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Rolling bearing is widely used in rotating machinery and, at the same time, it is easy to be damaged due to harsh operating
environments and conditions. As a result, rolling bearing is critical to the safe operation of the machinery devices. Compound
fault of rolling bearing is not a simple superimposition of multiple single faults, but the coupling of multiple fault features, making
the vibration signal, becomes complicated. In our study, sparsity-oriented nonconvex nonseparable regularization (SONNR)
method is proposed to rolling bearing compound fault diagnosis under noisy environment. Firstly, a theoretical model of rolling
bearing compound fault is established, and the vibration characteristics of rolling bearing compound fault are analyzed. Secondly,
four-layer structure of the SONNR method is proposed: input layer, nonconvex sparse regularization layer, signal reconstruction
layer, and compound faults isolation layer. Finally, the validity of the method is verified by simulation data and actual data, and it
is compared with the traditional time domain diagnostic methods and artificial intelligence methods.

1. Introduction

Rolling bearing is widely used in many mechanical devices.
With increase in complexity ofmachinery, the requirements of
reliability for rolling bearing are increasing. Bearing damage,
even minor damage, will affect the normal function of the
devices [1–3]. A rolling bearing is often composed of an inner
ring, an outer ring, a number of rolling elements, and a cage.
-e inner ring acts to match the shaft and rotates around the
shaft. -e outer ring acts to cooperate with the bearing seat to
provide support. -e cage evenly distributes the rolling ele-
ments, prevents the rolling elements from falling off, and
guides the rolling elements to rotate. Fortunately, the vibration
signal generated by a single fault of the rolling bearing has been
extensively studied and a series of powerful diagnostic
methods have beenmade. However, in the course of the rolling
bearing, there is not only single fault; with the change of the
operating environment and running time increasing, bearing
often has two ormore faults that are named compound fault of
the rolling bearing. Compound fault is not a simple super-
imposition of multiple single faults, but the coupling of

multiple fault features, making the vibration signal compli-
cated. In addition, rolling bearings are often disturbed by
various background noises during operation. When there are
early weak faults in the bearing, the fault characteristics are
often covered by strong noise, making it difficult to obtain the
fault features. -e background noise is often assumed to be
additive white Gaussian noise (AWGN) [4]. In the classical
techniques, the assumption of Gaussian noise is taken under
consideration [5–7]. -e research signal in this paper already
contains noise signal. In order to verify the effectiveness of the
method, we artificially added Gaussian white noise. -erefore,
the study of compound fault signals detection under noisy
environment technologies becomes urgent to overcome.

To monitor and detect bearing faults and damage, vi-
bration signals are often used. In the past decades, various
signal processing techniques were developed for extracting
fault information about vibration signals. At present, the
methods of compound fault diagnosis of rolling bearing are
mainly empirical mode decomposition (EMD) method,
wavelet analysis method, and sparsity-assisted filtering
methods [8–11]. With the rapid development of artificial
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intelligence and computer technology, intelligent diagnostic
methods based on deep learning (DL) [16–19] were devel-
oped, including convolutional neural network (CNN),
stacked auto encoder (SAE), deep belief network (DBN),
deep Boltzmann machine (DBM), and recurrent neural
network (RNN). However, the existing methods have the
following limitations. -e intrinsic mode function (IMF)
component extracted by the EMD method is essentially a
band-amplified signal that has a sharp cut in the impact. In
addition, wavelet analysis and EMD are both signal pro-
cessing methods based on band division. When the center
frequency of the impact signal overlaps between the center
frequencies of other signals, the impact component cannot
be effectively extracted. L1 norm regularization methods
have become widely used in various applications due to the
convexity of the L1 norm. However, L1 norm solutions often
underestimate the high-amplitude components, yet these
comprise the signal of interest in most cases. -us, L1 norm
solutions are not ideal for certain applications, including
bearing fault diagnosis. A vast number of deep models had
been proposed and verified with various types of bearing
fault signals. For artificial intelligence, all the above publi-
cations stopped at the problem of a single fault, while the
more challenging case, the multiple fault bearing diagnosis,
has not been verified yet.

In general, it is challenging to extract features of vi-
bration signals to indicate bearing faults, especially for
compound faults. -e coupling characteristics of rolling
bearing compound fault signals are mainly manifested in
three aspects: (1) coupling characteristic caused by the
change of structural parameters, that is, when the rolling
bearing fails, the geometric parameters of the bearing
structure change due to the fault, which causes a certain
difference between different frequency components. -e
ratio relationship, the ratio, and the phase corresponding to
the frequency is consistent. (2) Coupling occurring between
different frequency components. Since different rolling
bearing fault signals have corresponding characteristic fre-
quencies and their harmonic components, and the phases
corresponding to different signal components have a certain
correlation, some signal frequencies may have a certain
correlation with other harmonic frequencies. (3) Convex
spare solutions often underestimate the high-amplitude
components, yet these comprise the signal of interest inmost
cases. -us, convex spare solutions are not ideal for certain
applications, including bearing fault diagnosis.

In order to overcome these issues, sparsity-oriented
nonconvex nonseparable regularization (SONNR) for roll-
ing bearing compound fault under noisy environment is
studied in this paper.-e SONNRmethod uses a nonconvex
penalty and simultaneously maintains the convexity of the
least squares cost function to be minimized. Nonconvex
sparse regularization (NSR) that maintains the convexity of
the cost function has been recently studied, to capture the
advantages of both nonconvex regularization and convex
optimization [20, 21]. -e SONNR method has a four-layer
structure: input layer, nonconvex sparse regularization layer,
signal reconstruction layer, and compound faults isolation
layer. -e measured time-domain signal is input layer. In

NSR decomposition layer, nonconvex sparse regularization
by K-singular value decomposition (K-SVD) is used to
improve denoising performance of raw signal. In signal
reconstruction layer, more sparse and noise-reduced signals
are reconstructed. In compound faults isolation layer, the
measured time-domain signal is decomposed into high and
low components using overcomplete rational-dilation
wavelet transforms (RADWT).

-e main contributions of this paper are summarized as
follows:

(1) -e physical model of the compound fault is
established, and the fault impact signal, the envelope
signal, and the envelope signal spectrum of the
compound fault signal are derived. -e modulation
characteristics of the compound fault signal are
obtained from the analysis of the envelope spectrum,
which lays a theoretical foundation for the subse-
quent fault information extraction.

(2) -e nonconvex optimization method for compound
faults under noisy environment has seldom been
considered in previous studies. -e problem of the
characteristic coupling of the rolling bearing com-
pound faults signals and the interference caused by
the noisy environment makes this work a great
challenge. Exploiting the high-amplitude compo-
nents property, a K-SVD-based nonconvex non-
separable regularization denoising algorithm is
presented to extract bearing fault features.

(3) -e RADWT decomposes a complex signal into the
sum of an oscillatory component and a transient
component. For compound faults, RADWTcan well
reveal the amplitude modulation frequency of the
fault shock response.

(4) We present a verification based on real damage
(accelerated lifetime) data set to validate the effec-
tiveness of the proposed method in the diagnosis of
compound faults in rolling bearing. In particular, we
have artificially added noise based on the acquired
signals.

-e main advantage compared to conventional filtering
methods is that the proposed method can better preserve the
bearing fault signal while reducing noise and other inter-
ference components; thus it can significantly improve the
estimation accuracy of the bearing fault signal. In addition,
the compound fault signal can be separated to extract more
obvious fault features.

-e rest of this paper is organized as follows: Section 2
introduces the characteristics of the rolling bearing fault
signal. Section 3 details the proposed SONNR method.
Section 4 presents a simulation study and a real damage
study, which is followed by concluding remarks in Section 5.

2. Analysis of Modulation Characteristics of
Rolling Bearing Compound Fault Signal

We detect the signals from the fault signals collected by the
sensors. -e detection is based on the modulation
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characteristics of the vibration signals. -erefore, before
detecting the fault signals, we need to understand the signal
modulation characteristics in the theoretical analysis.

2.1. Compound Fault *eory Model. -e response of the
impact sequence caused by the spalling fault at the sensor is a
series of unilateral exponentially decaying oscillations.
“Resonant demodulation” of this series of exponentially
decaying sequences will obtain its envelope spectrum, which
is the characteristic spectrum of rolling bearing fault. When
a compound bearing has a compound fault, there is more
than one location of the spalling fault. -e position of the
spalling point relative to the acceleration sensor changes
continuously with the rotation. -e spalling point will enter
the load area and exit the load area. -e magnitude and
direction of the received series of vibration impact forces
also change. In this case, the vibration signal of the rolling
bearing compound fault collected by the acceleration sensor
is more complicated, and the corresponding envelope signal
and its spectrum are also more complicated. In order to
make a more realistic interpretation of the envelope signal
and the envelope spectrum and improve the accuracy of the
diagnosis, a model for analyzing the envelope signal and its
frequency spectrum of the compound bearing compound
fault is proposed in the following.

In this chapter, the theoretical model is studied by taking
the compound fault of the inner ring spalling and the rolling
element spalling as an example. Figure 1 shows the theo-
retical model of compound fault of inner ring spalling and
rolling element spalling.

When t� 0, the position of the spalling point of the inner
ring is exactly at the peak of the load distribution density
curve, that is, the lowest position in the axis direction, and it
just collides with the rolling element. Since the fit between
the inner ring and the shaft is an interference fit during
assembly, the inner ring will rotate as the shaft rotates. -e
spalling point on the inner ring also rotates with the rotation
of the bearing, so that the position of the spalling point does
not always fall within the load distribution area as shown in
Figure 1; most of the time it will fall outside the load dis-
tribution area.

