress, respectively; kh and
kh0 are the horizontal permeability coefficients of the soil
within the influence zone at any time and at the initial time,
respectively; Cc and Ck are the compression index and the
permeability index, respectively.

Based on equations (1) and (2), the following relations
are obtained:

kh � kh0
σ0′
σ′

􏼠 􏼡

Cc/Ck

, (3)

mv � −
1

1 + e0

ze

zσ′
�

1
1 + e0

Cc

ln 10
1
σ′

� mv0
σ0′
σ′

􏼠 􏼡, (4)

where mv and mv0 are the compressibility coefficients of the
soil at any time and at the initial time, respectively.

+e governing equation for radial consolidation of the
soil under the equal strain condition can be written as
follows [22]:

2r

r2s − r2
·

ks

cw

·
zus

zr
�

zε
zt

, rw < r< rs,

2r

r2e − r2
·

kh
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·
zun

zr
�

zε
zt

, rs < r< re,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where cw is the unit weight of water; us and un are the excess
pore water pressure within the smear zone and the influence
zone, respectively; ε is the vertical strain of the soil and the
vertical drain; r is the radial distance from the center of the
vertical drain; t is the time.

+e average excess pore water pressure for both
the smear zone and the influence zone, u, can be defined
as

u �
1

π r2e − r2w( 􏼁
􏽚

rs

rw

us2πrdr + 􏽚
re

rs

un2πrdr􏼠 􏼡. (6)

+eboundary conditions in the radial direction are given
by
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us � 0, r � rw,

us � un, r � rs,

ks

zus

zr
� kh

zun

zr
, r � rs,

zun

zr
� 0, r � re.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

+e initial condition for the average excess pore water
pressure can be expressed as

u(r, 0) � q(0) � u
0
. (8)

3. Analytical Solutions for Cyclic Loadings

In this section, analytical solutions are derived for nonlinear
radial consolidation of the soil with vertical drains under
various cyclic loadings (Figure 2), such as haversine cyclic
loading, trapezoidal cyclic loading, rectangular cyclic loading,
and triangular cyclic loading.

3.1. Average Excess Pore Water Pressure. +e excess pore
water pressures within the smear zone and the influence
zone can be obtained by integrating (5) and using the
boundary conditions (7) as follows:

us �
cw
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2
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2
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(9)

Substituting (9) into (6), the average excess pore water
pressure can be determined by

u �
r2eξncw

2kh 1 + e0( 􏼁
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zt
−

zu
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􏼠 􏼡, (10)

where
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(11)

and ξn is a parameter that reflects the characteristics of the
smear zone and the influence zone of soil with vertical drains
derived as follows:

ξn �
n2

n2 − 1
ln(n) −

3
4

+
4n2 − 1
4n2 +

kh

ks

− 1􏼠 􏼡 ln(m) +
1 − m2

n2 +
m4 − 1
4n4

􏼠 􏼡􏼢 􏼣, n �
re

rw

, m �
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rw

. (12)
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Figure 1: A schematic diagram for radial consolidation analysis. (a)+e arrangement of vertical drains; (b) the cylindrical unit cell of the soil
with a vertical drain.
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Defining the time factor in the radial direction
Th � ch0t/(4r2e), in which ch0 � kh0(1 + e0)/[cw(ze/zσ′)t�0]

is the initial horizontal consolidation coefficient, and
combining with equations (3), (4), and (10), the following
expression can be obtained:

du

dTh

� −
8
ξn

ηu +
dq

dTh

, (13)

where η � (1 + q − u/σ0′)
1− Cc/Ck .

Since (13) is a nonlinear ordinary differential equation, it is
difficult to obtain its exact solution. η varies from 1.0 to
(1 + qu/σ0′)

(1− Cc/Ck), inwhich qu is the ultimate value of loading
q. Hence, η in (13) can be assumed to be constant and have an
average value given by η � 1/2[1 + (1 + qu/σ0′)

(1− Cc/Ck)]

[16, 22, 23]. +en, (13) can be linearized to
du

dTh

� −
8
ξn

ηu +
dq

dTh

. (14)

+e general solution to (14) satisfying the initial con-
dition of (8) can be given as follows:

u � exp −
8
ξn

ηTh􏼠 􏼡 u
0

+ 􏽚
Th

0

dq

dTh

exp
8
ξn

ητ􏼠 􏼡dτ􏼢 􏼣. (15)

3.1.1. Haversine Cyclic Loading. Haversine cyclic loading
shown in Figure 2(a) can be expressed as follows:

q(t) � qusin
2 πt

t0
􏼠 􏼡, (16)

where t0 is the period of one loading cycle.
Substituting (16) into (15), the complete solution for the

average excess pore water pressure under haversine cyclic
loading can be obtained as follows:

u �
πqu

λ2T2
0 + 4π2

λT0 sin
2πTh

T0
􏼠 􏼡 − 2π cos

2πTh

T0
􏼠 􏼡 − exp − λTh( 􏼁􏼢 􏼣􏼨 􏼩, (17)

where λ � 8/ξn · η � 4/ξn(1 + Nσ)1− Cc/Ck , Nσ � σ0′ + qu/
σ′, andT0 � ch0t0/4r2e .

3.1.2. Trapezoidal Cyclic Loading. Trapezoidal cyclic loading
shown in Figure 2(b) can be expressed as follows:

qu

0 tt0

q(t)

(a)

q(t)

0 t0αt0 βt0 (N – 1)βt0 t

qu

(b)

0 tβt0 (N – 1)βt0

q(t)

qu

(c)

0 tt0/2 t0 βt0 (N – 1)βt0

q(t)

qu

(d)

Figure 2: Various cyclic loadings. (a) Haversine cyclic loading; (b) trapezoidal cyclic loading; (c) rectangular cyclic loading; (d) triangular
cyclic loading.
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q(t) �

qu

αt0
t − (N − 1)βt0􏼂 􏼃, (N − 1)βt0 ≤ t≤ [(N − 1)β + α]t0,

qu, [(N − 1)β + α]t0 ≤ t≤ [(N − 1)β +(1 − α)]t0,

−
qu

αt0
t − (N − 1)βt0 − t0􏼂 􏼃, [(N − 1)β +(1 − α)]t0 ≤ t≤ [(N − 1)β + 1]t0,

0, [(N − 1)β + 1]t0 ≤ t≤Nβt0,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where βt0 is the period of one loading cycle; α and β are the
loading parameters corresponding to the rate of loading
increment or decrement and the rest period of loading,
respectively; N is the cycle number.

Similarly, substituting (18) into (17), the average excess
pore water pressure for the trapezoidal cyclic loading can be
written as

u �

quC1

λTc

exp − λTh( 􏼁, (N − 1)βt0 ≤ t≤ [(N − 1)β + α]t0,

quC2

λTc

exp − λTh( 􏼁, [(N − 1)β + α]t0 ≤ t≤ [(N − 1)β +(1 − α)]t0,

quC3

λTc

exp − λTh( 􏼁, [(N − 1)β +(1 − α)]t0 ≤ t≤ [(N − 1)β + 1]t0,
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exp − λTh( 􏼁, [(N − 1)β + 1]t0 ≤ t≤Nβt0,
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(19)

where

C1 � D(N − 1) + D1,

C2 � D(N − 1) + D2,

C3 � D(N − 1) + D2 + D3,

C4 � D(N),

D(n) � 􏽘
n

N�1
D2 + D4( 􏼁,

D1 � exp λTh( 􏼁 − exp λTb( 􏼁,

D2 � exp λTb( 􏼁 exp λTc( 􏼁 − 1􏼂 􏼃,

D3 � exp λ Tf − Tc􏼐 􏼑􏽨 􏽩 − exp λTh( 􏼁,

D4 � exp λTf􏼐 􏼑 exp − λTc( 􏼁 − 1􏼂 􏼃,

Tc �
ch0αt0

4r2e( 􏼁
,

Tb �
ch0(N − 1)βt0

4r2e
,

Tf �
ch0[(N − 1)β + 1]t0

4r2e
.

(20)

3.1.3. Rectangular and Triangular Cyclic Loadings.
Trapezoidal cyclic loading can be degenerated into rectan-
gular cyclic loading and triangular cyclic loading by
changing the value of the loading parameter α. When α � 0,
trapezoidal cyclic loading reduces into rectangular cyclic
loading (Figure 2(c)). On the other hand, trapezoidal cyclic
loading reduces to triangular cyclic loading (Figure 2(d))
when α � 0.5.

+us, analytical solutions for the average excess pore
water pressure under rectangular and triangular cyclic
loadings can be obtained substituting α � 0 and α � 0.5 into
(19), respectively.

3.2. Average Degree of Consolidation. Based on the average
excess pore water pressures obtained under the above dif-
ferent cyclic loadings, the average degrees of consolidation
with respect to excess pore water pressure and settlement,
Up and Us, can be expressed, respectively, as follows:

Up �
q − u

qu

, (21)

Us �

􏽚
H

0
εdz

􏽚
H

0
εfdz

� a

􏽚
H

0
log σ′/σ0′( 􏼁dz

􏽚
H

0
log σf
′/σ0′􏼐 􏼑log dz

�
ln σ0′ + q − u/σ0′( 􏼁

lnNσ
,

(22)

where εf and σf
′ are the final vertical strain and the final

effective stress, respectively.

4. Degeneration of the Proposed Solution to
Special Cases

It can be easily found that the proposed analytical solution
for trapezoidal cyclic loading can be degenerated into the
existing solutions for nonlinear radial consolidation under
constant loading and ramp loading.

4.1. Constant Loading. When α � 0, β � 1, and N � 1, trap-
ezoidal cyclic loading reduces to constant loading
(Figure 3(a)) expressed by q(t) � qu. +en, the solution for
the average excess pore water pressure can be obtained as
follows:

u � qu exp − λTh( 􏼁. (23)
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Equation (23) is the solution for nonlinear radial con-
solidation of clays with variable permeability and com-
pressibility under constant loading proposed by Indraratna
et al. [22].

4.2. Ramp Loading. When N � 1 and t0 tends to infinity,
trapezoidal cyclic loading reduces to ramp loading
(Figure 3(b)) given by

q(t) �

t

tc

qu, t≤ tc,

qu, t≥ tc,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

where tc � αt0.
+e solution can be derived as

u �

qu

λTc

exp λTh( 􏼁 − 1􏼂 􏼃, t≤ tc,

qu

λTc

exp λTh( 􏼁 1 − exp − λTc( 􏼁􏼂 􏼃, t≥ tc.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

Equation (25) is the solution for nonlinear radial con-
solidation of a clay layer with variable compressibility
and permeability under ramp loading developed by Lekha
et al. [23]. As shown in Figure 4, it can be seen that the results
from the degenerate solutions and the existing solutions are
consistent.

+rough the degeneration mentioned above, it can be
seen that the solution developed in this paper is a more
general one for nonlinear radial consolidation under time-
dependent loading.

5. Consolidation Behavior under
Cyclic Loadings

In this section, the effects of different parameters on non-
linear radial consolidation behavior under different types of
cyclic loadings are investigated. Since the parameter Cc/Ck

mainly changes from 0.5 to 2.0 [24], Cc/Ck � 0.5 and
Cc/Ck � 1.5 are taken for the cases of Cc/Ck < 1 and
Cc/Ck > 1, respectively. +e other properties adopted in this
study are as follows:

0 t

qu

q(t)

(a)

tc0 t

q(t)

qu

(b)

Figure 3: Constant loading (a) and ramp loading (b).
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Figure 4: Comparison with the existing solutions for constant loading (a) and ramp loading (b).

6 Shock and Vibration



Up, Cc/Ck = 0.5
Us, Cc/Ck = 0.5
Up, Cc/Ck = 1

Us, Cc/Ck = 1
Up, Cc/Ck = 1.5
Us, Cc/Ck = 1.5

70

60

50

40

30

20

10

0
U
p, 
U
s (

%
)

10–1 100 10110–2

Th

(a)

Up, Cc/Ck = 0.5
Us, Cc/Ck = 0.5
Up, Cc/Ck = 1

Us, Cc/Ck = 1
Up, Cc/Ck = 1.5
Us, Cc/Ck = 1.5

α = 0.2

10–1 100 10110–2

Th

70

60

50

40

30

20

10

0

U
p, 
U
s (

%
)

(b)

Figure 5: Nonlinear radial consolidation behavior at different values of Cc/Ck under haversine cyclic loading (a) and trapezoidal cyclic
loading (b).
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Figure 6: Continued.
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n � 15,

m � 4,

kh

ks

� 5,

Nσ � 2.5,

T0 � 0.1,

β � 1.5.

(26)

Figure 5 shows the variation of the average degree of
consolidation Up and Us with time factor Th at different
values of Cc/Ck under different types of cyclic loadings. It
can be found that average degree of consolidation Up and Us

decreases but fluctuates with the increase in Cc/Ck, sug-
gesting that the dissipation rate of excess pore water pressure
and the settlement rate decrease with the fluctuation when
Cc/Ck increases. Furthermore, a bigger value of Cc/Ck results
in a smaller amplitude of fluctuation in the dissipation rate
and the settlement rate. In addition, it can be seen that Us is
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Figure 6: Nonlinear radial consolidation behavior at different values of Nσ under haversine cyclic loading (a) and trapezoidal cyclic loading (b).
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Figure 7: Nonlinear radial consolidation behavior under cyclic loadings with different loading parameter α.
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Figure 8: Nonlinear radial consolidation behavior under cyclic loadings with different loading parameter β. Rectangular cyclic loading (a);
trapezoidal cyclic loading (b); triangular cyclic loading (c).
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always bigger than Up in all cases, which means the rate of
settlement is faster than that of dissipation of excess pore
water pressure during the consolidation process.

Figure 6 presents the variation of the average degree of
consolidation Up and Us with time factor Th at different
values of Nσ under different types of cyclic loadings. It can
be found that a bigger value of Nσ results in a faster dis-
sipation rate of excess pore water pressure in the case of
Cc/Ck < 1, but a smaller value of Nσ leads to a faster dis-
sipation rate in the case of Cc/Ck > 1. Meanwhile, the bigger
value of Nσ increases the rate of settlement in all cases of

Cc/Ck < 1 and Cc/Ck > 1. Since Nσ is related to the maximum
loading qu, the following conclusion is drawn: the dissipa-
tion rate increases when maximum loading qu increases in
the case of Cc/Ck < 1 but decreases with the increase in
maximum loading qu in the case of Cc/Ck > 1, whereas the
settlement rate increases with the increase in maximum
loading qu in all cases of Cc/Ck < 1 and Cc/Ck > 1.

Figure 7 represents the variation of the average degree of
consolidation Up and Us with time factor Th under different
types of cyclic loadings with different loading parameter α. It
can be seen that the smaller the loading parameter α is, the
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Figure 9: Nonlinear radial consolidation behavior under cyclic loadings with different loading parameter T0: haversine cyclic loading (a);
trapezoidal cyclic loading (b).
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more quickly the dissipation and the settlement develop in
all cases of Cc/Ck < 1 and Cc/Ck > 1. As the loading pa-
rameter α reflects the rate of loading increment or decre-
ment, it can be found that the higher the rate of loading
increment or decrement is, the faster the rates of dissipation
and settlement are. Moreover, the rates of dissipation and
settlement under rectangular cyclic loading (i.e., α � 0) are
the biggest, and the rates of dissipation and settlement under
triangular cyclic loading (i.e., α � 0.5) are the smallest.

