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Nonlinear singularly perturbed problem for time-delay evolution equation with two parameters is studied. Using the variables of
the multiple scales method, homogeneous equilibrium method, and approximation expansion method from the singularly
perturbed theories, the structure of the solution to the time-delay problem with two small parameters is discussed. Under suitable
conditions, first, the outer solution to the time-delay initial boundary value problem is given. Second, the multiple scales variables
are introduced to obtain the shock wave solution and boundary layer corrective terms for the solution.-en, the stretched variable
is applied to get the initial layer correction terms. Finally, using the singularly perturbed theory and the fixed point theorem from
functional analysis, the uniform validity of asymptotic expansion solution to the problem is proved. In addition, the proposed
method possesses the advantages of being very convenient to use.

1. Introduction

-ere are many important applications of nonlinear singular
perturbation in applied mathematics, engineering, and
physics [1, 2]. Recently, some scholars have done a great deal
of work, for example, Nicaise and Pignotti [3] considered a
stabilization problem for abstract second-order evolution
equations with dynamic boundary feedback laws with a time
delay and distributed structural damping. -ey proved an
exponential stability result under a suitable condition be-
tween the internal damping and the boundary layers. -e
proof of the main result is based on an identity with mul-
tipliers that allows to obtain a uniform decay estimate for a
suitable energy functional. Some concrete examples are
detailed. Some counterexamples suggest that this condition
is optimal.

Jeong et al. [4] considered a quasilinear wave equation
utt − Δut − di v(|∇U|α− 2∇u) − di v(|∇ut|

β− 2∇ut) + a|ut|
m− 2 +

μ1ut(x, t) + μ2ut(x, t − τ) � b|u|p− 2u, associated with initial
and Dirichlet boundary conditions at one part and acoustic
boundary conditions at another part, respectively. -ey

proved under suitable conditions and for negative initial
energy, a global nonexistence of solutions.

Feng [5] studied the following Cauchy problem with a
time-delay term in the internal feedback:

utt(x, t) − φ(x) Δu(x, t) − 􏽚
t

0
g(t − s)Δu(x, s)ds􏼠 􏼡

+ μ1ut(x, t) + μ2ut(x, t − τ) � 0,

u(x, 0) � u0(x),

ut(x, 0) � u1(x),

x ∈ R
n
,

ut(x, t − τ) � f0(x, t − τ),

x ∈ R
n
,

0< t< τ,

(1)

and in order to solve the problem in the noncompactness of
some operators, they introduced some weighted spaces.
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Under suitable assumptions on the relaxation function, they
established a general decay result of solution for the initial-
value problem by using the energy perturbation method and
their result extends earlier results.

Nicaise and Valein [6] considered abstract second-order
evolution equations with unbounded feedback with time
delay. Existence results are obtained under some realistic
assumptions. Sufficient and explicit conditions are derived
that guarantee the exponential or polynomial stability. Some
new examples that enter into our abstract framework are
presented.

Weidenfeld and Frankel [7] focused on the early evo-
lution of small (linear) perturbations following the sudden
(step function) exposure of a liquid layer to a cold adjacent
atmosphere. On a short time scale relative to that charac-
terizing thermal relaxation across the liquid layer, the
temperature distribution is nonlinear and highly transient.
-us, the conduction reference state may not be regarded
quasisteady. -ey accordingly considered the initial-value
problem and obtained a Volterra-type integral equation
governing the evolution of surface-temperature
perturbations.

Many approximate methods have been improved, such
as Graef and Kong [8], Hovhannisyan and Vulanovic [9],
Bonfoh et al. [10], Barbu and Cosma [11], Faye et al. [12],
Samusenko [13], Mo [14], Das et al. [15, 16], and so on
[17–26]. By using the singular perturbation theories, Feng
et al. also studied a class of nonlinear singular perturbation
problems [27–34].

