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*e definition of design load with walking crowd excitation on these slender structures is a significant problem to human-induced
vibration. To capture the characteristics of walking crowd loads, this article researches both the ground reaction force and ground
reactionmoment for 36 healthy adults. Firstly, a oscillate systemmodeling walking leg is used to build a governing equation, which
further transformed into the discrete state space. *en the Kalman method is applied to filter the noises for the measured ground
reaction force, which can well remove the noises hiding in the measured signals. In addition, the Fourier series are used to model
the ground reaction force and ground reaction moment, and the first six corresponding coefficients are obtained and analyzed.
*is work comprehensively explores the excitation force and moment from walking pedestrian feet. *e result of this study
provides the reference of load design for these slender structures such as footbridges, grandstands, or stations under
crowd excitation.

1. Introduction

*e vibrations of slender structures induced by excitation
due to pedestrian traffic remain a large challenge. Uncer-
tainties associated with human locomotive behavior and the
dynamic properties of the human body result in consider-
able complexity in describing the vibrations resulting from
pedestrians. In order to explore the effect of pedestrian
excitation on structures, Rainer and Pernica [1] first mea-
sured the dynamic load factors (DLFs) during walking,
running, and jumping using an instrumented platform. *e
time history of force of walking people [2] showed that the
ground reaction force (GRF) from walking excitation pro-
duced an M-shaped curve, which was fitted using a Fourier
function [3]. Based on this research, Fan et al. [4] con-
structed a standard GRF model using the least-squares
method. Although the GRF model was able to describe the
excitation from walking pedestrians, the contributions from
the pedestrian’s dynamic properties were not included. Kerr
and Bishop [5] investigated the differences between human-
induced loadings on a floor with that generated whilst

ascending or descending a staircase. Hsiang and Chang [6]
measured vertical ground reaction forces during fifteen gait
speed and load carrying (five load positions and three
speeds), which concluded that both speed and loading
conditions can prompt the gait control system to adjust the
gait pattern to maintain successful gait. Kala et al. [7]
measured the vertical ground reaction forces and obtained
the first four dynamic coefficients as 0.32, 0.09, 0.12, and 0.01
under 1.55Hz step frequency and 1.4m/s speed. Besides,
some measurements on lateral ground reaction forces have
also been implemented. For example, Ricciardelli and Piz-
zimenti [8] investigated the lateral forces exerted by walkers
on a fixed floor and calibrated deterministic and stochastic
lateral loading models on a footbridge; Ingolfsson et al. [9]
presented the experimental analysis on lateral forces gen-
erated by the single pedestrians during continuous walking
on a treadmill; Bocian et al. [10] carried a novel experimental
setup for obtaining lateral forces by avoiding the implica-
tions of artificiality and allowing for unconstrained gaits. In
addition, an elaborated self-sustained oscillator [11] was
used to predict the lateral walking forces induced by walking
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pedestrians. Based on these measurement results, the
walking forces have been extensively applied on the vibra-
tion analysis of these structures bearing crowd loads.
Mouring and Ellingwood [12] early analyzed the influence of
crowd loads on the dynamic response of floor systems.
Pedersen and Frier [13] presented a stochastic modeling
method, which was adopted for quantifying the probability
of exceeding various vibrations in a footbridge design. Li
et al. [3] proposed a vibration control method by using
multiple tuned mass dampers carrying on the crowd-in-
duced random vibrations of the footbridge. Besides, walking
pedestrian can cause vibrations, and torsional shakes have
also been observed [14]. However, the past traditional
measurements on walking loads have mostly focused on the
vertical ground reaction forces. *e reaction forces from
walking foot contain more information such as moments,
but it is a lack of exploration.

*is work comprehensively investigates the three-di-
mensional spatial ground reaction force (GRF) and ground
reaction moment (GRM) induced by walking pedestrian feet
and extracts the corresponding mechanical characteristics,
based on the measurements with a total of 36 healthy young
adults. In Section 2, an oscillator modeling with the walking
single leg and the corresponding dynamic governing
equation is developed to describe the measured forces. A
systematical state equation is further developed so that its
state equation and measured equations consider the con-
tributions of the inertia, damping, stiffness, and foot forces.
Based on the equation, the Kalman filtering method con-
centrating on the walking leg model is applied to remove the
adverse noises from the measured rough data so as to im-
prove the signal-to-noise ratio on the measured ground
reaction forces. Some different noise level data are used to
verify the effectiveness of the filter. In Section 3, a force
platform is used to generate the GRF and GRM excitation
from the 36 young adults, which comprised of 11 females
and 25 males. *e body and walking characteristics of the
testers including mass, height, and step rate are statistically
analyzed to present the mean, variances, and correlations
among them. Based on the measurements, the Fourier series
are applied to describe the measured forces and moments,
and the corresponding coefficients including dynamic load
factor (DLF) and dynamic moment factor (DMF) are pre-
sented for analysis. Furthermore, the statistical character-
istics of DLF and DMF are comprehensively studied, so the
loading models from the ground reaction forces and mo-
ments are established to describe the standard forcing
models on these structures enduring on the walking crowd
excitation.

2. Kalman Filtering Process

2.1. SystemState Equations. In order to establish the Kalman
filter [15] for ground reaction force (GRF), the pedestrian is
simplified as a mechanical model with one upper body and
lower moving leg (Figure 1). *e upper body occupies a
lump mass m, and the lower leg models as a mass-less
spring-damping oscillator. *e stiffness and damping pa-
rameters of the leg are k and c, respectively. *e GRF F is

parallel to the axis of the leg, and it can be decomposed into
three components as longitudinal GRF Fx, lateral GRF Fy,
and vertical GRF Fz, to be measured. Besides, the ground
reaction moments (GRMs) from foot in x, y, and z directions
are longitudinal GRM Mx, lateral GRM My, and vertical
GRM Mz, respectively. *e axial compression displacement
of the leg is denoted by u. *e intersection angle between the
leg axial and gravity directions is the sign θ, and the gov-
erning equation of the simplified mechanical system can be
established as follows:

m€u (t) + c _u(t) + ku(t) � f(t), (1)

where the variables €u and _u are the corresponding leg axial
acceleration and velocity, respectively, and f(t) means the
external force along with the axis of the leg induced by body
weight and it is shown in the following equation:

f(t) � mg cos θ(t), (2)

where g means the gravitational acceleration and its value is
9.81m/s2 and the cos θ means the projection ratio of the
vertical GRF Fz to the synthesis force F, which is calculated as
follows:

cos θ(t) �
Fz(t)

F(t)
�

Fz(t)
��������������������
Fx(t)

2
+ Fy(t)

2
+ Fz(t)

2
􏽱 . (3)

*e governing equation of motion of the leg system in
equation (1) can be transformed into a state-space equation
as follows:

_X(t) � AX(t) + Bf(t), (4)
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Figure 1: Forcing diagram of single-leg model.
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where X(t), A, and B, respectively, are the state vector, state
matrix, and input-to-state matrix under a continuous state
condition, which is shown as follows:

X(t) �
u(t)

_u(t)
􏼨 􏼩,

A �
0 1

−m
− 1

k −m
− 1

c
􏼢 􏼣,

B �
0

m
− 1􏼢 􏼣.

(5)

Multiplying the matrix e−At on both sides of equation (4)
would result in

e
−At

[ _X(t)t − nA qXh(t)] � e
−AtBf(t). (6)

Substitute the identical equation
(d/dt)[e−AtX(t)] � e−At[ _X(t)t − nAqXh(t)] into equation
(6). *en, integrating equation (6) between the ranges from
the time step t0 to ti(t0 < ti) would able to obtain the fol-
lowing equation:

X(t) � e
A t− t0( )X t0( 􏼁 + 􏽚

t

t0

e
A(t− τ)Bf(τ)dτ. (7)

Define Φ(t, t0) � eA(t− t0) and it is substituted into
equation (7) and consider the ti+1 state can be changed as
follows:

X ti+1( 􏼁 � Φ ti+1, ti( 􏼁X ti( 􏼁 + 􏽚
ti+1

ti

Φ ti+1, τ( 􏼁Bf(τ)dτ. (8)

*e sampling frequency is assumed to be a constant, the
input is also assumed to be linearly changed in the time
domain of [ti, ti+1], and it is approximately expressed as
follows:

f(τ) � fi +
fi+1 − fi

Δt
τ − ti( 􏼁, (9)

where Δt � ti+1 − ti is the sampling interval of a measured
signal.

Substituting equation (9) into equation (8) will result in

Xi+1 � e
AΔt

Xi + 􏽚
ti+1

ti

e
A ti+1− τ( )B fi +

fi+1 − fi

Δt
τ − ti( 􏼁􏼢 􏼣dτ.

(10)

Define (q � τ − ti) and substituting it into equation (10)
would obtain the following equation:

Xi+1 � e
AΔt

Xi + 􏽚
Δt

0
e
A(Δt− q)B fi +

fi+1 − fi

Δt
q􏼢 􏼣dq,

� e
AΔt

Xi + e
AΔt

− I􏼐 􏼑A− 1Bfi

− Δt + I − e
AΔt

􏼐 􏼑A− 1
􏽨 􏽩A− 1B

fi+1 − fi

Δt
.

(11)

*e time interval Δt is assumed to be enough small so
that

e
AΔt ≈ I + AΔ t. (12)

After substituting equation (12) into equation (11),
equation (11) can be rewritten as follows:

Xi+1 � ΨXi + Γfi, (13)

where (Ψ � eAΔt) and (Γ � BΔ t), respectively, are the state
matrix and state vector under a discrete state condition.

*e equilibrium equation in the lower supported point
can be described as follows:

F � HX, (14)

where Η � [k c] is a measure matrix.
Combining equations (13) and (14) and the noises, the

system state equation of Kalman filter can be obtained as
follows:

Xi+1 � ΨXi + Γfi + wi,

Fi+1 � HXi+1 + vi+1,
􏼨 (15)

where wi and vi+1 are process noise and measurement noise,
which satisfy normal distribution as follows:

wi ∼ N(0,Q),

vi ∼ N(0,R),
(16)

where Q � E(wiw
T
i ) and R � E(viv

T
i ) are the covariances of

process noise and measurement noise, respectively.
In the system state equations of equation (14), it is noted

thatXi ∈ R2 and Fi+1 ∈ R1 represent the 2-dimensional state
vector and 1-dimensional measurement vector, respectively.
ψ is the transition matrix and H is the measurement matrix.
Compared with other filter methods, the Kalman filtering
can effectively deduce the corruption based on the minimum
mean square error criterion. In the algorithm, it needs to be
time-discrete so as to realize the filtering process in a
computer, and its solving flowchart is indicated in Figure 2
from the Appendix. *e details with state estimation of X,
estimation error ε, estimation covariance P, and gain matrix
K in each time point are formulaically presented in the
Appendix. It is noted that the parameters including iteration
number i� 0, initial displacement u, body mass m, leg
damping c, leg stiffness k, process noise covariance matrixQ,
measurement noise covariance matrix R, and time com-
puting interval Δt are prior defined and input. *e Kalman
filter is a linear system due to its development on the linear
governing equation in equation (1). So the filter can only deal
with linear filtering problems, and it is not suitable for some
more complex nonlinear problems. In the iteration solving
process, the initial covariance P0|0 and state estimation 􏽢X0|0
of X also need to be defined in advance and corresponding
equation details on the filtering process are shown in the
Appendix. *e filtering result can be extracted in equation
(A.9) and Figure 2 gives the flow diagram of the Kalman
filtering process on measured GRFs.

