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In order to obtain the analytical solution of the plastic area boundary of circular laneway surrounding rock in nonuniform
stress field, we studied the evolution of the plastic area shapes of the circular laneway surrounding rock from circular to
elliptical and derived the analytical solutions of the boundary radii in the elliptical shape. )e results show that (1) with the
increase of the confining pressure ratio from 1, the major axis radius of the plastic area increases gradually, the minor axis
radius decreases gradually, and the shape of the plastic area gradually evolves from circular to elliptical; (2) on the basis of the
Mohr–Coulomb strength criterion, the analytical expressions of major axis and minor axis radii of the elliptical plastic area are
derived, and the elliptic equation of the plastic area boundary of circular laneway in nonuniform stress field is established; and
(3) the confining pressure ratio is the key factor affecting the shape of the plastic area. When the confining pressure ratio is less
than 1.6, the plastic area of the circular laneway surrounding rock is elliptical, and the elliptic boundary equation is applicable.
When the confining pressure ratio is greater than 1.6, the plastic area is butterfly shaped, and the elliptic boundary equation is
no longer applicable.

1. Introduction

In underground mining, the laneway passes through the
complex geological environment, and roof fall, floor heave,
and other laneway disasters have been a major threat to the
safety production of coal mines [1–3]. Elastoplastic theory is
an effective theoretical means to analyze the damage degree,
form, and laws of surrounding rock [4–6]. At present, the
research of the uniform confining pressure model is more
mature, and the plastic circle radius calculated by the Fenner
and Kastner formulas has been widely used in theory and
practice [7, 8]. However, in the actual underground envi-
ronment, the stress field around the laneway is complex,
especially affected by the tectonic stress and mining stress,
and the stress field is often nonuniform [9, 10]. At this time,
the results obtained by the Fenner and Kastner formulas
deviate greatly from the actual situation [11].

On the elastic-plastic analysis of laneway surrounding
rock in nonuniform stress field, Yu et al. put forward the

implicit equation of the circular laneway plastic area
boundary [12]. After that, it has been further developed [13].
)en, