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-is paper focuses on the dynamic response of three asymmetric and nonlinear packaging systems (ANPSs) of practical transport
package under random excitation. Next to presenting the displacement probability density functions (PDFs) of ANPSs derived
through FPK equations, the influences of the excitation grades and the characteristic parameters (such as the damping, the
nonlinear stiffness, and the strain) of packaging cushion materials on the response are discussed in detail. -en, the generalized
PDFs of the response peaks are defined and examined by three common distributions. -e investigation shows that “inverse
excitation cushion factors” (IECFs) have a significance on effecting the displacement PDFs approaching different distributions.
Most PDFs of the unilateral response peaks approach Rayleigh distributions and present non-Gaussian characters. -e present
methods are verified through the validation numerical solutions. Furthermore, the application of the scheme for fatigue damage
evaluation of the transport package is carried out.

1. Introduction

-e spring-mass-damping system was introduced to de-
scribe transport package by Mindlin [1], who pioneered
packaging dynamics study.-e simplest package system was
considered linear damping and linear stiffness; one of the
biggest benefits of this was that you can use the superpo-
sition principle [2]. However, the packagingmaterials always
follow nonlinear constitutive relations [3]. Peleg [4], Wang
et al. [5], Wang and Hu [6], and Wang and Khan [7] did
beneficial exploring on the packaging system with cubic
nonlinear, tangent nonlinear, and tangent nonlinear stiffness
under shock and vibration excitation, but the external ex-
citation was always considered as deterministic harmonic
excitation.

Since the external excitation during the transportation
has always been random [8], an increasing effort was

presently being expended to study the response of a spring-
mass-damping packaging system under stochastic excitation
[9–12]. Rountree et al. [13] studied the fragility of missile
instrument under random vibration. -akur et al. [14]
established a nonlinear theoretical model for the packaging
system to obtain displacement response under random vi-
bration. Song [15] gave the definition of vibration fragility
for the packaging system under random excitation and il-
lustrated the difference with the impact fragility. Liaudet
et al. [16] studied a random vibration model with fractional
order stiffness and derived the probability density functions
(PDFs) of displacement. Gan et al. [17] used the random
average method to establish FPK equation for the packaging
system with cubic nonlinear stiffness under stochastic ex-
citation. Wang et al. [18] established a vibration model of the
mass-spring-damping system by considering two stiffnesses
of the system and the constraint condition under
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acceleration random excitation in order to evaluate fatigue
failure of the packaging paperboard box.

-e scholars always consider nonlinear stiffness of the
packaging system following the unidirectional function
relation, such as cubic unidirectional function relation.
However, due to the otherness of the packaging cushioning
material or the asymmetries caused by packaging process,
the stiffness of the packaging system presents asymmetric
nonlinear characters.

Chen and Chen [19] discussed a single-degree-of-freedom
(SDOF) damped system with the piecewise linear stiffness
under Gaussian white noise. Zhuang et al. [20] explored the
SDOF isolation system with the antisymmetrical and nonlinear
stiffness, but only the approximate solution of the displacement
mean square root was given by resolving the restoring force into
odd function and even function. Fu et al. [21] obtained the
response of a SDOF asymmetric piecewise linear system.
Urbanik [22] studied the nonlinear vibration of the corrugated
carton package through the piecewise nonlinear method. Yang
et al. [23] used computer simulation to analyze the performance
on the piecewise linear transit packaging system under oscil-
latory surroundings. Fang et al. [24, 25] introduced the SDOF
nonlinear packaging oscillator with piecewise cubic nonline-
arity, only obtained the joint displacement and velocity prob-
ability distribution. -e systems with the piecewise asymmetric
tangent or hyperbolic tangent stiffness under random excitation
have seldom been investigated.

However, many packaging cushion materials such as the
neoprene, preloading expandable polystyrene (EPS) foam,
expandable polyethylene (EPE) foam, etc., follow tangent or
hyperbolic tangent types of the force-displacement relation
[1, 3, 26], and the cushion materials are around the product
after packaging; the different materials sometimes are
adopted as upper and lower layers cushioning material, so
the piecewise asymmetric and nonlinear packaging systems
(ANPSs) represent more accurate models of actual transport
package.

Hence, this paper focuses on the dynamic response of
asymmetric tangent nonlinear packaging system (ATNPS),
asymmetric hyperbolic tangent nonlinear packaging system
(AHNPS), and asymmetric tangent-hyperbolic tangent
nonlinear packaging system (ATHNPS) under random
excitation based on the FPK method which has been
prospering as a method to obtain the system steady state
solution [27, 28].-e study can be used as guidelines for first
pass or fatigue damage evaluation of the transport package
or the critical component.

