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Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in
environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods
available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing
stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use
of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve
these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated
kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of
transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the
preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to
consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an
index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault
diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.

1. Introduction

Rolling element bearings as a significant component was
widely employed in modern mechanical manufacturing
systems [1-3]. However, unexpected localized defect may
inevitably occur on them due to harsh working conditions
[4]. If they are not detected in the early stage, the local defects
could lead to significant economic losses and even catas-
trophes [5]. Therefore, fault detection and diagnosis of
bearings play an important role in maintaining the avail-
ability and reliability of the mechanical system during the
past decades [6, 7].

Vibration signal analysis is a commonly used approach
since it contained rich information of bearing health con-
ditions [8, 9]. When localized defects occur on rolling
bearings, they will induce periodic transient impacts re-
peating at the period of the fault, which could trigger the
resonant frequencies of the entire mechanical system
[10, 11]. However, at the early stage, weak periodic transient

impulses indicating the fault characteristic are usually
overwhelmed by harsh background noise, large accidental
impulses, and transmission path [12]. Hence, effectively
extracting the periodic impact feature by using advanced
signal processing techniques is a key task for fault diagnosis
of rolling element bearings [13-15].

The raw signals collected by sensors represent the
convolution between the periodic transient impulses caused
by bearing faults and the transmission function of the system
composed of bearing and bearing housing [16]. Minimum
entropy deconvolution (MED) was first proposed by Wig-
gins et al. in 1970 [17] and has successful applications in
mechanical fault detection and diagnosis. To eliminate the
influence of the system transmission path, MED is used to
deconvolute periodic transient impulse signatures from a
machine vibration signal by looking for an optimal filter
coeflicient, and then fault diagnosis is realized by envelope
spectrum analysis [18-21]. However, the kurtosis serving as
the optimizing index of MED cannot consider the
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characteristic of periodic fault impacts because it is very
sensitive to large accidental impulses [22]. In consequence, it
tends to yield a single impulse, rather than periodic transient
impulses repeating at the period of the fault [23]. Therefore,
the result of MED may be unsatisfactory to detect the fault of
rolling bearing in the presence of accidental impulses with
high amplitude [24]. Subsequently, a new method called the
maximum correlated kurtosis deconvolution (MCKD)
which takes the periodicity of the fault into account was
designed by McDonald [25]. To successfully detect fault
correlated impulses of rolling bearing and minimize the
influence of the transmission path, Lyu et al. [26] introduced
a new method for the extraction of early fault impulse in
gearboxes by the hybrid usage of MCKD and quantum
genetic algorithm. Although a lot of successful applications
have been reported, the predetermination of key parameters
of MCKD, like the fault period T, depends heavily on prior
knowledge. These parameters largely affect the final
deconvolution results and thus decide the performance of
MCKD in the fault detection and diagnosis.

The periodic transient impulses due to early faults in
rolling bearings are often weak especially at the early fault
stage [27]. Moreover, such impulses are often submerged by
heavy background noise and large accidental impact apart
from the transmission path. To eliminate the majority of the
noise and interference, the resonance demodulation tech-
nique employs a band-pass filter to filter out fault-induced
vibrations around one resonance frequency of bearing
systems [28]. Then the fault diagnosis is performed by the
envelope spectrum [29]. Antoni et al. [30] proposed the fast
kurtogram based on 1/3 binary filter banks, in which the
frequency band with the maximum kurtosis in the time
domain of the filtered signal serves the optimal band-pass
filter. However, the kurtogram suffers the same shortcom-
ings as MED since the kurtosis value employed to evaluate
the results is too sensitive to handle large accidental impulse.
To solve this issue, Zhang et al. [31] introduced an improved
kurtogram method combining correlated kurtosis and
wavelet packet decomposition to detect the bearing fault.
Turntable Q factor wavelet transform (TQWT) which is an
improved wavelet transform was originally proposed by
Selesnick [32]. A series of wavelet basis functions can be
obtained to filter out interference component by adjusting
the Q factor, and then the performance of wavelet transform
will be improved in the field of denoising, classification, and
signal separation. From then on, TQWT theory has been
playing an increasingly important role in the rolling bearing
fault diagnosis. However, since the selection of a proper Q
factor is a challenging task and has a significant influence to
obtain the optimal frequency band, an appropriate fre-
quency band evaluation index is a key issue to guarantee the
ultimate result of denoising.

In recent years, there is a trend to jointly use multiple
signal processing techniques for vibration signal
denoising to enhance fault impulses. Shang et al. [33]
explored a new approach to detect rolling bearing fault,
where multipoint kurtosis optimal minimum entropy
deconvolution adjusted (MOMEDA) is adopted to
eliminate the influence of transmission path while
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improved empirical wavelet transform (IEWT) is used to
reduce the interference of noises, and then the optimal
component with the maximum kurtosis is obedient to
envelope spectrum. Zhang et al. [34] decomposed orig-
inal signals using improved compound interpolation
envelope (ICIE) LMD, and the kurtosis value was
employed as the optimization index to select the best
component which is further processed by the kurtogram
method. Li et al. [35] adopted intrinsic feature-scale
decomposition (ICD) to decompose raw signals into a
serial of subfrequency bands, TQWT is applied to the
component with maximum kurtosis, and then the
characteristics frequency ratio (CFR) was used to select
the optimal TQWT component. Ma et al. [36] introduced
a method combining frequency band extraction and
ITQWT for detection of fault transient impulses of rolling
bearing. About this method, kurtosis was used to select
the optimal Q factor of TQWT prior to the frequency
analysis. In the above literatures, multiple signal pro-
cessing methods are employed together to extract fault
feature of bearings. Although the performance has been
improved compared with using only one single signal
processing method in the case of bearing fault diagnosis,
there are still some problems in detecting periodic im-
pulses from heavy background noise for bearing fault
identification. One of these problems is that most opti-
mization indices like kurtosis used in individual signal
processing stage do not take the periodical characteristic
of fault transient impulses into consideration. Another
problem is that the individual stages make use of different
optimization indices, resulting in inconsistent optimi-
zation directions and thus an unsatisfied diagnosis.

To overcome the above two drawbacks and further
explore the advanced signal processing method for detecting
periodic transient impulses from the heavy interference to
implement fault diagnosis of rolling bearing, a multistage
fault feature extraction method is proposed based on MCKD
and TQWT in this paper, of which the major contribution is
the consistent use of correlated kurtosis (CK) as an opti-
mization index of both MCKD and TQWT. Being different
from kurtosis, CK can reflect the periodic transient impulse
feature. In the proposed method, MCKD is applied to the
original vibration signal to initially reduce the effect of signal
transmission path and highlight weak impacts to a certain
extent. The signal preprocessed by MCKD is subsequently
subjected to TQWT to further enhance fault-related char-
acteristics by decomposing the preprocessed signals into
multiple subbands under different Q values. The optimal
component with the maximum CK will yield an envelope
spectrum, from which fault diagnosis is implemented.

The remainder of this paper is organized as follows:
Section 2 describes the basic principle and the disadvantage
of MCKD. Section 3 presents a brief description of TQWT.
The detailed procedure of the proposed method is illustrated
and the simulation experiment is performed in Section 4.
The proposed method is further tested to detect with the
strong interference signal and the early stage fault of rolling
bearing in Section 5. Finally, the conclusions are drawn in
Section 6.
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2. Maximum Correlated
Kurtosis Deconvolution

MED which is a commonly used deconvolution technology
was firstly put forwarded by Wiggins. In the past decade, it
has been extensively exploited to sharpen the fault impulse
signals in rotating parts such as rolling bearings [17]. MED
takes maximum kurtosis instead of minimum entropy as the
optimization index to obtain an optimal filter to deconvolute
the original fault signals. However, MED is susceptible to
large accidental impulses because of the kurtosis used as the
optimization index. To ensure that periodic transient im-
pulses caused by faults can be extracted effectively, a new
index called correlation kurtosis was proposed, which is
suited to measure periodic impulses. CK of M shift can be
shown as

2
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For T5=0, M =1, the CK becomes the kurtosis in MED.
M expresses the order of shift, and T’ is the sampling points
to iteration period, namely:

T,=f,-T, (2)

CK,, (Ts) = (1)

where f, and T represent the sampling frequency and
failure period, respectively.

The MCKD method is a new generation of deconvo-
lution technology derived from MED by McDonald [25].
The essence of MCKD is that CK instead of kurtosis acts as
the measure index, and thus the periodic characteristics of
bearing local faults can be fully considered. Through the
iterative operation, an adverse filter can be obtained [23].
This method has proven able to relieve the effect of trans-
mission path effectively and thus enhances the periodic
impacts. When rolling elements run on local faults, peri-
odical impulses are produced. However, the signals collected
by using sensors are submerged by the heavy background
noise and attenuated by the transmission path, which can be
represented by

x=h-y+e,, (3)

where h represents the transmission path response, y is the
fault signature, and e,, denotes the environmental noise.

By searching for a filter maximizing the CK of the
deconvoluted signal, the MCKD algorithm is introduced to
recover the periodic transient impacts y in the sensor-
collected signal x by minimizing the transmission path ef-
fect, to achieve noise reduction and highlight the periodic
fault characteristics. This process is called deconvolution,
and a formula of inverse filtering is shown as

L

y=f-x= kaxn—kﬂ’ (4)

k=1

where x and y are input and output signals, respectively, N

denotes the number of samples of the input signal, f rep-

resents the filter coeflicients, and L is the length of the filter.
The optimization expression is given by

2
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where f is the filter and M represents the number of shifts.
The iteration expression of the filter coefficients is
presented by

max CK, (Ts) = max;
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where X X! indicates the Toeplitz autocorrelation matrix of
x and (X X!)™' is supposed to exist. The superscript T
represents the transpose operation:
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Through the above description, the procedure of the
MCKD algorithm is presented as follows:

Step 1: load the original data collected by using the
acceleration sensor, and determine the sampling points
of iteration period

Step 2: calculate X, X[ and (X, X?)™" according to the
input signal

Step  3:  set the initial
E;=[00-1-1:0 ()]T
Step 4: calculate the deconvoluted signal y according to
(4)

Step 5: calculate X, «,,, and 3 according to y

filter  coeflicient

Step 6: compute the new filter coefficient {; from (6)

Step 7: calculate the iteration error according to the
following formula:
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The calculation is terminated as the iteration error is
smaller than the threshold value. Otherwise, repeat the
process from Step 3 [37, 38].

e =

3. Theory of Tunable Q-Factor
Wavelet Transform

3.1. Tunable Q-Factor Wavelet Transform. As a new wavelet
transform, TQWT was proposed by Selesnick in 2011
[32]. Compared with the traditional constant Q factor
wavelet transform, the remarkable feature of TQWT is
that it can construct different basis functions by
adjusting the Q value to achieve the best matching with
the fault features to be extracted. The Q factor was
expressed by the ratio of central frequency to bandwidth,
as shown in equation (8):
fe

Q= By’ (12)
where f_ is the central frequency and By, is the bandwidth
[39].

The key of traditional wavelet transform is to select an
appropriate wavelet basis function. However, the selection of
Q factor of TQWT determines the matching degree between
wavelet basis functions and fault features. Figure 1 depicts
the decomposition and reconstruction processes of a three-
layered TQWT.

In Figure 1, H,(w) and H, (w) denote the frequency
response functions of low-pass and high-pass filters, re-
spectively. H{ (w) and H| (w) represent the complex
conjugates of H,(w) and H, (w), respectively. ¢/ and w’
denote the scale coeflicients and wavelet coefficients of
wavelet transform, respectively. In consideration of perfect
reconstruction, H, (w) and H, (w) are as follows:

(1, lw| < (1 -pB)m,
Hy () = 1 e[m], (1-Pr<lol<an, (13)
| 0, an < |w| <,
0, ol < (1-p)m,
H, (w) = e[%} (1-Pr<lol<ar,  (14)
1, an <|w| <,

where w is the angular frequency and 0 is defined as

0(v) =0.5(1 +cosv)V2—cosv, |v|<m. (15)
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3.2. The Problem of Parameters Selection with TQWT. Q
factor and redundancy r have a direct relationship with high-
pass scaling parameter « and low-pass scaling parameter 3,
as in equation (11) [40]:
a=1- /—3,
r
(16)
2