For instance, Feng and Mo [32] in 2015 considered the
nonlinear elliptic boundary value problem with two
parameters:

ε2m
L

m
u + μ2k

L
k
u � f(x, u), x ∈ Ω,

zru

znr
� gr(x), x ∈zΩ ,

(2)

where L is the uniform elliptic operator which can be
expressed as follows:

L ≡ 􏽘
n

i,j�1
aij(x)

z2

zxizxj

,

􏽘

n

i,j�1
aij(x)ξiξj ≥ λ􏽘

n

i�1
ξ2i ,

ξi ∈ R,

λ> 0,

(3)

and by introducing stretched variables, setting local coor-
dinate systems, and using the differential inequalities, the
authors proved the existence of the shock solution for
boundary value problem and studied the asymptotic be-
havior of the solution.

Feng et al. [33] in 2017 considered the singularly per-
turbed boundary value problem for a class of nonlinear
integral-differential elliptic equation:

ε2m
L

m
u − Tu � f(x, u), x ∈ Ω,

zlu

znl
� gl(x), l � 0, 1, . . . , m − 1, x ∈zΩ ,

(4)

where L denotes the uniform elliptic type:

L � 􏽘
n

i,j�1
αij(x)

z2

zxizxj

+ 􏽘
n

i,j�1
βi(x)

z

zxi

, x ∈ R,

Tu � 􏽚
Ω

K(x)u(x), x ∈ Ω,

(5)

and by using the multiple scales variable, the method of
component expansion, and the singular perturbation theory,
we proved the existence of solution to the problem and the
uniformly valid asymptotic estimation.

Feng et al. [34] in 2018 considered a class of nonlinear
differential-integral singular perturbation problem for the
disturbed evolution equations. Using the singular pertur-
bation method, the structure of solution to problem is
discussed in the cases of two small parameters under suitable
conditions.

-e same authors considered the singular perturbation
differential-integral initial boundary value problem of the
form

μ
z2y

zt2
− εLy + Ty � f(t, x, εy), (t, x) ∈ 0, T0( 􏼁 ×Ω,

y � g(t, x), x ∈zΩ ,

y|t�0 � h1(x),

ε
zy

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� h2(x),

(6)

where

L � 􏽘
n

i,j�1
aij(x)

z2

zxizxj

+ 􏽘
n

i,j�1
bi(x)

z

zxi

,

􏽘

n

i,j�1
aij(x)ξiξj ≥ λi 􏽘

n

i�1
ξ2i , ξi ∈ R, λi > 0,

Ty ≡ ϕ(x) + 􏽚
zΩ

K(x)y(x)dx, K(x)≥ 0.

(7)

First, the outer solution to the boundary value problem is
given. Second, by constructing the nonsingular coordinate
system near the boundary, the variables of multiple scales are
introduced to obtain the boundary layer corrective term for
the solution.-en, the stretched variable is applied to get the
initial layer correction term. Finally, using the fixed point
theorem, the uniformly valid asymptotic expansion of the
solution to problem is proved. -e proposed method pos-
sesses the advantages of being convenient to use.
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By introducing stretched variables, setting local coor-
dinate systems, and using the differential inequalities, we
proved the existence of the shock solution for boundary
value problem and studied the asymptotic behavior of the
solution.

In this paper, using the variables of the multiple scales
method from the singularly perturbed theory, after sim-
plifying the method, we consider a class of shock wave
solution to the nonlinear singularly perturbed time-delay
evolution equations initial boundary value problemwith two
parameters as follows, and the structure of the solution to the
problem is discussed. In addition, the proposed method
possesses the advantages of being very convenient to use.

ε2
z2w(t, x)

zt2
− μ2Lw(t, x) + cw(t − κ, x) � F(t, x, w(t, x)),

(t, x) ∈ − κ, T0( 􏼃 ×Ω,

(8)

w � g(t, x), x ∈zΩ , (9)

w|− k≤t≤0 � h1(x),

ε
zw

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌− k≤t≤0
� h2(x),

x ∈ Ωμ,

(10)

where L signifies a uniformly elliptic operator:

L � 􏽘
n

i,j�1
aij(x)

z2

zxizxj

+ 􏽘
n

i�1
bi(x)

z

zxi

,

􏽘

n

i,j�1
aij(x)ζ iζj ≥ λi 􏽘

n

i�1
ζ2i , ∀ζ i ∈ R, λ> 0.

(11)

ε and μ are small parameters and k � bε is a time-delay
parameter, b> 0 and c are constants, x ≡ (x1,x2,

. . . , xn) ∈ Ω, Ω is a bounded convex region in Rn, zΩ de-
notes boundary of Ω for class C1+α, where α ∈ (0, 1) is
Hölder exponent, T0 is a large enough positive constant, and
F is a disturbed term.

We have the hypotheses that

[H1]σ � (μ/ε)⟶ 0 as ε⟶ 0.
[H2]aij and bi with regard to x are Hölder continuous
functions and g and hi are sufficiently smooth functions
in correspondence ranges.
[H3]F is a sufficiently smooth function in correspon-
dence ranges except x0 ∈ Ω,
Fw(t, x, w)≤ − c< 0(x≠ x0), where c> 0 is a constant.
[H4] For cw − F(t, x, w) � 0, there exists a solution
W00(t, x) and lim

x⟶x0
W00(t, x)≠W00(t, x0).

-e rest of this paper is organized as follows. In Section
2, we construct the outer solution to the initial boundary
value problem (8)–(10). In Sections 3 and 4, we set up a local
coordinate system, and then we construct the spike layer
corrective term and boundary layer corrective term. In

Section 5, we obtain the formal asymptotic expansion so-
lution for the nonlinear singular perturbation time-delay
evolution equation initial boundary value problem (8)–(10)
with two parameters. At last, in Section 6, we prove that the
formal asymptotic expansion solution is uniformly valid.

2. Outer Solution

Now, we construct the outer solution to the problem
(8)–(10). First, we develop w(t − k, x, y) in small parameter
k � bε:

w(t − k, x) � w(t, x) +􏽘
∞

l�1

(− b)l

l!

zlw

zkl

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌k�0

εl
. (12)

-e degradation of problem (8)–(10) is

cw � F(t, x, w), (x, y) ∈ Ω. (13)

From the hypotheses, there is a solution
W00(t, x)(x≠x0) to equation (13).

We set W(t, x) as the outer solution to problem (8)–(10),
and we have

W(t, x) � 􏽘
∞

i.j�1
Wij(t, x)εiμj

. (14)

Substitute equation (14) into equation (8), develop the
nonlinear term F in ε and μ, and equate coefficients of the
powers εiμj(i, j � 0, 1, . . . , i + j≠ 0), respectively.

cWij � Fw t, x, W00( 􏼁Wij − c 􏽘
i

l�1

(− bε)l

l!

zlW(i− l)j

zkl

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
k�0

⎛⎝ ⎞⎠ + Fij,

(x, y) ∈ Ω,

(15)

where

Fij �
1

i!j!

zi+jF

zεizμj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ε�μ�0
, i, j � 0, 1, 2, . . . , i + j≠ 0. (16)

From equation (15), we can obtain
Wij(t, x),(i, j � 0, 1, . . . , i + j≠ 0). Substituting W00(t, x)

and Wij(t, x), (i, j � 0, 1, . . . , i + j≠ 0) into equation (14),
we have the outer solution W(t, x) to the original problem.
But it does not continue at (t, x0) and may not satisfy the
boundary and initial conditions (9) and (10), so we need to
construct the spike layer, boundary layer, and initial layer
corrective functions.

3. Spike Layer Corrective Term

Set up a local coordinate system (ρ, ϕ) near x0 ∈ Ω. Define
the coordinate of every point Q in the neighborhood of x0 in
the following way: the coordinate ρ(≤ ρ0) is the distance
from the point Q to x0, where ρ0 is small enough. ϕ �

(ϕ1, ϕ2, . . . , ϕn− 1) is a nonsingular coordinate.
In the neighborhood of x0: (0≤ ρ≤ ρ0) ⊂ Ω, we have
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L � 􏽥ann

z2

zρ2
+ 􏽘

n− 1

i�1
􏽥ani

z2

zρ zϕi

+ 􏽘
n− 1

i,j�1
􏽥aij

z2

zϕizϕj

+ 􏽥bn

z

zρ
+ 􏽘

n− 1

i�1

􏽥bi

z

zϕi

,

(17)

where

􏽥ann � 􏽘
n

i,j�1
aij

zρ
zxi

zρ
zxj

,

􏽥ani � 2 􏽘
n

j,k�1
ajk

zρ
zxj

zϕi

zxk

,

􏽥aij � 􏽘
n

k,l�1
akl

zϕi

zxk

zϕj

zxl

,

􏽥bn � 􏽘
n

i,j�1
aij

z2ρ
zxizxj

,

􏽥bi � 􏽘
n

j,k�1
ajk

z2

zxj

zϕi

zxk

.