2.2. Verification on Kalman Filter. Before treating measured
GRFs, some artificial ground reaction forces generated by a
bipedal robot model are applied to filter under different
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noise levels.*e bipedal robot occupies 80 kgmass and other
corresponding parameters can be found in the study of Gao
and his cooperator [16]. *e GRFs including Fx, Fy, and Fz
are obtained from the typical simulation of the 3D walking
process [16]. Figure 3 gives the filtering results and the
vertical ordinate force F is divided by the body weight G. *e
blue and red lines are the untreated and filtered lines, re-
spectively. *ere present four noise levels with 0%, 5%, 10%,
and 20% of the synthetic force F with Fx, Fy, and Fz, whose
corresponding filtering results are indicated in Figures 3(a)
to 3(d), respectively. It is noted that the processed lines
always situate the centers of the rough original data, and the
filtered lines are very close to the shape of the noiseless
composite F in Figure 3(a). *e error between the filtered
data and noiseless signal in Figure 4(a) shows that the in-
crease of noise level would not cause a significant increase in
the errors. *e relative error ranges with different noise
levels are mainly included in the range between −20% and
20%.*e absolute errors are also given in Figure 4(b) and the
lower and upper boundary of the rectangular regions denote
the 25% and 75% of the total contents. *e Kalman filter can
perfectly find the accurate GRF without noise. Along with
the increases of noise levels, the absolute errors also in-
creased. However, the maximum error is less than 0.3N and
the proposed Kalman filter has good denoising properties on
treating GRF data. In addition, the filter method always

makes the filtered data approach to the accurate signal,
which indicates the Kalman filter has well convergence and
robustness.

3. Treatment on Measurements

A force platform in Figure 5 is used to generate the GRF and
GRM excitation from the 36 young adults, which comprised
of 11 females and 25 males. *e measurement platform
includes one force platform and two footpaths [17]. *e
0.6m square force platform has a thickness of 0.1m. *e
entrance footpath is 1.5m long and 0.6m wide with a 0.5m
long slope for gait adjustment as the pedestrian enters the
footpath. *e length and width of the exit footpath are 1.0m
and 0.6m, respectively.*e thicknesses of both footpaths are
the same as that of the force platform. All participants
maintain natural relaxation as far as possible in the test
process.When a subject leaves the exit footpath, he/she turns
to walk towards the entrance footpath until the test ends. In
the walking tests, all testers remained as natural and relaxed
as possible.

*e ages of these participants are inside the range of 18
and 21 years. *eir physical indexes include body mass,
height, and step rates as shown in Figure 6. *e body mass
and height approximately obey normal distribution, and
their corresponding means are 67.7 kg and 172.9 cm, and
standard deviations are 11.0 kg and 9.2 cm, respectively. *e
nonlinear fit based on the least-square method between the
body mass and height is indicated in Figure 7, whose re-
lationship is h� 102.7 + 1.6m–0.008m2, which indicates that
the height is slightly increased along with the increase of
body mass. However, the increased range is decreased along
with the increase of body mass. *e variables m and h are
body mass and height, respectively. *e larger body mass
tends to have taller height. Although a metronome is applied
to guide the step rate of the walking participants, they have
some difficulties to follow beat rates. All testers walk as slow
as possible to keep a relaxed mental state, which presents in
the distribution range of the step rates occupying the wider
range of 0.6 to 2.4Hz. Walking step rates (fs) approximately
reveal the normal statistical distribution with the 1.3Hz
mean and 0.35Hz standard deviation as shown in Figure 8.

*e collecting device is a measure-analysis system on
multidimensional forces produced by the Anhui Aili Intelligent
Technology Limited-liability Company. *e sampling fre-
quency is 1000Hz. *e leg stiffness k and damping ratio are
input as 20 kN/m and 8%, respectively. *e observation on the
untreated signals indicates that the initial measured data mixed
a lot of noises mainly due to the interference of electromagnetic
equipment and structural vibration. All measured GRFs in-
cluding Fx, Fy, and Fz are filtered by the proposed Kalman filter
method. Figure 9 gives the typical filtering results from a male
tester with 69 kg mass and 182 cm height. It is noted that the
peak values from normalized GRF Fx/G in longitudinal, Fy/G in
lateral, and Fz/G in vertical directions are close to 0.2, 0.1, and
1.1, respectively. *e shape of Fx is firstly concave and then
convex.*e shapes of Fy and Fz are similar and look likely as the
back of camel.*e normalizedGRMs in x, y, and z are shown in
Figures 9(d) to 9(f), respectively. It is noted that the peaks from

Begin

Input parameters: i = 0, u, m, c, k, g, Q, R, Δt, etc.