Q+1
Equations (12) and (13) give the central frequency f.and

bandwidth By, of the filter bank in the j-th layer, respectively
[41]:

B=

fo=aPp (17)

40 ¥

1.
B, = Zﬂ(xj 'F,, (18)

where j denotes the number of decomposition layers and F;

is the sampling frequency. In addition, the largest decom-

position layer ] .. was obtained as follows [32]:
;oo log(N/4(Q + 1))

" log ((Q+ 1)/4(Q + 1 - (2/r)))

(19)

where | - | denotes a round-down integer. N represents the
data length. For instance, when Q=1, r=3, and N=10,000,
the maximum decomposition level ], .. =17, while in the
case of Q=3, J... =35.

The decomposition performance of TQWT is deter-
mined by Q factors, the redundancy r, and the number of
maximum decomposition levels J ... Moreover, r>3 is
recommended in Ref. [39]. In order to ensure an excellent
computational efficiency for TQWT, r is set to 3 in the
present research. Figure 2(a) implies that the time-domain
signals of TQWT wavelet are symmetrical and approxi-
mately translation invariant. The number of filters is ensured
by parameter ... Meanwhile, different (Q, r) will yield
different wavelet basis functions. For Q = 3, it is noted that
the duration of wavelet basis function gets longer as the
decomposition layers raise in Figure 2(a). The frequency
responses of the first 10 decomposition layers are displayed
in Figure 2(b), which represents a group of nonconstant
band-pass filters with the central frequency gradually de-
creasing since the frequency range of the filters of the first 10
layers cover [0.05 0.5] x sampling frequency. The subband
signals resulted from such layers will be considered, which is
conducive to decrease the computation intense. However, Q
factors affecting the performance of TQWT rely heavily on
the prior knowledge of operators. Therefore, an indicator is
required to determine the optimal Q factors to enhance the
fault transient impulse signatures.

max

4. The Proposed Fault Diagnosis Method

4.1. The Fault Feature Extraction Based on MCKD and TQWT.
A multistage fault feature extraction method of consistent
optimization for rolling bearings based on correlated kur-
tosis (CK) is presented to detect the periodic impact features
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FIGURE 1: Three-layer filter banks: (a) decomposition filter banks; (b) reconstruction filter banks.
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FIGURE 2: (a) The time-domain signals and (b) the frequency responses of wavelets in TQWT.

of incipient faults of rolling bearings from harsh background
noises and large accidental impulses and mitigate the effect
of transmission path. Figure 3 illustrates the procedure of the
proposed approach.

(1) The candidate range of T'is determined according to
the corresponding periods of the inner-race, outer-
race, and the rolling element faults

(2) Apply MCKD to deconvolute the original signal for
each T obtained in Step (1), resulting in a set of
preprocessed signals

(3) Compute the CK value of each deconvoluted signal,
and select the optimal T pertinent to maximum CK
to deconvolute the raw signal

(4) Determine the range of Q factor and perform the
TQWT on the signal processed by the MCKD with
optimal T to obtain a set of wavelet coefficients and
scale coefficients corresponding to various Q factors

(5) Reconstruct the first 10 layers of subband signals for
all Q factors

(6) Calculate the CK value of each reconstructed sub-
band signals for each Q factor and pave a 2D map of
TQWT

(7) Pick out the optimal component having the largest
CK value in the 2D map

(8) The optimal component is then subjected to enve-
lope analysis, and fault diagnosis is achieved

4.2. Algorithm Validation with Simulated Signal. The local-
ized defect of rolling bearings is simulated by a vibration
model which can be used to verify the approach present in
this paper:

M M1
x(t) = Y A (t—iT —7,) + Y Djs;(t = jT) +n(t),
i=1 j=1

A; = Aycos(2nQt + ¢4) + Cy,
s(t) = e P sin(2nf t +9,),
(20)

where the first part of x(t) indicates the periodic fault
components excited by the localized defect; A; and A,
represent the amplitude modulation component and its
amplitude, respectively; C, is a constant bias; s (t) shows the
impulse response function of the mechanical system; T'is the
periodic of fault impulses; B; represents the damping
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FIGURE 3: Procedure of the proposed approach.

coeflicient; the natural frequency can be represented by f;
and the white Gaussian noise can be expressed by n(t).