(18)

We introduce the variables of multiple scales [1, 2] on
(0≤ ρ≤ ρ0) ⊂ Ω:

􏽥σ �
h(ρ, ϕ)

μ
, 􏽥ρ � ρ, 􏽥ϕ � ϕ, (19)

where h(ρ, ϕ) is a function to be determined. For conve-
nience, we still substitute ρ, ϕ for 􏽥ρ, 􏽥ϕ below, respectively.
From equation (17), we have

L �
1
μ2

K0 +
1
μ

K1 + K2, (20)

while K0 � 􏽥annh2
ρ(z2/z􏽥σ2) and K1, K2 are determined op-

erators and their constructions are omitted.
Let hρ � (1/

���
􏽥ann

􏽰
), and the solution w to the original

problem (8)–(10) is

w � W(t, x) + W1(t, ρ, ϕ), (21)

where W1 is the spike layer corrective term, and

W1 ∼ 􏽘

∞

i,j�0
w1ij(t, ρ, ϕ)εiμj

. (22)

Substituting equations (17)–(22) into equation (8),
expanding nonlinear terms in ε and μ, and equating the
coefficients of εiμj(i, j � 0, 1, . . .), respectively, we obtain

K10w100 � 0, 0≤ ρ≤ ρ0( 􏼁, (23)

w100
􏼌􏼌􏼌􏼌ρ�0 � W00 t, x0( 􏼁, (24)

K10w1ij � Gij, 0≤ ρ≤ ρ0( 􏼁, i � 0, 1, . . . , i + j≠ 0, (25)

w1ij

􏼌􏼌􏼌􏼌􏼌ρ�0
� Wij t, x0( 􏼁, i � 0, 1, . . . , i + j≠ 0, (26)

where Gij, (i � 0, 1, . . . , i + j≠ 0) are determined functions
and their constructions are omitted.

From problems (23)-(24), we can have w100, From w100
and equations (25)-(26), we can obtain solutions w1ij(i, j �

0, 1, . . . , i + j≠ 0) successively.
From the hypotheses, it is easy to see that w1ij(i, j �

0, 1, . . .) possesses spike layer behavior:

w1ij � O exp − δij

ρ
μ

􏼠 􏼡􏼠 􏼡, i, j � 0, 1, . . . , (27)

where δij > 0(i, j � 0, 1, 2, . . .) are constants.
Let w1ij � ψ(ρ)w1ij, where ψ(ρ) is a sufficiently smooth

function in 0≤ ρ≤ ρ0 and satisfies

ψ(ρ) �

1, 0≤ ρ≤
1
3
ρ0,

0, ρ≥
2
3
ρ0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

For convenience, we still substitute w1ij for w1ij below.
-en from equation (22), we have the spike layer corrective
term W1 near (0≤ ρ≤ ρ0) ⊂ Ω.

4. Boundary Layer Corrective Term

Now, we set up a local coordinate system (ρ,ϕ) in the
neighborhood near zΩ : 0≤ ρ≤ ρ0 as Ref. [14], where
ϕ � (ϕ1,ϕ2, . . . ,ϕn− 1). In the neighborhood of
zΩ : 0≤ ρ≤ ρ0,

L � ann

z2

zρ2
+ 􏽘

n− 1

i�1
ani

z2

zρzϕi

+ 􏽘
n− 1

i,j�1
aij

z2

zϕizϕj

+ bn

z

zρ
+ 􏽘

n− 1

i�1
bi

z

zϕi

,

(29)

where

ann � 􏽘
n

i,j�1
aij

zρ
zxi

zρ
zxj

,

ani � 2 􏽘
n

j,k�1
ajk

zρ
zxj

zϕi

zxk

,

aij � 􏽘
n

k,l�1
akl

zϕi

zxk

zϕj

zxl

,

bn � 􏽘
n

i,j�1
aij

z2ρ
zxizxj

,

bi � 􏽘
n

j,k�1
ajk

z2ϕi

zxjzxk

.