Due to the different load, the resulting pulse force is
different. When the spalling point of the inner ring falls
within the load distribution area as shown in the figure, the
magnitude and direction of the vibration pulse force are
related to the position of the spalling point and the angle of
the axis. When the spalling point is outside the load area
shown in Figure 1, it can be known from the force analysis
that if the rotational inertia force generated when the rolling
bearing rotates is ignored at this time, no vibration pulse
force is generated in this area. In summary, when the in-
ternal ring has a spalling fault, the vector value of the
generated vibration pulse force is not only affected by the
load distribution but also related to the location of the
spalling fault point.

From this analysis, it can be seen that the magnitude and
direction of the impulse force caused by the damage point of
the inner ring and rolling element are affected by the load

distribution and the position of the damage point. -ese
factors are discussed in the following sections.

2.1.1. Regardless of Load Distribution and Location of
Spalling Point. When the spalling point of the inner ring
appears, its vibration characteristics appear as pulse vibra-
tions in equal time intervals. If the impact of the load
distribution and the position of the spallation point on the
pulse force is ignored, it can be determined that each col-
lision between the defect and the rolling element produces
one vibration pulse, and the magnitude of each pulse force is
equal. -e expression of a series of pulses caused by spalling
of the inner ring is shown in

Δi(t) � 

+∞

k�− ∞
diδ t − kTi( , (1)

where di is intensity of pulse force caused by inner ring
damage, δ(t) is unit pulse function, Ti � 1/fi is interval be-
tween pulses, and fi is inner ring fault characteristic
frequency.

2.1.2. Load Distribution Expression. Rolling bearing is
mainly subject to radial load forces during operation. When
a rolling bearing is subjected to radial loads, the load dis-
tribution is shown in

q(φ) � qmax 1 −
1
2ε

(1 − cosφ) 
n

, (2)

where φmax � cos− 1(Cd/(2δmax + Cd)), ε � (1/2)(1 − (Cd/
(2δmax + Cd))), Cd is radial clearance, and δmax is maximum
contact deformation n � 1.1, |φ|≤φmax.

2.1.3. Expression of Influence Coefficient of Pulse Force Acting
Direction. Assuming that the magnitude of the pulse force is
proportional to the load distribution density at the position

Rolling
element
peeling
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φ 
Φmax 

Figure 1: Compound fault theory model of internal ring spalling
and rolling element spalling.
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where it is applied, the magnitude of the pulse force acting
on the sensor axis is

fi(t) � Δi(t)q 2πfs t( p 2πfst( . (3)

Since the phases of q(φ) and p(φ) are the same, let

ci(t) � q 2πfst( p 2πfst( . (4)

-e vibration envelope signal due to spalling damage of
the inner ring is (∗ indicates convolution)

vi(t) � Ai Δi(t)ci(t) ∗ e(t). (5)

-e envelope spectrum corresponding to vi(t) is

Vi(f) � Ai Δi(f)∗Ci(f) E(f). (6)

For the rolling element, the amplitude spectrum is
shown in

Vb(f)


 � Vb0(f)
2

+ Vbi(f)
2

+ 2 Vb0(f)


 Vbi(f)


cosΔφb 
(1/2)

.

(7)

-en, the envelope spectrum of the compound fault of
the inner ring and the rolling element can be processed by
the superimposition principle, and the vector sum of the
total amplitude is shown as follows:

|V(f)| � Vi(f)
2

+ V0(f)
2

+ 2 Vi(f)


 V0(f)


cosΔϕ 
(1/2)

,

(8)

Δϕ � − mΔθ − nΔφ, (m, n are integers). (9)

According to (8) and (9), the envelope amplitude
spectrum of the combined fault of the inner ring spalling and
the rolling element spalling can be obtained. -e envelope
spectrum diagram is shown in Figure 2. -e frequency
component is the same as in the case of a single fault: the
characteristic spectrum of the inner ring spalling is a series of
main spectral lines with the inner circle fault characteristic
frequency fi as the distance, and at the same time, the two
sides of each main spectral line are separated by the fre-
quency fr and its multiples. -e amplitudes of the main and
sidelines decrease with increasing frequency. It should be
noted that there is a peak at the frequency fr. -e frequency
spectrum is a series of main spectral lines with the char-
acteristic frequency fb of the rolling element as the interval.
At the same time, each of the main spectral lines is separated
from the revolution frequency ff and its side frequency with
smaller amplitude side spectral lines. In addition, there is a
peak at the revolution frequency ff.

By analyzing the modulation characteristics of the
compound fault, we can know that the fault characteristics of
the inner ring and the rolling element need to be execrated in
order to prevent missed diagnosis and misdiagnosis.

2.2. Coupling Characteristics and Challenges of Rolling
Bearing Compound Fault Signals. -e coupling character-
istics of rolling bearing compound fault signals are mainly
manifested in four aspects: (1) Due to the difference in the
location and size of the fault, the response waveforms

generated by different faults will also affect each other,
coupling multiple fault characteristics and interfering with
each other. (2) -e coupling caused by changes in structural
parameters, that is, when the rolling bearing fails, the fault
causes the geometric parameters of the bearing structure to
change, which causes a certain degree of difference between
different frequency components. -e relationship between
this ratio and the phase corresponding to the frequency is the
same. (3) -e coupling between different frequency com-
ponents, that is, different rolling bearing fault signals gen-
erally appear to have corresponding characteristic
frequencies and their harmonic components. Because the
phases corresponding to different signal components have a
certain correlation, some signal frequencies may have a
certain correlation with other harmonic frequencies. (4) For
rolling bearing compound fault under noisy environment,
the signal modulation characteristics of the time domain
signal are not obvious. It will be strengthened, and the
impact component with low energy may be overwhelmed by
the fault characteristics with high energy. -ese four aspects
will lead to the incomplete diagnosis of fault characteristics
when the single fault diagnosis method is used to diagnose
the rolling bearing compound fault.

-is section illustrates these challenges using actual
signals as examples.

Figure 3 is the acceleration vibration signal and the
frequency spectrum of the bearing when the inner and outer
raceways and rolling elements have spalling fault at the same
time. -e shaft speed is 30.01Hz, the load is 5 Kg, the
sampling frequency is 51.2 KHz, and the number of sam-
pling points is 65536. -e bearing’s outer ring characteristic
frequency is 91.47Hz, the inner ring characteristic frequency
is 148.55Hz, the rolling element characteristic frequency is
59.78Hz, and the cage rotation frequency is 11.34Hz. As can
be seen from Figure 4, the vibration of time-domain signal of
the rolling bearing compound fault is relatively chaotic.
Although several impacts can be observed, it is difficult to
determine the fault location. Envelope analysis is performed
on this signal, and the envelope spectrum obtained is shown
in Figure 5.

As can be seen in Figure 4(b), there is a spectral peak of
91.41Hz and its multiples, which is consistent with the
characteristic frequency of the outer ring fault. -e analysis
can only detect the inner ring fault, while other simultaneous
outer ring and rolling element faults are omitted. -is de-
termines that the traditional single-point fault method can
only be used to diagnose the compound bearing of a rolling
bearing, and it is difficult to analyze and diagnose it com-
prehensively and accurately.

-e autocorrelation processing is performed on the
envelope signal of Figure 4(b) to obtain the self-power
spectrum shown in Figure 5. Figure 5 eliminates noise
glitches and makes the fault frequency in the spectrum
more prominent. We can see that there is a spectral peak
of 91.41 Hz and its frequency doubling, which can more
significantly determine that the bearing has an outer ring
spalling fault. -e energy caused by the impact of the
fault is distributed in the entire frequency domain.
-e overall analysis can only display the characteristics of
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the compound fault in the same result. -e fault features
with lower energy may be overwhelmed by the fault
features with higher energy. -erefore, compound faults
should be expressed in different channels as much as
possible.

3. The Proposed Algorithm SONNR

Figure 6 gives a flowchart of the proposed methodology.
-e SONNR method has a four-layer structure: input
layer, nonconvex sparse regularization layer, signal

reconstruction layer, and compound faults isolation layer.
-e measured time-domain signal is input layer. In NSR
decomposition layer, nonconvex sparse regularization by
K-SVD is used to improve the denoising performance of
raw signal. In signal reconstruction layer, more sparse and
noise-reduced signals are reconstructed. In compound
faults isolation layer, the measured time-domain signal is
decomposed into high and low components using
RADWT. -e high-Q component contains a sustained
oscillation cycle signal; the low-Q component contains the
rolling fault impact transient signal.

(a)

(b)

(c)

fb
fiff

ff
fr fr

(d)

Figure 2: Modulation characteristics of vibration signal of compound fault. (a) Fault shock. (b) Fault shock response. (c) Envelope signal.
(d) Envelope spectrum.
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Figure 3: Vibration acceleration signal of compound fault bearing. (a) Time-domain diagram of acceleration signal. (b) Frequency-domain
diagram of acceleration signal.
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3.1. Nonconvex Sparse Regularization by K-SVD. In order to
enhance sparsity, many NSR methods have been proposed,
and a general way to model the problem is the nonconvex
regularization least squares problem:

min
x

F(x) �
1
2
‖y − Ax‖

2
2 + λψ(x) , (10)

where ψ: RN⟶ R is a nonconvex sparsity-inducing
penalty. In this section, we use the nonconvex generalized
minimax-concave (GMC) penalty in [22].

In our SONNR method, we use the GMC penalty ψGMC,
which is defined as

ψGMC � ‖x‖1 − min
v

‖v‖1 +
c

2λ
‖A(x − v)‖

2
2 . (11)

Using the GMC penalty in (11), the cost function in (10)
can be expressed as

F(x) �
1
2
‖y − Ax‖

2
2 + λ‖x‖1 − min

v
λ‖v‖1 +

c

2
‖A(x − v)‖

2
2 

� max
v

1
2
‖y − Ax‖

2
2 + λ‖x‖1 − λ‖v‖1 −

c

2
‖A(x − v)‖

2
2

� max
v

1
2

(1 − c)‖Ax‖2 + λ‖x‖1 + g(x, v) 

�
1
2

(1 − c)‖Ax‖2 + λ‖x‖1 + max
v

g(x, v) .