Compute initial values: A, B, Ψ, Γ, H, P0|0, X0|0

Estimate the prior state by eq. (A.1)

Calculate the prior estimation error by eq. (A.2)

Obtain the prior estimation covariance by eq. (A.3)

Calculate the gain matrix by eq. (A.8)

Estimate the posterior state by eq. (A.4)

Calculate the posterior estimation error by eq. (A.5)

Obtain posterior estimation covariance by eq. (A.6)

Extract the filtering result by eq. (A.9)

Judge: i = n – 1 

No, 

YesEnd

ˆ

i = i + 1

Figure 2: Flow diagram of Kalman filtering on measured GRFs.
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normalizedmomentsMx/G in longitudinal,My/G in lateral, and
Mz/G in vertical directions are close to 0.12, 0.3, and 0.04,
respectively. *e peaks from longitudinal and lateral moments

are far larger than the vertical moment, which means that
walking foot mainly generates longitudinal and lateral
moments.
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Figure 3: Filtering results with different noise levels: (a) without noise; (b) 5% noise; (c) 10% noise; (d) 20% noise.
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In order to find the influential effects of the step rate of
walking, the statistical correlation between the step rate and
the peaks of normalized measured forces by body gravity G
was comprehensively analyzed. Table 1 lists the coefficients
of all the fitting relationships.*emaximum intercept value
of the peak Fz/G (Figure 10(c)) is 1.04, which indicates that
structure under a walking pedestrian endures the worst
force impact in the vertical direction. However, the inter-
cepts with moments from x and y directions corresponding

to 0.11 in Figure 11(a) and to 0.14 in Figure 11(b) are much
larger than those from the z direction corresponding to 0.03
in Figure 11(c). Pedestrian are more likely to trigger the
torsions in the longitudinal and lateral directions than in
the vertical direction for a structure. *e maximum slope
with GRFs is 0.027 in the vertical direction, which implies
that the increase of step rate has the most significant impact
on the vertical excitation. *e larger speed would cause the
larger excitation force, while the slope impacts from GRMs
are different from the GRFs. *e slope values with GRFs

0.6m
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1.0m
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1.0m

0.5m

Footpath
Footpath

Walking direction

Walking direction

Force Platform

Figure 5: Measurement platform on ground reaction forces.
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Figure 6: Statistical characteristics of body mass and height.
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always keep a negative correlation with the step rates, which
means that the faster step rate results in smaller moment.
*e module value from the longitudinal GRMs reaches
maximum, and the faster step variations would bring the
weaker moment. *e statistical fitting results from nor-
malized peaks of normalized GRFs and GRMs are indicated
in Figures 10 and 11, respectively.

To further extract the normalized models for these forces
induced by walking pedestrians, the Fourier series in
equation (17) are introduced to describe the relationship
between the normalized forces divided by body weightG and

step rates, and its first six factors are calculated to ensure
enough fitting accuracy. *e (DLFj

μ) and (DTFj
μ) in

equation (17) are defined as the jth dynamic load factor and
dynamic torsional factor in the µ direction, respectively. All
the factors from GRFs are statistically analyzed and linearly
fitted by the step rate (fs), whose values are listed in Table 2. It
is noted that the modular value from the 1st slope intercept
in the fitting results is always larger than the other higher-
order modular values *e 1st DLF from GRFs always has
significant impacts on these excitation forces. In addition,
the 1st modules of slope and intercept from DLFz also keep
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Figure 9: Filtering GRFs and measured GRMs.

Table 1: Linear fitting parameters.