Figure 8 describes the variation of the average degree of
consolidation Up and Us with time factor Th under different
cyclic loadings with different loading parameter β. As shown
in Figure 8(a), through the results under rectangular cyclic
loading (α � 0) for different loading parameter β, it can be
found that the rates of dissipation and settlement increase
with the decrease in the value of loading parameter β in all
cases of Cc/Ck < 1 and Cc/Ck > 1. Moreover, rectangular
cyclic loading without the rest period (i.e., β � 1) reduces
into constant loading, and the rates of dissipation and
settlement are the highest and increase monotonically with
time in that case.+e results under trapezoidal cyclic loading
and triangular cyclic loading for different loading parameter
β can be observed in Figures 8(b) and 8(c), respectively.
Similar to the results in Figure 8(a), the dissipation rate and
the settlement rate increase with the decrease in the value of
loading parameter β in all cases of Cc/Ck < 1 and Cc/Ck > 1.
As well as, a smaller value of the loading parameter β results
in more cycles and a smaller amplitude of fluctuation in the
rates of dissipation and settlement. Since the loading pa-
rameter β reflects the rest period of loading, it is quite
obvious that a longer rest period of loading induces a de-
crease in the rates of dissipation and settlement, less cycles,
and a bigger amplitude of fluctuation.

Figure 9 outlines the variation of the average degree of
consolidation Up and Us with time factor Th under different
cyclic loadings with different loading parameter T0. It can be
seen that a smaller value of the loading parameter T0 induces
a smaller amplitude and more cycles of fluctuation in the
rates of dissipation and settlement in all cases of Cc/Ck < 1
and Cc/Ck > 1. In addition, the loading parameter T0 has a
significant influence on the amplitude and the cycles of
fluctuation in the dissipation rate and the settlement rate but
does not affect the mean value of the rates. +e loading
parameter T0 is related to the period of loading, and thus it
can be found that the longer the period of loading, the bigger
the amplitude and less cycles of fluctuation in the dissipation
rate and the settlement rate.

It should be noted that unlike constant loading and ramp
loading conditions, the dissipation process of the excess pore
water pressure does not complete after a long time but rather
continues oscillating with a certain amplitude, and the av-
erage degrees of consolidation under cyclic loadings do not
reach 100% in all cases of Cc/Ck < 1 and Cc/Ck > 1. It is due
to repetitive loading and unloading stages of cyclic loadings,
which results in squeezing out of pore water during the
loading stage and then absorbing during the unloading stage.
+us, neglecting the effect of cyclic loadings may result in
overestimated settlement and cannot consider the contin-
uous volume change.

It should also be pointed out that the present solution is
only valid for the elastic constitutive model, which is not
suitable for the elastic-plastic model of soft soil with creep.
However, the analytical solution is first proposed for non-
linear radial consolidation of soft soil with vertical drains
subjected to cyclic loadings. Also, the proposed solution is
more general for the soil under time-dependent loadings and
can be easily used by engineers.

6. Conclusion

In this paper, analytical solutions are derived for nonlinear
radial consolidation of soft soil with vertical drains subjected
to various cyclic loadings, such as haversine, trapezoidal,
rectangular, and triangular cyclic loadings. +e presented
solution is verified through the degeneration into the
existing solutions for nonlinear radial consolidation under
constant and ramp loadings. +e nonlinear radial consoli-
dation behavior under various cyclic loadings is investigated.
+e results show that under cyclic loadings, both the dis-
sipation rate of excess pore water pressure and the settlement
rate slow down with the fluctuation corresponding to cyclic
loadings when Cc/Ck increases. +e dissipation rate in-
creases when maximum loading qu increases in the case of
Cc/Ck < 1 but decreases with the increase in the maximum
loading qu in the case of Cc/Ck > 1, whereas the settlement
rate increases with the increase in the maximum loading qu

in all cases of Cc/Ck < 1 and Cc/Ck > 1. +e higher the rate of
loading increment or decrement is, the faster the dissipation
rate and the settlement rate are. A longer rest period of
loading induces the decrease in the rates of dissipation and
settlement, less cycles, and a bigger amplitude of fluctuation.
+e longer the period of loading, the bigger the amplitude
and less cycles of fluctuation in the rates.
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