-e structure of this article is as follows. -e transport
package is modeled as ANPS in Section 2. In Section 3, the
technology roadmap of numerical simulation process is
illustrated. In Section 4, the response PDFs for three types
of ANPSs under random excitation are derived through
FPK equations, and the validation numerical models are
carried out to verify the present method. Furthermore,
the generalized peak PDFs are defined and examined by
three common distributions. -e influences of the system
parameters, such as the damping correlation coefficient,
the nonlinear stiffness, and the strain and the incentive
intensity on the non-Gaussian characters of above

responses are analyzed in detail in Section 5. Section 6
gives the application of the scheme for fatigue evaluation.
Finally, the main conclusions are summarized.

2. Vibration Model for Transport Package

During the logistics process, the complete transport
package is subjected to the stochastic excitation in the
horizontal or vertical direction while the gravity effect is
always ignoring. -e packaging cushion materials follow
tangent or hyperbolic tangent types of the stress-defor-
mation relations. Hence, the modeling for transport
package regarding as SDOF ANPS is shown in Figure 1.

In Figure 1, m represents the mass of the product, δ
represents the displacement of the product, andf(δ) and c

represent the restoring force and the damping of packaging
cushion materials, respectively. f(δ) follows relation of
three types shown in Figure 2, showing the distinctions of
ATNPS, AHTNPS, and ATHNPS.

Hence, the differential equation of motion for transport
package can be written as

mδ
..

+ c _δ + f(δ) � w(t), (1)

where w(t) represents the Gaussian white noise excitation
with zero mean value. Letting α � (c/m)，equation (1) can
be written as

δ
..

+ α _δ +
f(δ)

m
�

w(t)

m
, (2)

where (w(t)/m) � 2πK and K represents the power spectral
density of the excitation w(t). p(δ, _δ) can be obtained
through the Fokker–Planck equation [19]

p(δ, _δ) � Cexp −
α
σ20

_δ
2

2
+ 􏽚

δ

0
(f(ξ))dξ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦, (3)

where σ20 � πK and the normalizing constant
C � [􏽒

+∞
− ∞ 􏽒

+∞
− ∞ p(δ, _δ)dδd _δ]− 1.

3. Numerical Verification

In order to verify the theoretical solution, the numerical
simulation is conducted based on the following steps.
Firstly, the Gaussian white noise excitation is conducted
by digital simulation, and the excitation intensity 2πK is
corresponding with the theoretical motivation. Secondly,
through the four-stage Runge–Kutta method, the re-
sponse of the packaging system characterized by digital
simulation can also be obtained. -e piecewise programs
are considering in Runge–Kutta calculation steps.
-irdly, the Monte Carlo approach, which was first
proposed by Metropolis et al. [29] and generalized by
Hastings [30], is used to solve complex integrals [31]. -e
technology roadmap of numerical simulation process is
shown in Figure 3, and afterwards the comparisons be-
tween the theoretical solution and numerical result can be
given.
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4. Response PDFs of ANPSs

-ree packaging systems are concerned with the different
piecewise forms of stiffnesses.-ey can be expressed as three
forms of restoring forces. PDFs of the displacement and
velocity for three systems are investigated.

4.1. Response PDFs of ATNPS. Some packaging cushion
materials follow tangent force-displacement relation, so the
nonlinear restoring force of ATNPS considering the
asymmetric tangent stiffness is as follows:

f1(δ) �

2
k1d1

π
tan

πδ
2d1

, δ ≥ 0,

2
k2d2

π
tan

πδ
2d2

, δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

and letting (k1/m) � ω2
1 and (k2/m) � ω2

2 and substituting
equation (4) into (3) result in

p1(δ, _δ) �

Cexp −
α
σ20

_δ
2

2
−
4ω2

1

π2
d
2
1 · lncos

πδ
2d1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, 0≤ δ <d1,

Cexp −
α
σ20

_δ
2

2
−
4ω2

2

π2
d
2
2 · lncos

πδ
2d2

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, − d2 < δ < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Assuming σ20 � 0.1, α � 0.5 ,ω1 � 1, d1 � 2,ω2 � 2,

andd2 � 4, the joint PDF of the displacement and velocity
p1(δ, _δ) of ATNPS is obtained to compare with numerical
result shown in Figure 4. Both have the nearly same shape
and peak, leading to the verification of the theory.

-e displacement PDF of ATNPS can also be given
through the Fokker–Planck equation.

f1 (δ) = 
2 (k1d1/π) tan (πδ/2d1), δ ≥ 0

2 (k2d2/π)tan (πδ/2d2), δ < 0

–d2

k2
d1

k1

f1 (δ)

δ

(a)

f2 (δ) = F1tanh (k1′δ/F1), δ ≥ 0
F2tanh (k2′δ/F2), δ ≥ 0

f2 (δ)

δ

F1

–F2

k1′

k2′

(b)

d3

f3 (δ)

δ

–F4

k3

k4

f3 (δ) = 
F4tanh (k4δ/F4), δ < 0

(2k3d3/π) tan (πδ/2d3), δ ≥ 0

(c)