Peak forces Fx/G Fy/G Fz/G Mx/G My/G Mz/G
Intercept 0.16 0.066 1.04 0.11 0.14 0.03
Slope 0.015 0.006 0.027 −0.025 −0.015 −0.004
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Figure 10: Linear fitting between step rate and normalized ground reaction forces.
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far larger than values from DLFx or DLFy, which implies
walking pedestrian induces the most unfavorable excitation
in the vertical direction:

Fμ

G
� 􏽘

6

j�1
DLFj

μ sin
jπt

T
􏼒 􏼓, (μ � x, y),

Mμ

G
� 􏽘

6

j�1
DMFj

μ sin
jπt

T
􏼒 􏼓, (μ � x, y, z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Figure 12 gives the statistical linear fitting results based
on a least-square method between step rate and first six DLFs
in the x direction. Its corresponding slopes are −0.015,
−0.005, −0.002, −0.0003, 0.013, and 0.006, respectively. *e
first four slopes are negative, which means that the faster
walking rate would alleviate the longitudinal excitation. *e
corresponding first six intercepts are 0.0032, −0.1, 0.005,
−0.033, −0.011, and −0.0021, which are very smaller, which
implies that the change of step rate has very slight impacts on
the GRFx. Similarly, Figure 13 presents the linear fitting
formulas between the first six DLFs and step rate, and the
corresponding slopes are 0.01, −0.004, 0.002, −0.004, −0.001,
and −0.002, respectively. *e first positive slope is far larger
than the other five slopes, which means that the faster
walking rate would promote the lateral excitation. *e
corresponding first six intercepts are 0.028, 0.004, 0.006,
0.005, −0.005, and 0.002. Similarly, the first value is far larger
than others. *is once again implies that the main lateral
excitation is contributed by the first DLF. *e statistical
linear fitting on the vertical DLFs in Figure 14 indicates that
the first value of intercepts with 1.139 is far larger than the
last five corresponding values and main vertical excitation

induced by the first DLF. *e first slope on the vertical DLF
is −0.026, which implies the increase of step rate tends to a
slight decrease in the vertical excitation.

All the factors from GRMs are statistically analyzed and
linearly fitted by the step rate (fs), whose values are listed in
Table 3. It is noted that the module value from the 1st slope
whether intercept always keeps maximum than the other
higher-order modules. *e 1st DMF from GRMs always has
significant impacts on these excitation forces. In addition,
the 1st modules of slope and intercept fromDMFx and DMFy
keep far larger than values from DMFz, which implies
walking pedestrian induces the most unfavorable torsional
excitation in longitudinal and lateral directions. *e sta-
tistical fitting on the DMFx is shown in Figure 15, and the
first six slopes are −0.029, 0.003, −0.003, −0.002, −0.001, and
−0.003, respectively. *e corresponding intercepts are 0.11,
−0.006, 0.02, 0.003, 0.0008, and 0.005.*e first values of both
the slopes and intercepts are far larger than other values,
which means the DMF1x plays a control role with the GRMx.
*e faster step rate tends to alleviate the torsional excitation
in the longitudinal direction. Figure 16 continuously plots
the estimated fitting results on the first six DMFy of the
lateral moment GRMy and the corresponding slopes are
−0.016, 0.006, 0.001, 0.0017, −0.001, and −0.002, respectively.
*e first six intercepts are 0.097, −0.015, 0.011, 0.0005,
−0.0031, and 0.004. Similarly, the first values from both the
slopes and intercepts are far larger than the other behind
values, as well as the DMF1y plays a control role on the lateral
torsional excitation. *e faster step rate tends to alleviate the
excitation in the lateral direction. Besides, the fitting ap-
proximation on the vertical moment in Figure 17 also
presents the first six slopes corresponding to the values
−0.001, 0.0008, 0.0004, −0.0004, 0.0005, and 0.0002, which
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Figure 11: Linear fitting between step rate and normalized moments.

Table 2: Fitting coefficients on DLF.