(30)

We introduce the variables of multiple scales, see the Ref
[1, 2], on (0≤ ρ≤ ρ0) ⊂ Ω:

σ �
h(ρ,ϕ)

μ
, 􏽥ρ � ρ, 􏽥ϕ � ϕ, (31)
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where h(ρ, ϕ) is a function to be determined. For conve-
nience, we still substitute ρ, ϕ for 􏽥ρ, 􏽥ϕ below, respectively.
From (29), we have

L �
1
μ2

K0 +
1
μ

K1 + K2, (32)

where K0 � annh
2
ρ(z2/zσ2) and K1, K2 are determined op-

erators and their constructions are omitted too.
We set the solution w to original boundary value

problem (8)–(10), where

w � W + U, (33)

where U is a boundary layer corrective function.
Set hρ(ρ, ϕ) � (1/

���
ann

􏽰
). -us, we have K0 � (z2/zσ2).

And let

U ∼ 􏽘
∞

i,j�0
uij(t, ρ, ϕ)εiμj

. (34)

Substituting equation (34) into equations (8) and (9) and
expanding nonlinear terms in ε, μ, we equate the coefficients
of the same powers for εiμj(i, j � 0, 1, . . .). And we obtain

K0u00 � 0, 0≤ ρ≤ ρ0( 􏼁, (35)

u00
􏼌􏼌􏼌􏼌ρ�0 � g(t, x) − W00(t, x), (36)

K0uij � Gij, 0≤ ρ≤ ρ0( 􏼁, i, j � 0, 1, . . . , i + j≠ 0, (37)

uij

􏼌􏼌􏼌􏼌􏼌ρ�0
� − Wij(t, x), i, j � 0, 1, . . . , i + j≠ 0, (38)

where Gij(i, j � 0, 1, . . . , k − 1, i + j≠ 0) are determined
functions successively, and their constructions are omitted
too.

From equations (35) and (36), we can have solution u00.
And from equations (37) and (38), we can obtain uij, (i, j �

0, 1, 2, . . . , i + j≠ 0) successively. Substituting
uij, (i, j � 0, 1, 2, . . .) into equation (34), we obtain U.

From the hypotheses, it is easy to see that uij, (i, j �

0, 1, . . .) possesses boundary layer behavior:

uij � O exp − δij

ρ
μ

􏼠 􏼡􏼠 􏼡, i, j � 0, 1, . . . , (39)

where δij > 0, (i � 1, 2, . . .) are constants.
Let uij � ψ(ρ)uij, where ψ(ρ) is a sufficiently smooth

function in 0≤ ρ≤ ρ0 and satisfies

ψ(ρ) �

1, 0≤ ρ≤
1
3
ρ0,

0, ρ≥
2
3
ρ0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

For convenience, we still substitute uij for uij below.
-en, from equation (34), we have the boundary corrective
term U near 0≤ ρ≤ ρ0.

5. Initial Layer Corrective Term

-e solution w to the original problem (8)–(10) is

w � ·W + W1 + U + V, (41)

where V is an initial layer corrective term. Substituting (41)
into equations (8)–(10), we have

ε2Vtt(t, x) − μ2LV(t, x) + cV(t − k, x)

� F t, x, W(t, x) + W1(t, x) + U(t, x) + V(t, x)( 􏼁

− F t, x, W(t, x) + W1(t, x) + U(t, x)( 􏼁

− ε2 W(t, x) + W1(t, x) + U(t, x)( 􏼁

− μ2L W(t, x) + W1(t, x) + U(t, x)( 􏼁

+ c W(t − k, x) + W1(t − k, x) + U(t − k, x)( 􏼁,

(42)

V � g(t, x) − W(t, x) − W1(t, x) − U(t, x), x ∈zΩ ,

(43)

V|− k≤t≤0 � h1(x) − W|− k≤t≤0 − W1
􏼌􏼌􏼌􏼌− k≤ t≤ 0 − U|− k≤t≤0, x ∈ Ω,

(44)

ε
zV

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌− k≤t≤0
� h2(x) − ε

z

zt
W + W1 + U( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌− k≤ t≤ 0
, x ∈ Ω.

