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)e current volume of freight traffic has increased significantly during the past decades, impacted by the fast development of the
national transportation market. As a result, the phenomena of truck overloading and traffic congestion emerge, which have
resulted in numerous bridge collapse events or damage due to truck overloading.)us, it is an urgent task to evaluate bridge safety
under actual traffic loads. )is study evaluated probabilistic dynamic load effects on rigid-frame bridges under highway traffic
monitoring loads. )e site-specific traffic monitoring data of a highway in China were utilized to establish stochastic traffic
models. )e dynamic effect was considered in a vehicle-bridge coupled vibration model, and the probability estimation was
conducted based on the first-passage criterion of the girder deflection. )e prototype bridge is a continuous rigid-frame bridge
with a midspan length of 200m and a pier height of 182m. It is demonstrated that the dynamic traffic load effect follows Gaussian
distribution, which can be treated as a stationary random process. )e mean value and standard deviation of the deflections are
0.071m and 0.088m, respectively. )e dynamic reliability index for the first passage of girder deflection is 6.45 for the current
traffic condition. However, the reliability index decreases to 5.60 in the bridge lifetime, accounting for an average traffic volume
growth ratio of 3.6%.

1. Introduction

In the design phase of a bridge, the structural safety is usually
evaluated considering design traffic loads, which were for-
mulated according to large traffic monitoring data during
the past decades [1, 2]. However, the current or future
vehicle load might be beyond the design value with the rapid
development of transportation industry. As a result, nu-
merous bridges were collapsed or badly damaged due to
truck overloading [3–5]. In case that growing traffic load is
becoming more and more critical for in-service bridges, the
bridge safety under actual traffic loads deserves investiga-
tion.)e traffic load effect on a bridge is stochastic due to the
random nature of traffic loads [6]. In addition, a moving
vehicle leads to dynamic effects motivated by the road

roughness and the bridge deflection. In view of the above
reasons, the structural dynamic reliability theory is appro-
priate for the safety evaluation of existing bridges under
actual stochastic traffic loads. In addition, the design vehicle
load model can be calibrated with the target reliability index.

In general, the dynamic effect induced by a moving
vehicle can be evaluated in a vehicle-bridge interaction
system [7, 8]. A great number of literatures focus on dy-
namic traffic load effects on both short-span and long-span
bridges. Chen and Wu [9] investigated dynamic effects of a
cable-stayed bridge under stochastic vehicle loads and in-
vestigated influence of the sparse and dense states of traffic
loads on the probabilistic characteristics of bridge load effect.
Lu et al. [10] evaluated lifetime deflection of a suspension
bridge considering dynamic and growing traffic loads. Zhou
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and Chen [8] investigated probabilistic characteristics of the
dynamic response of a cable-stayed bridge under wind load
and stochastic vehicle load. Lu et al. [11] investigated the
first-passage probability of a cable-stayed bridge under
stochastic vehicle loads. Obrien et al. [12] investigated the
dynamic increment of extreme traffic loading on short-span
bridges. Jiang et al. [13] investigated the fatigue damage of
cables of cable-stayed bridge under combined effect of traffic
and wind. Li et al. [14] investigated the safety of suspenders
of Tsing Ma Bridge under traffic loads However, there are
relatively few studies on probabilistic dynamic traffic load
effects on long-span continuous rigid-frame bridges. )e
unique feature for the continuous rigid-frame bridge is the
high-rise piers, which are usually space-flexible, affecting the
dynamic behaviour of the bridge. )us, the probabilistic
dynamic traffic load effects on continuous rigid-frame
bridges deserve more investigation.

Most studies treated the traffic load effect on a bridge as a
random variable. In practice, the load effect on a bridge is a
time-varying random process [15]. )e commonly used
theoretical basis for the probabilistic dynamic analysis of
bridges under vehicle load is the first-passage criterion
[16, 17]. )e first-passage failure probability is usually es-
timated based on Rice’s level-crossing principle [18].
However, applications of the first-passage theory are mostly
concentrated in seismic engineering, while the application to
traffic load analysis is relatively insufficient.)e bottleneck is
that the root mean square of traffic load effects is usually
evaluated in frequency domain, while the vehicle-bridge
coupled vibration is mostly analysed in time domain [19].
)erefore, the key point is how to extract the probability
parameters from the dynamic load effect.

)is study evaluated probabilistic dynamic traffic load
effects on rigid-frame bridges under highway traffic moni-
toring loads. )e site-specific traffic monitoring data were
utilized to establish stochastic traffic models. )e dynamic
effect was considered in a vehicle-bridge coupled vibration
model, and the probability estimation was conducted based
on the first-passage criterion of the girder deflection. )e
prototype bridge is a continuous rigid-frame bridge with
mid-span length of 200m and pier height of 182m. It is
demonstrated that the dynamic traffic load effect follows
Gaussian distribution and thus can be treated as a stationary
random process. Parametric studies were conducted, ac-
counting for the road roughness condition, the bridge span
length, and the traffic growth ratio.

2. Theoretical Basis of Probabilistic Traffic-
Bridge Interaction Analysis

2.1. Traffic-Bridge InteractionModel. A vehicle passing on a
bridge leads to the vibration of the bridge due to the road
surface roughness [20]. Meanwhile, the vibration of the
bridge impacts the vibration of the vehicle. )us, the
vehicle-bridge interaction is a coupled vibration system.
Figure 1 shows the plane motion model of two-axle ve-
hicle, where x represents the road roughness and C and K
represent the damping and stiffness parameters, re-
spectively. )e vehicle model has four degrees of freedom

including vertical motion of two axles and the motion and
rotation of the vehicle body.

Based on the simplified model as shown in Figure 1, the
differential equation of motion of the vehicle-bridge coupled
system can be written as [21]

Mv €uv + Cv _uv + Kvuv � Fvg + Fvb, (1a)

Mb €ub + Cb _ub + Kbub � Fbg + Fbv, (1b)

where Mv and Mb represent the mass matrix of the vehicle
and that of the bridge, respectively; Cv and Cb represent the
damping matrix of the vehicle and that of the bridge, re-
spectively; Kv and Kb represent the stiffness matrix of the
vehicle and that of the bridge, respectively; uv and ub rep-
resent the displacement vector of the vehicle and that of the
bridge, respectively; Fvb and Fbv represent the interaction
forces between the vehicle and the bridge; Fvg and Fbg
represent the weight of the vehicle and that of the bridge,
respectively.

In order to consider the multiple-vehicle effect on the
bridge response, this study utilized an equivalent dynamic
wheel load (EDWL) approach proposed by Chen and Cai
[22]. Based on the EDWL approach, the force of the jth
vehicle on a bridge can be simplified as a time-varying force,
which can be written as
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where Rj represents wheel weight ratio of the jth vehicle; Gj
represents the GVW of the jth vehicle; xj and dj represent
longitudinal and lateral positions on the bridge, respectively;
hk and ak represent the kth-order vertical and torsional
bending modes of the bridge; n and nv, respectively, rep-
resent modal orders of bridges and the number of vehicles
on the bridges; Ki

vl and Ci
vl represent stiffness and damping

matrixes of the vehicle, respectively; Yi
vl and _Y

i

vl, respectively,
represent the vertical displacement and the velocity of the ith
axle; EDWLj(t) represents the equivalent dynamic axis load
of the jth vehicle at time t.

)e effectiveness of EDWL approach has been verified by
Wu and Chen [23] and Lu et al. [24] for long-span cable-
stayed bridges and suspension bridges, respectively. )is
study develops the EDWL approach in probability analysis
and reliability evaluation for continuous rigid-frame bridges.

2.2. First-Passage Criterion. )e first-passage criterion is
usually utilized for Rice’s level-crossing probability analysis
of a random process. )e principle of Rice’s level-crossing is
shown in Figure 2, where t is time, x is a random process,
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that is, the traffic load effect in the present study, and v(x) is
the level-crossing rate fitted to the histograms of the number
of crossings. )us, the critical content of the level-crossing
theory is to count the number of crossings for the random
process.

Suggest that the traffic load effect can be assumed as a
Gaussian random process, which will be demonstrated in the
case study. For a random process x(t), Rice [25] provided the
number of crossings for a level b during time T, which is
written as

Nb(T) � 􏽚
T

0
􏽚

+∞

−∞
| _x(t)|px _x(b, _x, t)d _xdt, (3)

where px _x(b, _x, t) is a joint probabilistic density function for
x(t) and _x(t). )is function is difficult to estimate for a
nonstationary process. Fortunately, the traffic load effect on

a bridge can be treated as a stationary random process, as
mentioned by researchers [26, 27]. On this basis, the level-
crossing rate vb(t) for a threshold b can be written as

vb(t) � 􏽚
∞

−∞
| _x|px _x(b, _x, t)d _x. (4)

For a Gaussian stationary random process with the mean
value of zero, the level-crossing probability can be simplified
further as

vb �
1
2π
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exp −
b
2

2σ2x
􏼢 􏼣, (5)

where vb is a constant for level b and σx is the root mean
square value. In addition, the number of level-crossings of
stochastic traffic load effects can be assumed as Poisson
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Figure 1: Vehicle-bridge coupled vibration system.
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Figure 2: )e level-crossing principle.
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distribution. )erefore, the probability of exceeding a
threshold can be written as

Pr(b) � exp −vb · T􏼂 􏼃. (6)

Note that the accuracy of the estimation mostly depends
on the fitting to the curves as shown in Figure 2. In addition,
a higher threshold b will result in a more reliable estimation.
In general, the mean value of the traffic load effect on a
bridge is not zero, which is different from seismic load
effects.)erefore, this study developed the above procedures
to a nonzero mean value process, which is rewritten as

vb �
1
2π

σ _x

σx

exp −
b − mx( 􏼁

2

2σ2x
􏼢 􏼣, (7)

where mx is the mean value of the traffic load effect.
)e density of traffic loads changes with time, where the

traffic will be congested and free-flowing for the day and
night, respectively. )erefore, the daily vehicle flow was
divided into sparse and dense states based on the density of
stochastic vehicle model. )e probability can be treated as
the superposition of the two types of level-crossing prob-
ability, which is written as

Pf(b, T) � 1 − exp − a1 · vb1 + 1 − a1( 􏼁 · vb2( 􏼁T􏼂 􏼃, (8)

where vb1 and vb2 represent the level-crossing rates for the
congested and free-flowing vehicle flows, respectively; a1 and
a2 represent the proportions of the congested and free-
flowing vehicle flows, respectively.

)ere is a relationship between the structural reliability
and the first-passage probability. On this basis, the dynamic
reliability can be written as

β � Φ− 1 1 − Pf􏼐 􏼑, (9)

where β is the reliability index, Φ() is the cumulative dis-
tribution function (CDF) of the standard normal distribu-
tion, and Φ−1() is the corresponding inverse function.

2.3. Computational Procedures. Based on the derived for-
mulations of the vehicle-bridge coupled vibration system
and the first-passage criterion, a computational framework is
essential to combine the components as a system. )is study
presented a comprehensive framework for dynamic and
probabilistic analysis for traffic load effects on rigid-frame
bridges based on traffic monitoring data. Figure 3 shows the
flow chart of the procedures.

As shown in Figure 3, the framework consists of three
main procedures: the stochastic traffic modelling, the traffic-
bridge interaction analysis, and the probability evaluation.
Detailed illustrations of the procedures are shown as follows.

)e first step is the stochastic traffic modelling. Initially,
the screened trafficmonitoring data should be collected from
site-specific highways. Subsequently, all vehicles are classi-
fied as 6 groups according to the configuration associated
with the number of axles. On this basis, the statistical
analysis can be conducted for probability modelling of the
gross vehicle weight (GVW), the driving lanes, and the

vehicle spacing. Finally, the stochastic traffic load model can
be simulated utilizing the Monte Carlo simulation (MCS)
approach.

)e second step is the traffic-bridge interaction analysis.
)e critical step is to model the dynamic parameters of the
vehicle model and the modal parameters of the bridge.
Usually, a 2D vehicle model as shown in Figure 1 can be
utilized for a relatively precise analysis. )e dynamic
characteristics of the bridge are considered as mode shapes
and natural frequencies. Since the long-span rigid-frame
bridge is more complex than a conventional-girder bridge,
the numbers of mode shapes and frequencies should be
considered as more as possible. Subsequently, the EDWL
approach is utilized to convert the moving stochastic traffic
flow into time-varying forces. Finally, the time history of
traffic load effects can be simulated based on the pseudo-
dynamic analysis.

)e third step is the probability evaluation. )is step is
conducted based on Rice’s level-crossing theory. Based on
the time histories evaluated from the traffic-bridge inter-
action analysis, the number of level-crossings can be
counted. )e number of crossings is formed as histograms,
where the level-crossing rate can be fitted accurately as
shown in Figure 2(b). Subsequently, the maximum traffic
load effect can be extrapolated with consideration of a return
period. Finally, the first-passage probability and reliability
index can be evaluated based on the assumption of Poisson
distribution.

3. Stochastic Vehicle Flow Simulation Based on
WIM Data

3.1. Probabilistic Modelling of WIM Measurements. Due to
the truck overloading behaviour, the GVW usually follows a
multimodal distribution. In this regard, this study utilized a
Gaussian mixture model (GMM), which is a superposition
of several Gaussian models. In practice, the GMMmethod is
widely used in the application of data clustering [28], but it is
relatively insufficient in the vehicle weight modelling.

In general, a GMM can be represented as

P w | ai, μi, σ
2
i􏼐 􏼑􏽮 􏽯 � 􏽘

M

i�1
ai · g w | μi, σ

2
i􏼐 􏼑, (10)

where w is the GVW, ai is a weight coefficient, g is a
Gaussian distribution function, and M is the number of
Gaussian functions. )e Gaussian is written as

g w | μi, σ
2
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2πσi

􏽰 exp −
1
2σ2i
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2

􏼢 􏼣, (11)

where μi represents mean value of the ith Gaussian distri-
bution function and σi represents standard deviation of the
ith Gaussian distribution function. )e parameters of
GMMs are usually estimated based on the maximum like-
lihood optimization. )is study utilized the Expectation-
Maximization (EM) algorithm to evaluate these parameters.
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)enumber of components is estimated based on the Akaike
information criterion (AIC) [29].

)e authors have conducted extensive analyses on the
probability modelling of traffic parameters as shown in the
doctoral dissertation [30]. Due to the limit of article, only the
probability distributions for 6-axle trucks are provided.
Figure 3 plots the fitted probability distribution function
(PDF) of the axle weight and the GVW, respectively. In
Figure 4, W64 represents the second axle load of six-axle
vehicle.

It is observed that the axle weight and the GVW follow
bimodal distribution. In addition, the GMMs have ideally
fitted to the empirical histograms. In other words, the GMM
has captured the probability behaviour of truck overloading.
Note that the threshold weight for 6-axle trucks is 550 kN
according to the traffic law in China. It can be observed that
half of the 6-axle trucks are overloaded, which is indeed a
risk for existing bridges.

3.2. StochasticTrafficFlowSimulation. With the probability
models established based on the weigh-in-motion (WIM)
data, this study utilized MCS to establish different types
of stochastic traffic flows. )e detailed procedures are
summarized in Figure 5, where NADT is the total number
of daily traffic. )e programming package MATLAB was
utilized to translate the traffic as a matrix that will be
called in the subsequent vehicle-bridge interaction
analysis.

)e preliminary statistical analytical results of the
actual traffic monitoring data indicate that the vehicle
spacing between two following vehicles follows the
Weibull distribution for congested traffic, while it follows
Gamma distribution for free-flowing state. Figure 6 plots
the sample of a free-flowing stochastic traffic flow, where
V1 denotes the lightweight cars and busses, and V2∼V6
denote the 2-axle to 6-axle trucks, respectively. Details of
the configuration of the vehicle types can be found in
[28].

)e benefit of the stochastic traffic flow is the prob-
ability distribution in accordance with the site-specific
traffic monitoring data. In addition, the stochastic traffic
model can be updated with the consideration of the traffic
volume growth and the limit of truck overloading.

4. Case Study

4.1. Backgrounds of the Prototype Bridge. Labajin Bridge, a
continuous rigid-frame bridge in Yalu highway of Sichuan in
China, is selected as prototype to investigate the deflection of
first-passage probability. Site photos of the bridge are shown
in Figure 7. )e span length of the bridge is
(105 + 200 + 200 + 105) m. )e bridge is very famous due to
the highest piers in the area of Asia, where the length of pier
No. 10 is 182m.)e dimensions of the cross sections of box-
girders and piers are shown in Figure 8. )e material of the
box-girder is C60 concrete. )e pier is a composite structure
with concrete filled steel tube. )e internal and external
concrete grades are C80 and C50, respectively.

)e finite element model is shown in Figure 9. All of the
elements were simulated with beam elements. )e boundary
condition of the bridge piers is the constraint of all degrees of
freedom at the bottom elements. )e top nodes of mid-span
piers are connected with the closest girder nodes in rigid
connection. )e top nodes of side-span piers are connected
with the closet nodes with the compressive only connection.
)e top 50 vertical modes of vibration were extracted for the
following vehicle-bridge interaction analysis.

4.2. Influence of RRC on Probability Distribution. Since the
road roughness condition (RRC) has a significant influence
on the vehicle-bridge interaction system, this study selected
“good” and “poor” RRCs for the comparative study. )e
RRCs were simulated by an inverse Fourier transformation
function and corresponding power spectral density. )e
coefficients for “good” and “poor” RRCs are 32×10−6m3/
cycle and 512×10−6m3/cycle, respectively. Figure 10 plots
the time histories of the two types of RRC samples. It is
obvious that the poor RRC has a wider fluctuation range
compared to the one of good RRC.

)e modal analysis of the bridge was conducted firstly
considering the modal switches in three space directions.
)e first 50-order modal shape of the bridge was extracted to
solve vehicle-bridge coupled vibration analysis. )e
damping constant of the concrete was taken as 0.05. T
stochastic vehicle flow samples were transformed as
equivalent time-varying concentrated forces based on
EDWL method. Subsequently, the time histories of the
vehicle load effects were evaluated by utilizing the proposed

Vehicle dynamic model

Equivalent dynamic
wheel load on the bridge

Collection of WIM data from
highways 

Stochastic traffic modeling

Classification of vehicle types

Statistical analysis of GVWs,
driving lanes, and spacings

Stochastic traffic simulation
based on MCS 

Traffic-bridge interaction analysis

Mode shapes and
frequencies of the bridge

Traffic load effect
computation

Probability evaluation

Extrapolation based on Rice’s
principle

First-passage evaluation based
on Poisson distribution

Counting the number of
level-crossings

Fitting to the histograms of
level-crossings

Figure 3: Flow chart of the proposed computational framework.
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pseudodynamic approach. Figure 11 plots the vertical de-
flection histories of the critical point in the mid-span of the
bridge accounting for both good and poor RRCs,
respectively.

It is observed from Figure 10 that the poor RRC results in
more deviations compared with the good RRC. )e maxi-
mum deflection is located at 162 s, where several heavy
trucks load on the mid-span point simultaneously. )e
maximum deflections for good and poor RRCs are −0.196m
and −0.246m, respectively. )us, it is demonstrated that the
RRC has a significant influence on the maximum load effect.

Since the basis for extreme value extrapolation is the
assumption of Gaussian distribution, the probability dis-
tribution should be fitted. Figure 12 plots the histograms of
the deflections and the fitted PDF and CDF curves of
Gaussian distribution. It is obvious that both good and poor
RRCs follow Gaussian distribution. In addition, the shape of
histograms for the poor RRC is more flat than that of the
good RRC.

)e hypothesis testing was conducted to check the fitting
to Gaussian distribution.)e fitting variances are 0.0028 and
0.0019 for the good and poor RRCs, respectively. It is
confirmed that the samples do not refuse the Gaussian
distribution. In order to capture the influence of the two
types of RRCs on the probabilistic load effect, the histograms
of numbers of level-crossings were counted as shown in
Figure 13.

As shown in Figure 13, Rice’s level-crossings were fitted
to the top 30% samples. It is observed that the poor RRC
leads to larger number of level-crossings compared to the
good RRC. Based on the above analysis, it can be concluded
that the RRC can affect the probabilistic characteristics of
traffic load effects, and thus a poor RRC will amplify the
maximum traffic load effect.

4.3. Influence of Bridge Span Length on the Dynamic
Deflection. In order to investigate the influence of bridge
span length on the deflection, both shorter-span and longer-
span continuous rigid-frame bridges were selected for
comparison study. )e main span lengths of the three
bridges are 140m, 200m, and 248m, respectively. In order
to make the comparison of general significance, the same
traffic flow as shown in Figure 6 was utilized for the three
bridges. )e bridge parameters and the maximum deflec-
tions are shown in Table 1.

As observed from Table 1, the maximum deflection
increases with increase of the bridge main span length.
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However, the ratio between the good and poor RRC
effects decreases with the increase of the bridge span
length. )is phenomenon can be explained by the the-
oretical basis that the bridge with a longer span length has
a lower frequency, which will weaken the vehicle-bridge
interaction. )erefore, the influence of the RRC on the
dynamic effect is weakened with the increase of the bridge
span length.

4.4. Probability Estimation. It was concluded by many re-
searchers that dynamic response of bridges under stochastic
vehicle flow can be assumed as stationary random process
[31]. In order to investigate the influence of random process
samples on the characteristics of stationary random pro-
cesses, the mean value and the correlation coefficient in
random process were analysed. Figure 14(a) plots the de-
flection spectrum density of the bridge girder under

stochastic traffic flow load. Figure 14(b) plots the autocor-
relation coefficient of the samples in 100 s, 200 s, and 300 s,
respectively.

It is observed that the mean value and standard value
of the initial position are greatly affected by 7 seconds. In
fact, the mean value and correlation coefficient tend to be
constants with the increase of the samplings number.
)erefore, if the sample is large enough, this process can
be assumed as stationary random process. )e random
process under stochastic vehicle loads can be represented
by the load effects, which was calculated by a large sample
of vehicle flows.

)e mean value and root mean square deflection of the
continuous rigid-frame bridge were obtained by the same
method. Figure 15 shows the distribution of mean value and
root mean square deflection along the girders.

As observed in Figure 15, the maximum mean value and
the root mean square deflection of a continuous rigid-frame
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(c)

Figure 9: Finite element model of Labajin Bridge: (a) overall model; (b) pier element; (c) girder element.
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bridge are −0.071m and 0.088m, respectively. )erefore,
this study selected the mid-span point as representation.)e
following investigation will focus on the deflection of the
critical point under stochastic traffic loads.

4.5. First-Passage Reliability Evaluation. In general, the first-
passage reliability analysis can be conducted based on
probabilistic model associated withmaximum extrapolation.
)e upper threshold deflection of a continuous rigid-frame
bridge is a� L/500� 0.4m according to designed codes in
China. Figure 16 shows the time-varying reliability index

based on the first-passage criterion of the maximum girder
deflection.

As shown in Figure 16, the initial reliability index of
the bridge is 6.45. However, the reliability index decreases
significantly with the time and the proportion of dense
traffic flow. With consideration of the proportion of
dense traffic flow as 1.2%, 2.4%, and 3.6%, the corre-
sponding reliability indexes of the bridge in 100 years are
5.76, 5.62, and 5.60, respectively. )erefore, it is con-
cluded that the proportion of dense vehicle flow has
significant influence on the first-passage probability of
the bridge deflection. )us, the control of dense vehicle
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Figure 12: Probability distribution of the critical deflection: (a) PDF; (b) CDF.
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Figure 14: Bride dynamic deflections in frequency domain: (a) spectrum density; (b) correlation coefficient.

Table 1: Critical parameters of three continuous rigid-frame bridges.

Bridge name Span combination (m) Height of the 0# segment (m)
Maximum deflection (m) Dynamic ratio between poor

and good RRCsRRC� good RRC� poor
Shizijing River Bridge 74 + 140 + 74 8.0 −0.137 −0.182 1.32
Labajin Bridge 105 + 200 + 200 + 105 12.5 −0.196 −0.246 1.25
Lengshui River Bridge 130 + 248 + 130 16.0 −0.254 −0.273 1.07
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Figure 15: Trends of mean value and root mean square of displacement along the girders.
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flow is essential for ensuring the bridge safety in service
period.

5. Conclusions

)is study developed the vehicle-bridge coupled vibration
model to the dynamic reliability analysis of long-span bridges. A
simplified analytical method was presented for evaluating
probabilistic dynamic load effect induced by stochastic vehicle
loads. )e effectiveness of the proposed computational
framework was demonstrated in the case study of a continuous
rigid-frame bridge. Influence of the RRC, the bridge span
length, and the traffic growth on the bridge deflection was
investigated. )e conclusions are summarised as follows:

(1) )e mean value and the root mean square deflections
induced by stochastic traffic loads are constants, which
are uncorrelated with time. )erefore, the stochastic
traffic-bridge coupled vibration is demonstrated as a
stationary Gaussian random process, which can be
treated as a long time history.

(2) )e level-crossing is able to capture the probability
characteristics of the dynamic traffic load effect and
thus provides a connection between the dynamic
effect and the probability model.

(3) )e RRC will impact the probabilistic characteristics
of traffic load effects. A poor RRC leads to larger
number of level-crossings compared to a good RRC,
and thus a poor RRC will amplify the maximum
traffic load effect.

(4) )e influence of the RRC on the dynamic effect is
weakened with the increase of the bridge span length.
)is phenomenon can be explained by the theoretical
basis that the bridge with a longer span length has a
lower frequency, which will weaken the vehicle-bridge
interaction.

(5) With consideration of the proportion of dense traffic
flow as 1.2%, 2.4%, and 3.6%, the corresponding reli-
ability indexes of the bridge in 100 years are 5.76, 5.62,
and 5.60, respectively. )e proportion of dense vehicle
flow has significant influence on the first-passage
probability of the bridge deflection.)us, the control of
dense vehicle flow is essential for ensuring the bridge
safety in service period.

Even though the proposed framework is verified for a rigid-
frame bridge, it can be applied for more types of bridges.
However, more studies are necessary to improve the compu-
tational efficiency and accuracy. A more refined traffic-bridge
interaction analysis approach instead of the simplified EDWL
approach is critical to make the simulation more reasonable. In
addition, the simulated traffic load effect needs to be compared
with structural health monitoring data.
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