Slopes Intercepts

DLFx DLFy DLFz DLFx DLFy DLFz
1st −0.015 0.01 −0.026 0.0032 0.028 1.139
2nd −0.005 −0.004 0.009 −0.1 0.004 0.013
3rd −0.002 0.002 0.05 0.005 0.006 0.19
4th −0.0003 −0.004 −0.03 −0.033 0.005 0.068
5th 0.013 −0.001 −0.028 −0.011 −0.005 0.012
6th 0.006 −0.002 −0.038 −0.0021 0.002 0.07
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are very puny so that the variation of step rate has no effects
on the moment excitation. Comparing with the longitudinal
DMFx and lateral DMFy, the intercepts from the vertical
DMFz are also very tiny and its maximum occurs on the first
value of 0.007. *e matching between the above fitting
models with measurements indicates the proposed Fourier
series models could well describe the excitation forces and
moments from walking foot. Figure 18 gives the typical

matching results between the fitting curves and measure-
ments with a participant with 49 kg mass and 166 cm height.

4. Remarks and Conclusions

*e proposed Kalman filter is developed based on the linear
governing equation, so it only can deal with the linear fil-
tering problems. It is noted that the human mass, leg
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Figure 12: *e fitting relationship between DLFj
x and fs.
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Figure 13: *e fitting relationship between DLFj
y and fs.
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Figure 14: *e fitting relationship between DLFj
z and fs.
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Figure 15: *e fitting relationship between DMFj
x and fs.

Table 3: Fitting coefficients on DMFs.

Slopes Intercepts
DMFx DMFy DMFz DMFx DMFy DMFz

1st −0.029 −0.016 −0.001 0.11 0.097 0.007
2nd 0.003 0.006 −0.0008 -0.006 −0.015 −0.0008
3rd −0.003 0.001 0.0004 0.02 0.011 0.0008
4th −0.002 −0.0005 −0.0004 0.003 0.0005 −0.00003
5th −0.001 0.0017 0.0005 0.0008 −0.0031 −0.0005
6th −0.003 −0.002 0.0002 0.005 0.004 0.0002
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damping ratio, leg stiffness, and time interval are need to be
predefined and input. *e repeated filtering process verifies
that the slight variables on leg damping ratio and stiffness
have no influences on the filter results with the measured
GRFs and it has robust stability. However, it is also noted
that the value of leg damping ratio and stiffness should be
defined as a reasonable range which can refer to the mea-
sured body parameters [18]. In addition, the proposed
method only can deal with GRFs rather than GRMs, as it is

developed on the governing equation with GRFs. Further, it
can be developed to treat with the measured GRMs based on
a suitable governing equation with GRMs. Moreover, the
proposed Kalman filter only can handle the data in the time
domain rather than the frequency domain, which would be
further developed to treat with a frequency domain in future.

*e movements of walking crowd have considerable
complexity, and their walking behaviors also have induced
tough serviceable challenges on these slender structures. *is
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Figure 16: *e fitting relationship between DMFj
y and fs.

–0.10

–0.05

0.00

0.05

0.10

0.15

DMFz
1 = –0.001 fs + 0.007

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z1

(a)

–0.10

–0.05

0.00

0.05

0.10
DMFz

2 = –0.0008 fs – 0.0008

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z2

(b)

–0.04

–0.02

0.00

0.02

0.04

DMFz
3 = 0.0004 fs + 0.0008

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z3

(c)

–0.04

–0.02

0.00

0.02

0.04
DMFz

4 = –0.0004 fs – 0.00003

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z4

(d)

–0.02

–0.01

0.00

0.01

0.02
DMFz

5 = 0.0005 fs – 0.0005

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z5

(e)

–0.02

–0.01

0.00

0.01

0.02
DMFz

3 = 0.0002 fs + 0.0002

fs (Hz)
0.5 1.0 1.5 2.0 2.5

D
M

F z3

(f )

Figure 17: *e fitting relationship between DMFj
z and fs.
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work tries to explore the excitation mechanism from the
ground reaction forces and movements by the measurements
on a case sample comprised of 36 walking pedestrians. *en, a
noise-immune Kalman filter is proposed to the treatment on
the original ground reaction forces. *e applications of the
bipedal walking model and measured GRFs confirm that the
Kalman filter can well reduce the measured noises. Further
study is implemented. *e Fourier series are employed to
describe the excitation models on the measured GRFs and
GRMs, whose first six factor coefficients are statistically fitted.
A novel result shows that pedestrian foot mainly generates
longitudinal and lateral torsional movements, and the vertical
torsional movement is comparatively very slight. *is work
comprehensively explores the potential full-space loads in-
duced by walking pedestrian, and it can provide references for
the design of these slender structures such as footbridges,
grandstands, or stations under crowd excitation.