It is the fact that the vibration signals acquired by the
sensor may contain large accidental impulses in the actual
operation of bearings aside from periodic fault transient
impulses and background noise. To better demonstrate that
the periodicity of the transient impulses can be extracted by
our method sufficiently, considering the external knocks will
produce large accidental impact, its simulated signal will be
added in the second part of x (¢).

An inner-race localized fault is assumed in the simulated
signal, whose sampling rate (i.e., f;) is 20480 Hz. Its fault
characteristic frequency (FCF) is set 90 Hz, and natural
frequency produced by impulse is set 3500 Hz. The data
length L is set 8000. Figure 4(a) displays the simulated signal.
In addition, to make the simulation signal closer to the
vibration signal induced by the actual operation condition of
the bearing, the Gaussian random noise with an amplitude
of 0.4mm/s” is added to the simulated fault impact signal,
and the compound signal is represented in Figure 4(b).
Moreover, to verify that kurtosis is susceptible to high
amplitude accidental shocks, a sinusoidal signal with an
amplitude of 10 and a frequency at 1500 Hz is artificially
added in the range of No. 1000-1060 points as shown in
Figure 4(c). It can be noted that the fault transient impulses
are submerged by Gaussian background noise and high-
amplitude sinusoidal impact. Then, from the envelope
spectrum of the simulated signal shown in Figure 4(d), there
is no obvious fault characteristic frequency component.
Consequently, finding an effective fault impulse extraction
approach is of significance.

For comparison, the kurtogram approach is employed to
process the simulated signal in Figure 3(c). The decompo-
sition layer of the spectral kurtosis is set to 3 due to the
requirement on the bandwidth of the filter and the

maximum fault characteristic frequency
(bandwidth > 3 x maximum FCF). The 2D map of kurto-
gram is displayed in Figure 5(a). The optimum parameters of
the filter frequency band are that central frequency is
1900 Hz and bandwidth is 800 Hz, which covers exactly the
frequency of 1500 Hz of the artificially added sinusoidal
interference impulse. The envelope and envelope spectrum
of the filtered signal resulted from Kurtogram are displayed
in Figures 5(b) and 5(c), respectively. The envelope spectrum
fails to detect any useful fault information because kurtosis
does not take the periodic characteristic of fault impacts into
consideration. The results imply that occasional impacts of
high amplitude could lead to a wrong selection of filter
frequency band.

The approach proposed is used to process the simulated
signal. First, the range of the parameter T can be set [220,
280] according to the theoretical values of fault period T
corresponding to the inner-race, outer-race, and rolling
element fault. MCKD is then employed to deconvolute the
simulated signal with the optimal period T=226 which is
determined by the criterion of maximum CK and approx-
imates to the actual inner-race fault period T=227. The
fault-related transient impulses of the rolling bearing are
initially enhanced as shown in Figure 6(a), but it is not
equivalent to detect the inner-race defect. Second, the range
of Q factor is set to [1.0, 3.0] with an increase of 0.1. Then, the
MCKD preprocessed signal will be decomposed into a series
of wavelet coefficients employing TQWT, and the first 10
layers of wavelet coefficients are reconstructed. The CK map
of TQWT in Figure 6(d) displays the CK values of each
subband component. The optimal reconstructed component
is obtained based on the principle of maximizing CK value.
The corresponding optimal filter exactly covers the natural
frequency 3500 Hz, and the frequency of the sinusoidal
interference with 1500 Hz is avoided. This result shows that
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FIGURE 4: (a) Periodic transient impulses of inner-race defect; (b) signal with added Gaussian noise; (c) signal with added noise and large

accidental impulses; (d) Hilbert envelope spectrum of (c).
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the proposed approach is robust to accidental impulses with
high amplitude. The time-domain signal of optimum signal
is displayed in Figure 6(b), showing that the impact com-
ponent has been substantially enhanced. The envelope
spectrum can be witnessed in Figure 6(c). It is indicated that
the frequency component of 89.6 Hz is very close to the
characteristic frequency 90 Hz of the inner-race fault, and its
harmonics are distinct. Therefore, the simulation results
validate the feasibility of the new approach for the extraction

of rolling bearing defect from the heavy background noise
and large accidental impulses.

One of the main contributions of the proposed approach
lies in the fact that CK, which is an optimization index, is
used consistently in both pre- and postprocessing stages.
This is different from the pieces of the literature available
which make use of different optimization indices in different
stages [33-37]. To demonstrate the advantages of consistent
use of CK in both signal processing stages, CK is substituted
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by kurtosis in the postprocessing stage to select the best  criterion of kurtosis maximization, the central frequency
component of TQWT. Figure 7(a) displays the kurtosis 1759 Hz is selected, which is approximate to the interference
values of all TQWT subband components. Based on the  impulse frequency of 1500 Hz. The optimal component and
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its envelope spectrum are displayed in Figures 7(b) and 7(c),
respectively. There is no dominant fault characteristic fre-
quency component in the envelope spectrum. Therefore, the
indispensability of our method is confirmed by the com-
pared method.

5. Experimental Results and Discussion

When localized faults occur on bearings, they will induce a
series of periodic transient shocks due to vibration responses
of mechanical system. Two experimental bearing vibration
signals were utilized to illustrate the ability of the proposed
method to extract weak periodic transient impulses of an
outer-race fault and an inner-race fault in this part. The
operating environments of these two cases are different so
are the types of rolling bearings. The following Sections 5.1
and 5.2 will illustrate these tests in detail, respectively. To
further prove the effectiveness of the presented approach to
extract the early fault features, the experimental conse-
quence is contrast with SK and inconsistent optimization
indices (kurtosis as the index of TQWT).

5.1. Experiment I. Bearing Fault with Large Interference.
The first experimental data come from the rotor-bearing
fault simulator (test bench built in-house), which can
simulate different rolling bearings and rotor faults. The
experimental setup is shown in Figure 8, which includes
servo motor, motor controller, supporting bearing, bearing
house, accelerometer, computer, and data acquisition card.
The test bearing type is N205. To simulate the early fault of
bearing, one groove on the outer race with 0.1 mm x 0.5 mm
is generated by using a wire cutting machine. The shaft
rotating frequency is set at 16.6 Hz. Vibration signals were
collected by using the accelerometer at a sampling frequency
of 12,000 Hz, and signals of 1s length were stored in an
industrial computer. According to the computation for-
mulae of fault characteristic frequencies in Table 1, based on
the shaft rotating frequency and geometric size of the fault
bearing, f,, f;, and f, were calculate and presented in
Table 2.

The time-domain signal of the bearing outer-race fault is
shown in Figure 9(a), where the fault impacts are evident due
to regular defect shape and almost without interferences.
Therefore, to make the collected vibration signal closer to the
real-life operating environment of bearings, the Gaussian
random noise of 4 mm/s” is added to the collected signal. The
compound signal after adding noise is displayed in
Figure 9(b). Meanwhile, to simulate the large accidental
impulse interference, a random vibration with an amplitude
of 60mm/s” is artificially added in the vibration signal
between No. 2281-2360 points, and the compound signal is
shown in Figure 9(c). The amplitude of accidental impact is
much larger than that of bearing fault impacts. The acci-
dental impact is dominant in vibration signals, and the fault
characteristics of bearing outer race have been submerged in
the noise and interference impact.

The results produced by fast kurtogram for the experi-
mental signal is presented in Figures 10(a)-10(c). The

Computer Test bearing N205

Acceleration

Sensor

Data acquisition card Servo motor and

controller

Supporting Coupler
bearing

FiGURre 8: Test bench for bearing fault detection.

diagram of the fast kurtogram is displayed in Figure 10(a),
and the filter frequency range is chosen to be [5300, 6000]
Hz. However, there is no obvious characteristic frequency
component in the envelope spectrum in Figure 10(c). So, the
fast Kurtogram fails to detect periodic fault-related char-
acteristics. Therefore, extracting periodic fault features
submerged in the strong interference is difficult by using the
fast kurtogram.

The proposed approach is used to extract the bearing
fault characteristics from the compound signal including
Gaussian random noise and large accidental impulses as
shown in Figure 9(c). According to the fault characteristic
frequencies f,, f;, and f}, the corresponding period T, of
those components are calculated as 93, 137, and 126 points,
respectively; therefore, the range of T is set to [75, 150].
Firstly, MCKD is employed to deconvolute the signal in
Figure 9(c). The signal preprocessed by MCKD based on the
maximum principle of CK is represented in Figure 11(a),
and the optimal period of MCKD is T=137, which is
consistent with the actual outer period 137. The periodic
transient impulse features of the bearing fault have been
initially enhanced, but it is not enough to detect the outer-
race defect. Secondly, the pretreated signal induced by
MCKD is further decomposed by TQWT, and the first 10
wavelet coefficients are reconstructed by inverse TQWT. The
maximum CK in Figure 11(d) implies an optimal frequency
range of [1925, 3568] Hz for TQWT. The resultant subsignal
and its envelope spectrum are presented in Figures 11(b) and
11(c), respectively. The peaks at 88 Hz and its harmonics
(2f,,3f,) are dominant in Figure 11(c). The result indicates
clearly that the outer-race faults disturbed by transmission
path, harsh background noise, and large accidental impulses
can be extracted effectively by the proposed method.

For comparison, the approach that the optimization
index of TQWT in postprocessing stage is replaced by the
kurtosis is used to process this fault signal in Figure 9(c) to
prove the significance of employing consistently optimiza-
tion index in the individual stages. Figure 12(a) shows the
kurtosis diagram of TQWT. Figures 12(b) and 12(c) express
the filtered signal and its envelope spectrum of the selected
component according to the kurtosis maximization crite-
rion. There is no any obvious characteristic frequency
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TaBLE 1: Computation formulae of fault characteristic frequencies (FCFs).

Fault characteristic frequency Formulae

Outer-race fault frequency (BPFO) fo=(1/2)Z(1 - (d/D)cosa) f,
Inner-race fault frequency (BPFI) fi=1/2)Z(1+ (d/D)cosa) f,
Rolling element fault frequency (BPFR) £y = (D2d)[1 - (dID)*cos’a] f,
Cage defect frequency (CDP) fe=(1/2)[1 - (d/D)cos a] f,

f1» Z, d, D, and « represent the shaft rotating frequency, the number of balls, the roller diameter, the bearing groove section size, and the bearing pressure

angle, respectively.

TABLE 2: Bearing fault characteristic frequencies (Hz) in experiment I.
BPFO f, (Hz) BPFI f, (Hz) BPFR f, (Hz)
87.51 129.15 110.3

Rotation frequency f, (Hz)
16.7

Amplitude

Amplitude

Time (s) Time (s)
(a) (b)
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FIGURE 9: Signals from experiment I: (a) periodic transient impulse signal; (b) added noise signal; (c) added noise and large accidental impulses signal.
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FIGURE 10: The results of experiment I by using SK: (a) the kurtogram; (b) the envelope of the filtered signal and (c) its envelope spectrum.
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FIGURE 11: The results by employing the proposed approach: (a) the preprocessed signal by MCKD; (b) optimal component of the TQWT;
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FIGURE 13: Run-to-failure test bench of rolling bearings. (a) Schematic of the run-to-failure test rig; (b) local photo.

TaBLE 3: Fault characteristic frequencies (Hz) in experiment II.

Rotation frequency f, (Hz) BPFO f,(Hz)

BPFI f,(Hz) BPFR £, (Hz)

33.3 236.4

296.9 139.9

component, so that it is impossible to extract the fault
impulses. In addition, this method confirms the necessity of
consistently using CK as an optimization index in the in-
dividual stages for the extraction of a rolling bearing fault
feature.

5.2. Experiment II: Early Fault Detection in Bearing. The
second experiment data were acquired from NSSA. It was
performed by IMS of the University of Cincinnati, USA, and
the run-to-failure test bench is displayed in Figure 13 [23].
The test system consists of the motor, spindle, bearing
housings, and belt drive. Four double row roller bearings of
type Rexnord ZA-2115 are installed on the spindle. To
shorten the fatigue time span, the radial force of 6000
pounds was loaded on the top surface of bearing housing 2
and 3, and the whole life experiment lasted 7 days. Then, the
test bench was disassembled, and the serious fault on the
outer race of bearing 1 was found. Based on the theoretical
calculation, the fault characteristic frequency is 236.4 Hz as
shown in Table 3.