(12)
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Figure 4: Fault rolling bearing vibration acceleration. (a) Time-domain acceleration signal. (b) Spectrum of acceleration signal.
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In our SONNR method, we use the GMC penalty ψGMC,
which is defined as

ψGMC(x) � ψB(x) � ‖x‖1 − SB(x), (13)

where SB(x) ≔ inf
v∈RN

‖v‖1 + (1/2)‖B(x − v)‖22 , B �

1 0
1 1
0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

SB(x) is generalized Huber function. -e GMC penalty
ψGMC is shown in Figure 7 and the generalized Huber
function SB(x) is shown in Figure 8.

-e minimization of the GMC-regularized least squares
problem can be written as a saddle-point problem:

x
opt

, v
opt

  � argmin
x

max
v

F(x, v), (14)

where

F(x, v) �
1
2
‖y − Ax‖

2
2 + λ‖x‖1 − λ‖v‖1 −

λ
2
‖A(x − v)‖

2
2,

(15)

with 0< λ< 1, 0< μ< 2/max 1, λ/(1 − λ){ }‖A‖− 2
2 , which en-

sures that the iterative algorithm converges.
-e linear transformation A in (11) is important for

sparse representation. An effective transformation can
promote the sparsity of coefficients. For bearing fault di-
agnosis, we use K-SVD as the linear transformation A in this
paper. -e detailed description of K-SVD can be found in
[23]. In K-SVD, the linear transformation A can be solved by

A � arg
A

min

N

i�1
min

xi

Axi − yi

����
����
2

+ λ xi

����
����1 . (16)

K-SVD can be regarded as a generalized form of K-means.
In the K-means algorithm, each semaphore can only be ap-
proximated by one atom, while each signal in K-SVD is a linear
combination of multiple atoms. Solve the sparse representation
coefficients based on the given signal y and the initial dictionary
D. -is problem can be solved by K-SVD, and the closest
solution A can be found by the basis pursuit (BP) algorithm.

Iterative algorithm for nonconvex sparse regularization
by K-SVD problem is shown in Algorithm 1.

3.2. Principle of Overcomplete Rational-Dilation Wavelet
Transforms. -e authors in [24] proposed an overcomplete
rational expansion from the perspective of the frequency
domain, wavelet transform (RADWT), overcomplete ra-
tional expansion wavelet transform by changing the
upsampling of the signal p and downsampling the value of q
to adjust the quality factor of the wavelet, greatly expanding
the range of the quality factor and increasing. -e flexibility
of quality factor selection: the quality factorQ of this method
is determined by the following equation:

Q �

��
p

q


1

(1 − p)/q
. (17)

-e quality factor is a measure of the degree of frequency
aggregation of a signal. -e higher the quality factor, the

more concentrated the frequency of the signal, and the
higher the number of oscillations in the time domain.

-e RADWTdecomposes a complex signal into the sum
of an oscillatory component and a transient component [25].
-e RADWT nonlinearly separates the components in the
signal according to the oscillation characteristics and es-
tablishes the optimal sparse representation of each of the
high resonance components and the low resonance
components.

It is assumed that the observed signal x can be expressed
as the sum of two signals x1 and x2:

GMC penalty ψB (x) = ||x||1 – SB (x)

1

1
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Figure 7: GMC penalty ψGMC.
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Figure 8: Generalized Huber function SB(x).
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x � x1 + x2

x, x1, x2 ∈ RN
. (18)

-e purpose of the RADWT analysis is to estimate the
source signals x1 and x2 from the observed signal x,
respectively.

3.3. Solving SONNRProblem. In our study, sparsity-oriented
nonconvex nonseparable regularization (SONNR) method
is proposed to rolling bearing compound fault diagnosis
under noisy environment. Four-layer structure of SONNR
method is proposed: input layer, nonconvex sparse regu-
larization layer, signal reconstruction layer, and compound
faults isolation layer.

Iterative algorithm for our SONNR problem is shown in
Algorithm 2.

In view of the coupling characteristics of rolling
bearing compound faults and the problem that traditional
fault diagnosis methods cannot comprehensively diag-
nose compound faults, the coupling signals need to be
decoupled in order to more effectively diagnose the fault
characteristics one by one. As shown in Algorithm 2, -e
SONNR method has a four-layer structure: input layer,
nonconvex sparse regularization layer, signal recon-
struction layer, and compound faults isolation layer. -e
SONNR method can better preserve the bearing fault
signal while reducing noise and other interference com-
ponents; thus it can significantly improve the estimation
accuracy of the bearing fault signal. In addition, the
compound fault signal can be separated to extract more
obvious fault features.

4. Applications in Bearing Compound
Fault Diagnosis

4.1. Simulated Compound Fault under Noisy Environment.
In order to verify the effectiveness of the SONNR extraction
fault response, this method is first used to analyze a sim-
ulated compound fault signal.