(45)

We introduce a stretched variable, see [1, 2]: τ � (t/ε)
and let

V ∼ 􏽘
∞

i,j�0
vij(τ, x)εiμj

. (46)

Substituting equations (14), (22), (34), and (46) into
equations (42)–(45), expanding nonlinear terms in ε and μ,
and equating the coefficients of like powers of εiμj, re-
spectively, for i, j � 0, 1, . . ., we have

v00( 􏼁ττ + cv00 � F 0, x, W00 + W100 + u00 + v00( 􏼁

− F 0, x, W00 + W100 + u00( 􏼁,

(47)

v00
􏼌􏼌􏼌􏼌x∈zΩ � 0, (48)

v00
􏼌􏼌􏼌􏼌− b≤ τ ≤ 0 � h1(x) − W00(0, x) + W100(0, x) + u00(0, x)( 􏼁,

x ∈ Ω,

(49)

zv00

zτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌− b≤ τ ≤ 0
� h2(x) − H00

􏼌􏼌􏼌􏼌− b≤ τ ≤ 0, (50)

vij􏼐 􏼑ττ + cvij � Gij, i, j � 0, 1, . . . , i + j≠ 0, (51)
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vij

􏼌􏼌􏼌􏼌􏼌x∈zΩ
� − Wij + W1ij + uij􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌x∈zΩ
,

i, j � 0, 1, . . . , i + j≠ 0,
(52)

vij

􏼌􏼌􏼌􏼌􏼌− b≤ τ ≤ 0
� Hij

􏼌􏼌􏼌􏼌􏼌− b≤ τ ≤ 0
, x ∈ Ω, i, j � 0, 1, . . . , i + j≠ 0,

(53)

zvij

zτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌− b≤ τ ≤ 0
� Hij

􏼌􏼌􏼌􏼌􏼌− b≤ τ ≤ 0
, x ∈ Ω, i, j � 0, 1, . . . , i + j≠ 0,

(54)

where Gij, Hij(i � 0, 1, . . . , i + j≠ 0) are determined func-
tions, and their constructions are omitted too.

From the problem equations (47)–(50), we can have v00.
From v00 and equations (51)–(54), we can obtain solutions
vij, (i, j � 0, 1, . . . , i + j≠ 0) successively.

From the hypotheses, it is easy to see that vij, (i, j �

0, 1, . . .) possesses boundary layer behavior:

vij � O exp − 􏽥δij

t

ε
􏼒 􏼓􏼒 􏼓, i, j � 0, 1, . . . , (55)

where 􏽥δij > 0, (i, j � 1, 2, . . .) are constants.
-en, from equation (46), we have the initial corrective

term V.
From equation (41), we obtain the formal asymptotic

expansion of solution w to the nonlinear singular pertur-
bation time-delay evolution equation initial boundary value
problem (8)–(10) with two parameters:

w ∼ W00 + 􏽘
∞

i.j�0,i+j≠ 0
Wijε

iμj
+ 􏽘
∞

i.j�0
w1ij + uij + vij􏼐 􏼑εiμj

,

0< ε, μ≪ 1,

(56)

6. Main Result

Now, we prove that this expansion (56) is uniformly valid in
Ω and we have the following theorem.

Theorem 1. Under the hypotheses [H1] − [H4], there exists
a solution w(t, x) to the nonlinear singular perturbation
time-delay evolution equation initial boundary value problem
(8)–(10) with two parameters which holds the uniformly valid
asymptotic expansion (56) for ε and μ in
(t, x) ∈ [− k, T0] ×Ω.

Proof. First, we get the remainder term R(t, x) of the initial
boundary value problem with two parameters (8)–(10). Let

w(t, x) � w
⇀

(t, x) + R(t, x), (57)

where

w(t, x) � W00 + 􏽘
m

i,j�0,i+j≠ 0
Wijε

iμj
+ 􏽘

m

i.j�0
w1ij + uij + vij􏼐 􏼑εiμj

.