During this experiment, the signal was obtained every 10
minutes, and the sampling frequency is 20 kHz. A total of
984 data files were collected during the experiment, and each
data file contains four columns pertinent to the four ac-
celeration sensors on the four bearing housings. The data in
the first column that were explored as bearing 1 failed finally.
Root mean square (RMS) is a widespread index to indicate
the degradation processing of bearings. The RMS of the data
in column 1 of all the 984 data files is shown in Figure 14(a),
and its value rises weakly at 534™ file. Therefore, it can be
considered that the early defect happens at No. 534, of which
the signal and its envelope spectrum are plotted in
Figure 14(b) and 14(c), respectively. There is a 230.5Hz

frequency component in Figure 14(c) but without harmonic
components, which is unable to guarantee a sure diagnosis
of outer-race fault.

The kurtogram of the No. 534 signal is shown in
Figure 15(a). The central frequency of the selected filter
bandwidth is 7500 Hz, and its bandwidth is 1666 Hz. The
envelope spectrum of the filtered signal shown in
Figure 15(c) reveals only one frequency component of
230.4Hz and there are no explicit harmonics frequency
components. Like the envelop spectrum in Figure 14(c), SK
cannot make a sure diagnosis of early bearing faults.

In the case of our method, the range of period T'is first
set to [65, 110] based on the fault characteristic frequencies
in Table 3. MCKD is then adopted to preprocess the
original signal with the result shown in Figure 16(a), which
demonstrates that the influence of transmission path has
been alleviated to a certain extent. The first 10 subband
components of TQWT under various Q factors are
reconstructed, and their CK values are imaged in
Figure 16(d). The reconstructed subsignal with maximum
CK, and its envelope spectrum is displayed in Figures 16(b)
and 16(c), respectively. In Figure 16(c), the frequency
component of 232 Hz and its harmonics (460 Hz, 690 Hz)
are distinct. Although 232 Hz is slightly different from the
theoretical calculation results (236.5Hz), it is enough to
signal that the localized fault occurs on the outer race at the
moment. The deviation between the actual frequency and
the theoretical fault characteristic frequency may be at-
tributed to the fluctuation of rotational speed and the
slippage of internal components of bearings. This case il-
lustrates that the proposed approach has certainly feasi-
bility and superiority to detect bearing early weak fault
under severe obstacles of the transmission path and strong
background noise.
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FiGure 16: The results using the proposed approach: (a) the preprocessed signal by MCKD; (b) optimal component of the TQWT; (c) its

envelope spectrum and (d) the CK map of TQWT.

6. Conclusions

The extraction of periodic transient impulses plays a
crucial role in bearing fault diagnosis. At present, the
majority of the optimization index used in signal pro-
cessing approaches fails to consider the periodical oc-
currence of the fault impacts of rolling bearing. Moreover,
existing hybrid diagnosis paradigm exploits different
optimization index in individual signal processing stage.
Aimed at such problems, a multistage fault feature ex-
traction method is proposed in the present research,
which takes correlation kurtosis as the optimization index
in both MCKD preprocessing and TQW'T postprocessing.
It is expected to reduce the influence of transmission path,
background noise, and large accidental impulses and thus
ensure an enhancement of localized bearing fault induced
periodical impacts. The proposed method was validated
on the simulation signal, laboratory signal, and fatigue test
data and achieved a better performance than other
methods like kurtogram in the extraction of weak fault
features. The primary works and contributions of this
paper are as follows:

(1) Consistently using CK as the optimization index in
both two stages of the proposed hybrid diagnosis
approach assure a consistent optimization toward
relieving the effect of signal transmission path,
background noise, and accidental external shocks.

(2) The problem with fault period T in MCKD which
depends heavily on prior knowledge is addressed by
CK maximization on the deconvoluted signals with a

prescribed range of T with consideration of factors
like speed fluctuations.

(3) The comparison with commonly used kurtogram
and a hybrid diagnosis with inconsistent optimiza-
tion indices in individual stages demonstrate the
advantages of the proposed method.
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