-e rolling bearing fault model is used to simulate the
compound fault of the inner ring and the outer ring under
the strong noise background.-emathematical model of the
inner ring spalling fault of the rolling bearing is shown in

xi(t) � s(t) + n(t) � 
i

Aih t − iT − τi(  + n(t),

Ai � A0 cos 2 2πfrt + ϕA(  + CA,

h(t) � exp(− Bt)cos 2πfnt + ϕω( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

-emathematical model of the rolling bearing outer ring
spalling fault is shown in

x0(t) � s(t) + n(t) � 
i

Aih t − iT − τi(  + n(t),

Ai � cons tan t,

h(t) � exp(− Bt)cos 2πfnt + ϕω( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

-e mathematical model of the compound fault of the
inner ring and the outer ring is shown in

x(t) � xi(t) + x0(t), (21)

where τi is a small fluctuation of the i-th impact with respect
to the average period T. Assume that the bearing fault is a
steel peeled off from the external raceway; the rotating speed
of the bearing is 3660 rpm. It is also assumed that the fault
characteristic frequency of inner ring is fi � 600Hz and
fault characteristic frequency of outer ring is f0 � 500Hz.
-e natural frequency fd of the rolling bearing system is
9225Hz, the random slip is assumed to be positively dis-
tributed over a standard deviation from 0.5% of the rota-
tional speed, and the sampling frequency fs is 60KHz. -e
simulated signal without noise is shown in Figure 9.

In Figure 10, the randomwhite noise distributed over the
positive is added (the signal-to-noise ratio is − 10 dB), and
the time domain waveform after adding noise is shown in
Figure 10. As can be seen from Figure 10, the fault feature is
almost overwhelmed due to the background noise variable.

Determine the decomposition parameters of the
SONNR: λ � 0.8,Q1 � 4.5,Q2 �1, J1 � 60, J2 �15, r1 � r2 � 3.5.
SONNR sparse decomposition of the fault signal is shown in
Figures 11 and 12. It can be seen from Figure 11(b) that there
is a spike in the outer ring fault frequency of 500Hz and its
multiplier (1000Hz, 1500Hz, 2000Hz, etc.), and it can be
diagnosed that there is an outer ring fault. -e inner ring
fault frequency is 600Hz and its multiple frequency 1200Hz.
It can be seen from Figure 12(b) that there is a main peak at
1800Hz, etc., and a side band appears at the frequency shift
(200Hz) on both sides of the main peak, indicating that

(1) initialize x(0), v(0), 0< λ< 1, 0< μ< 2/max 1, λ/(1 − λ){ }‖A‖− 2
2

(2) i � 0, 1, 2, . . . do
(3) calculate the coefficients xi using a simple gradient descent procedure
(4) update the dictionary A(n+1) � A(n) − η

N
i�1(A

(n)xi − yi)x
T
i

(5) ω(i) � x(i) − μAT(Ax(i) − y) + μcATA(x(i) − v(i))

(6) u(i) � v(i) + μcATA(x(i) − v(i))

(7) x(i+1) � soft(w(i); λμ)

(8) v(i+1) � soft(u(i); λμ)

(9) end for
(10) return xi+1

ALGORITHM 1: Iterative algorithm for nonconvex sparse regularization by K-SVD problem.
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(1) initialize x(0), v(0), 0< λ< 1, 0< μ< 2/max 1, λ/(1 − λ){ }‖A‖− 2
2 , Q1, Q2

(2) i � 0, 1, 2, . . .do
(3) calculate the coefficients xi using a simple gradient descent procedure
(4) update the dictionary A(n+1) � A(n) − η

N
i�1(A

(n)xi − yi)x
T
i

(5) ω(i) � x(i) − μAT(Ax(i) − y) + μcATA(x(i) − v(i))

(6) u(i) � v(i) + μcATA(x(i) − v(i))

(7) x(i+1) � soft(w(i); λμ)

(8) x
(i+1)
1 , x

(i+1)
2 � RA DW T(x(i+1), Q1, Q2)

(9) v(i+1) � soft(u(i); λμ)

(10) end for
(11) return x

(i+1)
1 , x

(i+1)
2

ALGORITHM 2: Iterative algorithm for SONNR problem.
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Figure 10: Compound fault signal with noise.
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there is an inner ring fault in the rolling bearing. -e results
show that it is effective to extract the compound fault in-
formation of rolling bearing by the SONNR method.

4.2. Results Based on Accelerated Lifetime (Real Damage)
Data Set. -e proposed method is validated by benchmark
data set of Paderborn University [26], which involves com-
pound damage to various operating conditions. -is bench-
mark generates real bearing damage samples by accelerating
lifetime tests.-e option to compound fault withmeasurement

data onto real bearing damage: different damage symptoms
occur in the bearing or identical damage symptoms occur on
different bearing components. Our test was carried out by
including data sets from bearing with multiple damage at both
raceways, at inner and outer rings (KB23).-e compound fault
form of KB23 is shown in Figure 13. -e computational
complexity isO (n·d), the length of the sequence n is 3840, and
the computational dimension d is 1.