Figure 2: -ree types of restoring forces of packaging cushion materials. (a) Antisymmetry tangent type. (b) Antisymmetry hyperbolic
tangent type. (c) Asymmetric tangent-hyperbolic tangent type.
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p1(δ) �

C1exp
α
σ20

4ω2
1

π2 d
2
1 · lncos

πδ
2d1

􏼠 􏼡􏼢 􏼣, 0≤ δ <d1,

C1exp
α
σ20

4ω2
2

π2 d
2
2 · lncos

πδ
2d2

􏼠 􏼡􏼢 􏼣, − d2 < δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where the normalizing constant C1 � [􏽒
+∞
− ∞ p1(δ)dδ]− 1. In

order for examining the influences of the external excitation
and the system parameters, such as the damping correlation
coefficient, the nonlinear stiffness, and the strain on the
response, the figures are plotted of different characteristic
parameters.

Letting α � 0.5,ω1 � 1, d1 � 2,ω2 � 2, andd2 � 4, the
displacement PDFs of ATNPS can be plotted for various
values of σ20 in Figure 5. -at means the displacement re-
sponse of the system only concerns with the external ex-
citation grade. After comparing with the numerical solutions
shown on the left, we use Gaussian distribution to examine
p1(δ) shown on the right of Figure 5.

We can see a good agreement is achieved between
theoretical and numerical solution of p1(δ) from Figure 5,
leading to further verify the theoretical model. It can be
seen that the displacements δ corresponding to the dis-
placement PDF p1(δ) of the product move higher and
narrower with excitation level decreases. Meanwhile, the
restoring force f(δ) of packaging cushion material
gradually approaches the initial linear, and the response
displacement is smaller so that the displacement PDF
p1(δ) approaches Gaussian distribution with the external
excitation grade σ20 decreases.

Figure 6 presents the displacement PDFs of ATNPS
except the difference of the damping correlation coefficient
α. As the cushion capacity of the system increases with the α
increases, then the displacement responses of the product
are limited to a smaller range, and the nonlinear factors can

be compensated in the system so that the displacement PDF
p1(δ) is closer to Gaussian distribution. It is interesting to
find that as α tends to 0 (the system damping tends to 0),
p1(δ) approaches a uniform distribution.

Letting σ20 � 0.1, α � 0.5,ω1 � 1, andω2 � 1, the dis-
placement PDFs of ATNPS can be plotted for various values
of the strains d1 and d2 of the packaging cushion materials in
Figure 7. Letting d1 equal to d2, with the d1 and d2 increase
simultaneously, the displacement PDF p1(δ) approaches
Gaussian distributions. Otherwise, the displacement PDF
p1(δ) presents distinct non-Gaussian character. Displace-
ment responses are limited to less than d1 and d2 because the
nonlinear restoring force f(δ) of the system follows asym-
metric tangent type with the boundary strain of d1 andd2.

Figure 8 shows the displacement PDFs of ATNPS for
various ω1 and ω2 which represent the initial angular fre-
quency of the packaging cushion material. p1(δ) nearly
follows Gaussian distribution when ω1 �ω2 because the
asymmetric tangent nonlinear packaging system begins
same deformation on the both sides. We also discover that
p1(δ) is symmetrical when ω1 exchange ω2.

Letting n1 � (4αω2
1d

2
1/π

2σ20) and n2 � (4αω2
2d

2
2/π

2σ20),
equation (6) becomes

p1(δ) �

C1 cos
πδ
2d1

􏼠 􏼡

n1

, 0≤ δ <d1, n1 ≥ 0,

C1 cos
πδ
2d2

􏼠 􏼡

n2

, − d2 < δ < 0, n2 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

When d1 � d2 � 2, the amplitude δ is plotted versus
displacement PDFs of ATNPS at various values of
n1 and n2 in Figure 9. Because n1 and n2 are directly pro-
portional to cushion performance parameters ω2

1, d1, ω2
2,

and d2 of packaging materials, they are inversely pro-
portional to the measure of the excitation level σ20. Hence,
n1 and n2 maybe called “inverse excitation cushion factors”

1.2
1

0.8
0.6
0.4
0.2

0

p 1
 (δ

, δ
′
)

2
1

0
–1

–2
δ′

21.510.50–0.5–1–1.5–2 δ

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(a)

1.2
1

0.8
0.6
0.4
0.2

0

p 1
 (δ

, δ
′
)

2
11.5

0.5
–0.50

–1–1.5–2
δ′

21.510.50–0.5–1–1.5–2 δ

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(b)

Figure 4: Comparison of joint PDF of the displacement and velocity of ATNPO. (a) -eoretical solution. (b) Numerical solution.
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(IECFs). We find that as n1 and n2 tend to 0 (σ20 tends to
infinity), p1(δ) approaches a uniform distribution. When
n1 and n2 < 9, p1(δ) presents non-Gaussian characters. It
can be seen that as n1 � n2 ≥ 9, p1(δ) constantly ap-
proaches Gaussian distribution; as n1 and n2 tend to in-
finity (σ20tends to 0), p1(δ) can be regarded as following
Gaussian distribution.

p1(δ) follows “piecewise cosine exponential distribu-
tion,” so the normalizing constant C1 can be obtained from

C1 � 􏽚
+∞

− ∞
􏽚

+∞

− ∞
p(δ, _δ)dδd _δ􏼢 􏼣

− 1

� 􏽚
0

− d2

cos
πδ
2d2

􏼠 􏼡

n2

+ 􏽚
d1

0
cos

πδ
2d1

􏼠 􏼡

n1

􏼢 􏼣

− 1

,

(8)

letting y � cos(πδ/2d) and
􏽒
π/2
0 (cosy)n �

��
π

√
/2Γ(n + 1/2)/Γ(n/2 + 1) from the table of

integrals [32], so

4
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Figure 5: Displacement PDFs of ATNPS for various values of excitation grades. (a) Comparison of the numerical and theoretical solution.
(b) -e result of Gaussian fitting.
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C1 �

��
π

√

d1Γ n1 + 1/2( 􏼁/Γ n1/2 + 1( 􏼁 + d2Γ n2 + 1/2( 􏼁/Γ n2/2 + 1( 􏼁􏼂 􏼃
, n1 ≥ 0, n2 ≥ 0. (9)

-emean-square response of the mass m or the variance
of x is determined by σ2δ � 􏽒

∞
− ∞ δ2p(δ)dδ.

4.2. Response PDFs of AHTNPS. Due to some packaging
cushion materials follow asymmetric hyperbolic tangent
constitutive relation, the restoring force f(δ) of AHTNPS
can be expressed as

f2(δ) �

F1tanh
k1′δ
F1

, δ ≥ 0,

F2tanh
k2′δ
F2

, δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

and assuming (F1/m) � ω 2′
1 and (F2/m) � ω 2′

2， and then
substituting equation (10) into (3), p(δ, _δ) can be obtained as

p2(δ, _δ) �

C′exp −
α
σ20

_δ
2

2
+

F1ω′21
k1′

· lncosh
k1′δ
F1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, δ ≥ 0,

C′exp −
α
σ20

_δ
2

2
+

F2ω′22
k2′

· lncosh
k2′δ
F2

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, δ < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

When σ20 � 0.1, α � 0.5,ω1 � 1,ω2 � 2, (k1′/F1) �

0.01, and(k2′/F2) � 0.02, the displacement and velocity
united PDF p2(δ, _δ) of AHTNPS is shown in Figure 10. -e

numerical model is also carried out and compared with the
theoretical solution, leading to the verification of the theory.

-e displacement PDF of AHTNPS can be obtained

p2(δ) �

C1′exp −
α
σ20

F1ω′21
k1′

· lncosh
k1′δ
F1

􏼠 􏼡􏼢 􏼣, δ ≥ 0,

C1′exp −
α
σ20

F2ω′22
k2′

· lncosh
k2′δ
F2

􏼠 􏼡􏼢 􏼣, δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where the normalizing constant C1′ � [􏽒
+∞
− ∞ p2(δ)dδ]− 1 can

be calculated, as well; when
α � 0.5,ω1′ � 1,ω2′ � 2, (k1′/F1) � 0.01, and (k2′/F2) � 0.02,
the displacement PDFs of AHTNPS can be plotted for
various values of σ20 representing the excitation grade in
Figure 11. In comparison with the numerical solutions of the
displacement PDFs of AHTNPS, leading to further verify the
theoretical model, the displacements δ move lower and
wider as the excitation intension increases.

Assuming
σ20 � 0.1,ω1′ � 1,ω2′ � 2, (k1′/F1) � 0.01, and (k2′/F2) � 0.02,
Figure 12 depicts the displacement PDFs of AHTNPS with
different α. As the cushion capacity of the system decreases
with decrease in α the displacement response varies over a
larger range, and the system damping is considered as linear,
but the nonlinear stiffness factors were expended in the
system, and p2(δ) presents distinct non-Gaussian characters.
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Figure 7: Displacement PDFs of ATNPS for various values of packaging material strains.
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Figure 9: Displacement PDFs of ATNPS for various values of IECFs.
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It is obvious that as α tends to 0 (the system damping tends to
0), p2(δ) approaches a uniform distribution.

Letting n1′ � (− αF1ω 2′
1 /k1′σ20) and n2′ � (− αF2ω 2′

2 /k2′σ20),
equation (12) becomes

p2(δ) �

C1′ cosh
k1′δ
F1

􏼠 􏼡

n1′

, δ ≥ 0, n1′ ≤ 0,

C1′ cosh
k2′δ
F2

􏼠 􏼡

n2′

, δ < 0, n2′ ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

When (k1′/F1) � (k2′/F2) � 0.01, the amplitudes are
plotted versus displacement PDFs of AHTNPS for various
values of n1′ and n2′ in Figure 13. It is interesting to find that as
IECFs n1′ and n2′ tend to 0 (σ20 tends to infinity), p2(δ) ap-
proaches a uniform distribution. As n1′ and n2′ < − 3, p2(δ)

presents non-Gaussian characters. It also clearly shows that
as n1′ � n2′ ≥ − 3, p2(δ) is gradually closer to Gaussian dis-
tribution, and as n1′ and n2′ tend to infinity (σ20 tends to 0),
p2(δ) can be considered as Gaussian distribution.

4.3. Response PDFs of ATHNPS. Using the tangent and
hyperbolic tangent type of packaging cushion materials
together, the restoring force of ATHNPS can be expressed as

f3(δ) �

2
k3d3

π
tan

πδ
2d3

, δ ≥ 0,

F4tanh
k4δ
F4

, δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

if (k3/m) � ω2
3 and (F4/m) � ω2

4, then substituting equation
(14) into (3), p(δ, _δ) can be obtained

p3(δ, _δ) �

C
〞exp −

α
σ20

_δ
2

2
−
4ω2

3

π2
d
2
3 · ln cos

πδ
2d3

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, 0≤ δ <d3,

C
〞exp −

α
σ20

_δ
2

2
+

F4ω
2
4

k4
· ln cosh

k4δ
F4

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, δ < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

When σ20 � 0.1, α � 0.5,ω3 � 1, d3 � 2,ω4 � 1, and (k4/
F4) � 0.1, the displacement and velocity united PDF p3(δ, _δ)

of ATHNPS is shown in Figure 14.
-e numerical model is carried out, leading to the

verification of the theory.-e value of p3(δ, _δ) with different
δ and _δ is available because p3(δ, _δ) is conducted by cos and
cosh functions, and p3(δ, _δ) is small percentage located on
the side of δ < 0 by the δ-axis and less distributed on the side
of _δ < 0 by the _δ-axis.

-e displacement PDF of ATHNPS can be expressed as

p3(δ) �

C1′exp
α
σ20

4ω2
3d

2
3

π2
· ln cos

πδ
2d3

􏼠 􏼡􏼢 􏼣, 0≤ δ <d3,

C1′exp −
α
σ20

F4ω
2
4

k4
· ln cosh

k4δ
F4

􏼠 􏼡􏼢 􏼣, δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where the normalizing constant C1′ � [􏽒
+∞
− ∞ p3(δ)dδ]− 1. As

α � 0.5,ω3 � 1, d3 � 2,ω4 � 2, and (k4/F4) � 0.1, the dis-
placement PDFs of ATHNPS can be plotted for various
values of σ20 in Figure 15. It shows the regularity between the
displacement response of ATHNPS and the different in-
centive intensity.

A good agreement is achieved between theoretical and
numerical solutions of displacement PDFs of ATHNPS,
leading to further verify the theoretical model. σ20 is lower as
the external excitation intensity decreases; we can see that
the displacements δ corresponding to p3(δ) of the product
moves higher and narrower with excitation level decreases.
Meanwhile, the restoring force f(δ) of packaging cushion
material gradually approaches the initial linear, then the
response displacement δ is smaller, and the displacement
PDF p3(δ) is closer to Gaussian distribution with the ex-
ternal excitation intensity decreases.

Assuming
σ20 � 0.05,ω3 � 1, d3 � 2,ω4 � 2, and (k4/F4) � 0.1, the dis-
placement PDFs of ATHNPS can be plotted for various
values of damping coefficient α in Figure 16. Damping
correlation coefficient α is higher as the cushion capacity of
the system increases, and the displacement response is
limited to a smaller range.-e system damping is considered
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Figure 10: Comparison of displacement and velocity united PDF of HATNPO. (a) -eoretical solution. (b) Numerical solution.
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as linear; with the α increases, the nonlinear factors can also
be compensated in the system so that p3(δ) is closer to
Gaussian distribution. It is interesting to find that as α tends
to 0 (the system damping tends to 0), p3(δ) approaches a
uniform distribution.

Letting n3 � (4αω2
3d

2
3/π2σ20) and n4 � (− αF4ω′24 /k4′σ20),

equation (16) becomes

p3(δ) �

C1′ cos
πδ
2d3

􏼠 􏼡

n3

, d3 ≥ δ ≥ 0, n3 ≥ 0,

C1′ cosh
k4′δ
F4

􏼠 􏼡

n4

, δ < 0, n4 ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)
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Figure 11: Displacement PDFs of AHTNPS for various values of σ20. (a) Comparison of the numerical and theoretical solution. (b)-e result
of Gaussian fitting.
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Figure 12: Displacement PDFs of AHTNPS for various damping coefficients.
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When d3 � 2 and (k4/F4) � 0.2, the amplitude δ is
plotted versus displacement PDFs of ATHNPS for various
values of n3 and n4 in Figure 17. It is interesting to find that as
IECFs n3 and n4 tending to 0 (σ20 tends to infinity), p3(δ) is
approaching a uniform distribution. It shows that as (n3/n4)

following the proportion, p3(δ) is approaching the Gaussian
distribution, else p3(δ) presents non-Gaussian characters.
As n1′ and n2′ tend to infinity (σ20 tends to 0), p3(δ) can be
regarded as Gaussian distribution.