Appendix

In order to present clearly the data processing framework,
the corresponding key equations on the Kalman filter
process are shown as follows.

Firstly, the system prior state 􏽢Xi+1|i of the vector X with
the next moment point based on the current moment state
􏽢Xi|i can be estimated as follows:

􏽢Xi+1|i � Ψ 􏽢Xi|i + Γfi. (A.1)

*en, the prior estimation error vector εi+1|i is the dif-
ferences between the system vector Xi+1 and the prior state
􏽢Xi+1|i, which can be obtained as follows:

εi+1|i � Xi+1 − 􏽢Xi+1|i � Ψεi|i + wi. (A.2)

*e prior estimation covariance matrix Pi+1|i is the ex-
pectation value of the product of both εi+1|i and εT

i+1|i, which
can be calculated as follows:

Pi+1|i� E εi+1|iε
T
i+1|i􏼐 􏼑 � ΨPi|iΨ

T
+ Qi. (A.3)

*e system posterior state vector 􏽢Xi+1|i+1 is the sum
between the system prior state vector 􏽢Xi+1|i and an incre-
ment induced by the contribution induced by a gain term
related to a gain matrix Ki+1 in equation (A.8), which can be
estimated as follows:

􏽢Xi+1|i+1 � 􏽢Xi+1|i + Ki+1 Fi+1 − H 􏽢Xi+1|i􏽨 􏽩. (A.4)

*e posterior estimation error vector εi+1|i+1 means the
difference between Xi+1 and the posterior state vector
􏽢Xi+1|i+1 in equation (A.4) which can be obtained as

εi+1|i+1 � Xi+1 − 􏽢Xi+1|i+1 � I − Ki+1H( 􏼁εi+1|i − Ki+1vi+1.

(A.5)

Similar to equation (A.3), the posterior estimation co-
variancePi+1|i+1 is the expectation value of the product of both
the posterior estimation error vector εi+1|i+1 and its corre-
sponding transpose εT

i+1|i+1, which can be calculated as follows:

–0.2

–0.1

0.0

0.1

0.2

m = 49kg; h = 166cm

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

F x
/G

(a)

–0.04

0.00

0.04

0.08

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

F y
/G

(b)

0.0

0.4

0.8

1.2

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

F z
/G

(c)

0.00

0.04

0.08

0.12

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

M
x/

G 
(m

)

(d)

0.00

0.08

0.16

0.24

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

M
y/G

 (m
)

(e)

–0.02

0.00

0.02

0.04

Measurement
Fitting

0 20 40 60 80 100
t/Ts (%)

M
z/G

 (m
)

(f )

Figure 18: *e fitting results of the participant with 49 kg mass and 166 cm height.
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Pi+1|i+1 � E εi+1|i+1ε
T
i+1|i+1􏼐 􏼑,

� I − Ki+1H( 􏼁Pi+1|i I − HTKT
i+1􏼐 􏼑 + Ki+1Ri+1K

T
i+1.

(A.6)

*e gain matrix Ki+1 appeared in equations (A.4∼A.6)
can be obtained by finding the extreme point for the der-
ivation of the trace of the posterior estimation covariance
Pi+1|i+1 as follows:

ztr Pi+1|i+1􏼐 􏼑

zKi+1
� 2Ki+1 HPi+1|iH

T
+ Ri+1􏼐 􏼑 − 2Pi+1|iH

T
� 0.

(A.7)

*e gain matrix Ki+1 can be obtained as equation (A.8)
by solving equation (A.7):

Ki+1 � Pi+1|iH
T HPi+1|iH

T
+ Ri+1􏼐 􏼑

−1
. (A.8)

*e filtering result can be calculated by the following
equation:

F � H 􏽢Xi+1|i+1. (A.9)
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