(58)

Using equations (14), (27), (39), (55), and (57), we obtain

H[R] ≡ ε2
z2R(t, x)

zt2
− μLR(t, x) + cR(t − τ, x)

− F(t, x, u + R(t, x)) − F(t, x, u(t, x))

� O λm+1
􏼐 􏼑, x ∈ Ω, λ � max(ε, μ),

R � O λm+1
􏼐 􏼑, x ∈zΩ , λ � max(ε, μ),

R|− k≤t≤0 � O λm+1
􏼐 􏼑, x ∈ Ω, λ � max(ε, μ),

ε
zR

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌− k≤t≤0
� O λm+1

􏼐 􏼑, x ∈ Ω, λ � max(ε, μ).

(59)

We can have the linearized differential operator L as
follows:

L[p] � ε2
z2p(t, x)

zt2
− μ2L[p(t, x)] + cp(t − τ, x), (60)

and therefore,

Ψ[p] ≡ H[p(t, x)] − L[p(t, x)]

− F(t, x, u(t, x)) − F(t, x, (u(t, x) + p(t, x)))

+ Fu(t, x, (u(t, x) + p(t, x)))p(t, x).

(61)

For fixed ε, μ, the normed linear space N is chosen as

N � p p ∈ C
2

− k, T0( 􏼃 ×Ω( 􏼁
􏼌􏼌􏼌􏼌 , p | zΩ � g, p | − k≤t≤0 � h1,􏽮

pt

􏼌􏼌􏼌􏼌 − k≤ t≤ 0 � h2􏽯,

(62)

with norm

‖p‖ � max
t∈ − k,T0( ],x∈Ω

|p|, (63)

and the Banach space B as

B � q q ∈ C − k, T0( 􏼃 ×Ω( 􏼁
􏼌􏼌􏼌􏼌􏽮 􏽯, (64)

with norm

‖q‖ � max
t∈ − k,T0( ],x∈Ω

|q|. (65)

From the hypotheses, we may show that the condition

L
− 1

[g]
����

����≤ l
− 1

‖g‖, ∀g ∈ B, (66)

by the fixed point theorem [1, 2] is fulfilled where l− 1 is
independent of ε and μ, i.e., L− 1 is continuous. -e Lipschitz
condition of the fixed point theorem becomes

Ψ p2􏼂 􏼃 − Ψ p1􏼂 􏼃
����

����

<C1 max
t∈ − k,T0( ],x∈Ω

p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + p2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 p2 − p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

+ C2 max
t∈ − k,T0( ],x∈Ω

p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

· p2 − p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

<C3r p2 − p1
����

����,

(67)
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where C1, C2, and C3 are constants; this inequality is valid
for all p1, p2 in a ball KN(r) with ‖r‖≤ 1. Finally, we obtain
the result that the remainder term exists; moreover,

max
t∈ − k,T0( ],x∈Ω

|R(t, x)| � O λm+1
􏼐 􏼑, λ � max(ε, μ). (68)

From equation (56), we have

w(t, x) ≡W00 + 􏽘
m

i,j�0,i+j≠ 0
Wijε

iμj

+ 􏽘
m

i,j�0
w1ij + uij + vij􏼐 􏼑εiμj

+ O λm+1
􏼐 􏼑, λ � max(ε, μ).

(69)

-e proof of the theorem is completed. □

7. Conclusions

Nonlinear singularly perturbed problem for time-delay
evolution equation with two parameters is an attractive
investigated subject. In this paper, we use the variables of the
multiple scales method, homogeneous equilibrium method,
and approximation expansion method from the singularly
perturbed theories, and then we discuss the structure of the
solution to the time-delay problem with two small param-
eters; after setting up a local coordinate system, we obtained
the formal asymptotic expansion solution for the nonlinear
singular perturbation time-delay evolution equation initial
boundary value problem with two parameters; using the
singularly perturbed theory and the fixed point theorem
from functional analysis, the uniform validity of asymptotic
expansion solution to the problem is proved. In addition, the
proposed method possesses the advantages of being very
convenient to use.
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