5. Peak PDFs of ANPSs

-e times of sample function cross zero with positive slope
were given by To [33]:

v
+
0 � 􏽚

+∞

0
_δp(0, _δ)d _δ, (18)

and after substituting equation (18) into p(δ, _δ), zero
crossing with positive slope of three packaging system can be
obtained.

-e displacement peak PDF would like to be known to
determine the probability of fatigue failure; it will estimate
the relative frequency of occurrence for any peak amplitude.
A method to obtain the distribution was suggested by
Crandall [34]:

ppeak(h)dh � −
1
v

+
0

􏼠 􏼡
dv

+
h

dh
􏼠 􏼡dh, (19)
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Figure 13: Displacement PDFs of AHTNPS for various values of n1′ and n2′.
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Figure 14: Comparison of displacement and velocity united PDF of ATHNPO. (a) -eoretical solution. (b) Numerical solution.
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generally, v+
0 only concerns positive numbers by the equation

(18), considering − δ when δ < 0 , and combining the
equations (19) and (18), we can obtain the generalized peak
PDF

ppeak(h) �
− [dp(δ)/dδ]δ�h

p(δ)δ�0
. (20)

5.1. Peak PDFs of ATNPS. Equation (6) gives

p1(0, _δ) �
C1���
2π

√
σ0

exp −
_δ
2

2σ20
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (21)

and substituting equation (21) into (18), then

v
+
0 � 􏽚

+∞

0
_δp(0, _δ)d _δ �

C1���
2π

√
σ0

􏽚
+∞

0
_δexp −

_δ
2

2σ20
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦d _δ,

(22)

and letting _z1 � ( _δ
2
/2σ20), after integral transform，

v
+
0 � 􏽚

+∞

0
_δp(0, _δ)d _δ � −

C1σ
2
0���

2π
√ 􏽚

+∞

0
_z1exp − _z1( 􏼁d _z1.

(23)

Since the integral 􏽒
+∞
0 _z1exp(− _z1)d _z1 is equal to unity, v+

0 is
given as

v
+
0 �

− σ20 d1Γ n1 + 1/2( 􏼁/Γ n1/2 + 1( 􏼁 + d2Γ n2 + 1/2( 􏼁/Γ n2/2 + 1( 􏼁􏼂 􏼃
���
2π

√ .

(24)

Equation (7) yields

dp1(δ)

dδ
�

−
C1n1π
2d1

cos
πδ
2d1

􏼠 􏼡

n1− 1

sin
πδ
2d1

􏼠 􏼡, 0≤ δ < d1,

−
C1n2π
2d2

cos
πδ
2d2

􏼠 􏼡

n2− 1

sin
πδ
2d2

􏼠 􏼡, − d2 < δ < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(25)

then

dp1(δ)

dδ
􏼢 􏼣

δ�h

�

−
C1n1π
2d1

cos
πh

2d1
􏼠 􏼡

n1− 1

sin
πh

2d1
􏼠 􏼡, 0≤ h< d1,

−
C1n2π
2d2

cos
πh

2d2
􏼠 􏼡

n2− 1

sin
πh

2d2
􏼠 􏼡, − d2 < h< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)

and from equation (7),

p1(δ)􏼂 􏼃δ�0 � C1 �

��
π

√

Γ n1 + 1/2( 􏼁/Γ n1/2 + 1( 􏼁 + Γ n2 + 1/2( 􏼁/Γ n2/2 + 1( 􏼁􏼂 􏼃
, n1 ≥ 0, n2 ≥ 0, (27)

and substituting equations (26) and (27) into (20),
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Figure 15: Displacement PDFs of ATHNPS for various values of σ20. (a) Comparison of the numerical and theoretical solution. (b)-e result
of Gaussian fitting.

Shock and Vibration 11



p1peak(h) �

n1π
2d1

tan
πh

2d1
cos

πh

2d1
􏼠 􏼡

n1

, 0≤ h<d1,

n2π
2d2

tan
πh

2d2
cos

πh

2d2
􏼠 􏼡

n2

, − d2 < h< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Letting d1 � d2 � (π/2), the generalized peak PDFs of
ATNPS can be displayed for various values of n1 and n2 in
Figure 18. As the IECFs n1 and n2 decrease, the displacement
peaks corresponding to the generalized p1peak(h) of the
product move lower and wider. Meanwhile, the response
displacement peaks of the product present a wider range.

-en, we use Rayleigh, Weibull, and Gaussian distri-
butions to examine the generalized peak PDFs of ATNPS for
h≥ 0, and the result is also depicted in Figure 18. At this
case，p1peak(h) is approaching Rayleigh and Weibull dis-
tribution as n1 and n2 increase. What’s more, p1peak(h) is
closer to Rayleigh distribution than Weibull distribution.
Figure 18 reveals that as n1 and n2 change, p1peak(h) presents
non-Gaussian characters.

Generalized peak PDFs of ATNPS can be plotted for
different d1 and d2 in Figure 19 when n1 � 5 and n2 � 5. As
d1 and d2 are lower, we can see that the displacement peaks
corresponding to the generalized p1peak(h) of the product
move higher and narrower. Meanwhile, the response dis-
placement peaks of the product present a narrower range.

Rayleigh, Weibull, and Gaussian distributions are intro-
duced to examine the generalized peak PDFs of ATNPS for
h≥ 0 for different d1 and d2. It is obvious that p1peak(h) is
approaching Weibull and Rayleigh distribution from Figure 19
as d1 and d2 increase. In addition,p1peak(h) is closer to Rayleigh
distribution than Weibull distribution. On the contrary,
p1peak(h) is only approachingRayleigh distribution asd1 and d2

decrease. Figure 19 shows that whatever d1 and d2 change,
p1peak(h) presents non-Gaussian characters.

5.2. Peak PDFs of AHTNPS. Equation (12) yields

p2(0, _δ) �
C1′���
2π

√
σ0

exp
F
2
1ω′21
k1′

􏼠 􏼡exp −
_δ
2

2σ20
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (29)

and substituting equation (29) into (18), letting
_z2 � ( _δ

2
/2σ20), after integral transform, then

v
+
0 � 􏽚

+∞

0
_δp(0, _δ)d _δ �

�
2

√
C1′��
π

√ 􏽚
+∞

0
_z2exp − _z2( 􏼁d _z2. (30)

Since the integral 􏽒
+∞
0 _z2exp(− _z2)d _z2 is equal to unity,

v+
0 is given as v+

0 � (
���
2π

√
C1′/π).

From equation (13), [dp2(δ)/dδ]δ�h can be obtained and
[p2(δ)]δ�0 � C1′. Substituting above equations into equation
(20) result in

p2peak(h) �

−
k1′n1′

F1
tanh

k1′h
F1

cosh
k1′h
F1

􏼠 􏼡

n1′

, h≥ 0, n1′ ≤ 0,

−
k2′n2′

F2
tanh

k2′h
F2

cosh
k2′h
F2

􏼠 􏼡

n2′

, h< 0, n2′ ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Letting (k1′/F1) � (k2′/F2) � 1, the generalized peak
PDFs of AHTNPS can be displayed except the difference in
n1′ and n2′ in Figure 20. As IECFs n1′ and n2′ decrease, it can be
seen that the displacement peaks corresponding to the
generalized p2peak(h) of the product move lower and wider.
Meanwhile, the response displacement peaks of the product
present a wider range.
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Figure 16: Displacement PDFs of ATHNPS for various values of damping coefficient.
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When h≥ 0, the amplitude h is plotted versus the gen-
eralized peak PDFs of HATNPO for various n1′ and n2′ in
Figure 20. It is shown that p2peak(h) is approaching Rayleigh
and Weibull distribution in Figure 20 as n1′ and n2′ increase.
p2peak(h) is closer to Rayleigh distribution than Weibull
distribution. p2peak(h) approachesWeibull distribution as n1′
and n2′ decrease. Figure 20 indicates that as n1′ and n2′ change,
p2peak(h) presents distinct non-Gaussian characters.

5.3. Peak PDFs of ATHNPS. Equation (16) gives

p3(0, _δ) �
C′
′

1���
2π

√
σ0

exp −
_δ
2

2σ20
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (32)

substituting equation (32) into (18), after integral transform,
we can also obtain v+

0 � (− C1′σ20/
���
2π

√
).

Based on the equations (17) and (20), we can obtain
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Figure 17: Displacement PDFs of ATHNPS for various values of n3 and n4.
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p3peak(h) �

n3π
2d3

tan
πh

2d3
􏼠 􏼡 cos

πh

2d3
􏼠 􏼡

n3

, 0≤ h< d3, n3 ≥ 0,

−
k4n4

F4
tanh

k4h

F4
􏼠 􏼡 cosh

k4h

F4
􏼠 􏼡

n4

, h< 0, n4 ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Letting d3 � (π/2), (k4/F4) � 1, the generalized peak
PDFs of ATHNPS can be displayed for various values of n3
and n4 in Figure 21. With the IECF n3 increases and n4
decreases, we can see that the displacement peak h corre-
sponding to the generalized p3peak(h) of the product moves

lower and wider. Meanwhile, the response displacement
peak h of the product presents a wider range.

When h≥ 0, the amplitude h is plotted versus gener-
alized peak PDFs of ATHNPS for various values of n3 and
n4 also in Figure 21. It is shown that p3peak(h) is
approaching Rayleigh as n3 increases and n4 decreases.
Figure 21 indicates that as n3 and n4 change, p3peak(h)

presents non-Gaussian characters.