-e manufacturer specific information about bearing
KB23 is shown in Table 1.
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Figure 11: High-quality factor components and their envelope spectra. (a) High-quality factor component waveform. (b) High-quality
factor component envelope spectrum.
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4.2.1. Step 1: Noise Signal Preparation. In order to verify the
effectiveness of the proposed method of fault classification in
noisy environments, we add Gaussian white noise to each
data set. -e noise n is white Gaussian noise with standard
deviation σ � 0.6. As shown in Figure 14, the bearing KB23
fault signal, the additive white Gaussian noise signal, and the
frequency domain signal of the KB23 fault signal are shown
from top to bottom. It can be seen that the signal is seriously
polluted by noise, and the time domain signal and the
frequency domain signal cannot distinguish the vibration
characteristics of the original model. -erefore, it is very
difficult to extract effective fault information about a signal
with noise.

4.2.2. Step 2: Nonconvex Sparse Regularization by K-SVD.
We use GMC with a fixed regularization parameter λ to
analyze the simulation signal of inner fault with noisy signal.
In order to explore the effect of GMC on the performance of
the sparse regularizedmethod, we compare this method with
the L1 regularization method.

-e L1-regularized least squared problem is

min
x

J(x) �
1
2
‖y − Ax‖

2
2 + λ‖x‖1 . (22)

In this case, the parameters of GMC nonconvexity and
L1 regularization are set to c � 0.8. A is an oversampled
inverse discrete Fourier transform and the result of Fourier
coefficients is shown in Figure 15(c) by K-SVD. -e per-
formance is evaluated by the average root-mean-squared
error (RMSE). Sparse result by GMC and L1 is shown in
Figures 15(a) and 15(b). -e RMSE of the GMC and L1-
norm methods is 0.129 and 0.149. -e comparison results
show that the GMC is more accurate and uses fewer coef-
ficients and yields more accurate denoising result.

4.2.3. Step 3: Compound Fault Isolation. -e fault charac-
teristic frequency of the outer ring is

f0 �
z

2
fr 1 −

Bd

Pd

cosϕ . (23)

-e fault characteristic frequency of the inner ring is

fi �
z

2
fr 1 +

Bd

Pd

cos ϕ . (24)

Determine the decomposition parameters of the
RADWT: Q1 � 4, Q2 �1, J1 � 30, J2 �15, r1 � r2 � 3.5. Taking
the parameters of the bearing into (16) and (17), we can get
fi � 123.3, fo � 76.25.

From Figure 16, we can know that the RADWT de-
composes a complex signal into the sum of two different
components. -e RADWT nonlinearly separates the com-
ponents in the signal according to the oscillation charac-
teristics and establishes the optimal sparse representation of
each of the high resonance components (Figure 16(b)) and
the low resonance components (Figure 16(c)). We perform
envelope analysis on Figures 16(b) and 16(c), respectively,
and we can get Figures 17 and 18.

It can be seen from Figure 17 that there is a spike in the
outer ring fault frequency of 76.25Hz and its multiplier, and
it can be diagnosed that there is an outer ring fault. Figure 18
shows the fundamental rotation frequency of the shaft and
its harmonics (25Hz), the ball pass frequency of the inner
race (123.3Hz), and its sidebands as well as its

Outer ring

Outer ringInner ring

Inner ring

Figure 13: KB23: spalling at the ring of the inner ring and outer ring [26].

Table 1: Manufacturer specific information about bearing.

Criterion Parameters
Bearing type Ball bearing 6203 (KB23)
Diameter of inner raceway 24.0mm
Diameter of outer raceway 33.1mm
Pitch circle diameter 28.55mm
Number of rolling elements 8 pc
Rolling element diameter 6.75mm
Length of rolling element 6.75mm
Nominal pressure angle 0°N
Static load rating 3800N
Dynamic load rating 3800N
Speed limit 12000 rpm
Number of load cycles 2769500
Lifetime 15:01 h:min
Damage method Acc. lifetime test
Sampling rate 64 kHz
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corresponding harmonics. Figure 18 indicates that there is
an inner ring fault.

-e results show that it is effective to extract the com-
pound fault information of rolling bearing by the SONNR
method.

4.3. Comparison with Time-Domain Diagnostic Methods.
Envelope analysis, EMD, EEMD, and EEMD-PCA are
commonly used to extract the rolling bearing fault infor-
mation.-e traditional analysis techniques are applied to the
vibration signal of KB23.
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Figure 14: KB23 fault signal with noise. (a) KB23 fault signal. (b) Additive white Gaussian noise with σ � 0.6. (c) FFT of noisy inner fault
signal.
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Figure 15: Sparse result by GMC and L1. (a) Denoising using GMC penalty. (b) Denoising using L1 penalty. (c) Optimized coefficients.
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Envelope analysis result of KB23 is shown in Figure 19.
From Figure 19, it is difficult to find the characteristic
frequency of the fault, so the traditional envelope analysis is
difficult to reveal the characteristic frequency of the com-
pound fault shock response.

EMD and EEMD analysis results of KB23 are, respec-
tively, shown in Figures 20 and 21. -rough EMD de-
composition, we can get a series of IMF with different
frequencies, which can be used to extract the characteristics
of the original signal. From Figures 20(b) and 21(b), it is

difficult to find the characteristic frequency of the fault, so
the EMD and EEMD analysis is difficult to reveal the
characteristic frequency of the compound fault shock
response.

EEMD-PCA analysis results of KB23 are, respectively,
shown in Figures 22 and 23. In this section, we reconstruct
the original compound fault signal KB23 by EEMD-PCA
method. -e reconstructed picture is shown in Figure 22.
From Figure 22, we can find that the EEMD-PCA method
plays a role in noise reduction. Next, spectrum analysis is
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Figure 16: Compound fault isolation result by RADWT. (a) Reconstructed signal using GMC penalty. (b) High-quality factor components.
(c) Low-quality factor components.
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performed on the reconstructed signal, and the result is
shown in Figure 23. From Figure 23, it is difficult to find the
characteristic frequency of the fault, so the EEMD-PCA
analysis is difficult to reveal the characteristic frequency of
the compound fault shock response.

-e comparison experiments with traditional envelope
analysis and EMD, EEMD, and EEMD-PCA analysis show
that the proposed technique SONNR of fault information
extraction has fewer spectral glitches and a higher signal-to-
noise ratio. And this method can reveal the amplitude
modulation frequency of fault shock response more than
traditional methods.

4.4. Comparison with Artificial Intelligence Methods.
Further tests were compared with artificial intelligence
methods.-e test was carried out by including data sets from
bearings with compound damage at both raceways, at inner
and outer ring (KB23, KB24, and KB27) in [22]. -e
benchmark data set included 26 damaged bearing states (12

outer faults, 3 compound faults, and 11 inner faults) and 6
undamaged (healthy) states for reference. Each bearing state
included 80 measurements. -erefore, our training types are
divided into 4 categories (class 1: healthy; class 2: outer fault;
class 3: inner fault; class 4: compound fault), 70% of which
are used to train the network, and the remaining 30% are
used for testing. -e experiments are tested in Python 3.7
software platform using a laptop equipped with Intel-i5
3.2GHz CPU, 8GB memory. At the end of this section,
experimental results are verified by comparing with com-
monly used diagnostic methods including stacked auto
encoder (SAE), another version of stacked auto encoder
DBN, and convolutional neural network (CNN). For the
neural networks, parameters such as the number of hidden
layers and neurons were not tuned and this explains the poor
performance.

It can be seen from Table 2 that the artificial intelligence
methods get the poor performance. It can be seen that the
artificial intelligence algorithm is not very effective for the
classification of compound faults. -is also makes the
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application of artificial intelligence algorithms in compound
fault diagnosis a challenging topic in the future.

5. Conclusions

In this paper, we present the SONNR method for rolling
bearing compound fault diagnosis. -e main advantage of
the SONNR over conventional fault diagnosis methods is

that SONNR can better preserve the bearing fault signal
while reducing the interference of noise and other com-
ponents; thus it can reveal the periodic fault impact mode in
the bearing signal.-e physical model of the compound fault
is established, and the modulation characteristics of the
compound fault signal are obtained from the analysis of the
envelope spectrum, which lays a theoretical foundation for
the subsequent fault information extraction. -e nonconvex
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Figure 21: EEMD analysis of KB23. (a) IMFs. (b) Spectrum of IMFs.
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Figure 20: EMD analysis of KB23. (a) IMFs. (b) Spectrum of IMFs.
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optimization method for compound faults under noisy
environment has been considered in our studies. Exploiting
the high-amplitude components property, a K-SVD-based
nonconvex nonseparable regularization denoising algorithm
is presented to extract bearing fault features. For compound
faults, RADWT can well reveal the amplitude modulation

frequency of the fault shock response. Finally, we present a
verification based on real damage (accelerated lifetime) data
set to validate the effectiveness of the proposed method in
the diagnosis of compound faults in rolling bearing. In
particular, we have artificially added noise based on the
acquired signals. -e comparison experiments with

EEMD-PCA reconstruction
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Figure 22: EEMD-PCA reconstruction analysis of KB23.
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Table 2: Classification accuracy on MFS data set.

Method Accuracy (%) Training time (s)
SAE 63.4272 20.41032
DBN 64.8357 20.53823
CNN 65.3333 11.54596
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traditional envelope analysis and EMD, EEMD, and EEMD-
PCA analysis show that the proposed SONNR method has
more advantages in complex fault diagnosis than traditional
time domain method. Further tests were compared with
artificial intelligence methods. -e result shows that the
artificial intelligence methods are not very effective for the
classification of compound faults.-is also brings challenges
to future research.
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