6. Application for Fatigue Evaluation

Some rocket component packaged by the neoprene and
some foam alloy composite materials of the aircraft are
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Figure 19: Generalized peak PDFs of ATNPS for different d1 and d2.

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

G
en

er
at

io
n 

p 1
pe

ak
 (h

)

–2 –1 0 1 2 3 4
h

Gaussian µ = 0.994 σ = 0.605

Gaussian µ = 0.588 σ = 0.329
Weibull a = 1.118 b = 1.722
Rayleigh k = 0.823

Weibull a = 0.663 b = 1.868
Rayleigh k = 0.476

Gaussian µ = 0.457 σ = 0.249

Weibull a = 0.515 b = 1.914
Rayleigh k = 0.368

Gaussian µ = 0.406 σ = 0.220

Weibull a = 0.458 b = 1.930
Rayleigh k = 0.326

n′1 = n′2 = –5

n′1 = n′2 = –8

n′1 = n′2 = –2

n′1 = n′2 = –10

Figure 20: Generalized peak PDFs of AHTNPS except the difference in n1′ and n2′.

14 Shock and Vibration



subjected to the random loading during the air transport so
as to cause the fatigue failure.

Take ATNPO as example shown in Figure 22, assuming
that fatigue damage accumulates linearly (Miner’s rule) [35],
the average damage E(D) after N1 cycles was given by [36]:

E(D) � N1μ􏽚
∞

0
s
β
p(s)ds, (34)

where μ is a constant of any given material, β is the slope of
the s − N curve by the logarithmic coordinate, and p(s)

represents the PDF of peak stress amplitude, which can be
obtained through the generalized PDF of the response peak
distribution ppeak(h).

(a) -e system under study can be regarded as an ap-
proximate motion description at the center of a
simply supported beam in Figure 22(a), so the stress-
displacement relationship can be assumed linear

s1 � μ1h. Combining equations (31) and (34) results
in

E(D) �
N1μnπ
2μ1d

􏽚
μ1d

0
s
β
1tan

πs1

2μ1d
cos

πs1

2μ1d
􏼠 􏼡

n

ds1, (35)

for β ≈ 10 and n � 9, solving the integration, equation
(35) results in

E[D]n�9 � 0.153 × 10− 3μ μ1d( 􏼁
9

􏽨 􏽩N1, (36)

and if the ultimate strength of a material is 50 000 psi,
μ1 is 25 000 psi/in, and d � 1. Equation (36) becomes

E[D]n�9 � 0.153 × 10− 3
×

25000
500000

􏼒 􏼓
9

􏼢 􏼣N1

� 2.988 × 10− 7
N1.

(37)
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Figure 21: Generalized peak PDFs of ATHNPS for various values of n3 and n4.
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Figure 22: Displacement nonlinearity due to tangent type materials.
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When E(D) � 1, the fatigue failure occurs, so the
average cycle number to failure would be
Na � (1/2.988 × 10− 7) � 3.346 × 106 cps.

(b) Considering the stress at the center of a pinned-
pinned beam shown in Figure 22(b), the stress-
displacement nonlinear relationship was given [37]
s2 � μ2h + (μ3′/2l√3)h2 � μ2h + μ3h2 (where l rep-
resents the length of the beam), and then h � (− μ2 +

(μ22 + 4μ3s2)
1/2/2μ3) result in

EN(D) �
N1μnπ
2 d

􏽚
d

0
s
β
2tan

πh

2d
cos

πh

2d
􏼠 􏼡

n

dh. (38)

Similarly, EN(D) and the average cycle number to
failure Na can also be evaluated at some determine
parameters.

7. Conclusions

-e displacement PDFs of three types of ANPSs have been
derived through FPK equations; the generalized peak PDFs
are defined and examined by three common distributions.
Meanwhile, a good agreement is achieved between theo-
retical solutions and numerical results, leading to verify the
theories. -e conclusions lie in the following aspects.

(a) -e responses for three types of ANPSs derived
through FPK equations present different forms, but
they have the generalities. -e displacement PDFs
for three ANPSs are closer to Gaussian distribution
with the external excitation grade decreases.

(b) With the damping correlation coefficient α increases,
the nonlinear factors can be compensated in the
system, and the displacement PDFs for three types of
ANPSs are closer to Gaussian distribution. It is in-
teresting to find that as α tends to 0 (the system
damping tends to 0), the displacement PDF ap-
proaches the uniform distribution. Displacement
responses of asymmetric tangent type are limited to
the boundary strain of d1 andd2. IECFs have a
significance on effecting the displacement PDFs
approaching a uniform distribution, non-Gaussian
distribution, or Gaussian distribution.

(c) Most PDFs of the unilateral response peaks approach
Rayleigh distributions, and present non-Gaussian
characters. -e application of the scheme for fatigue
evaluation is carried out, so the analysis can be used
as guidelines for fatigue damage evaluation of the
transport package or the critical component.
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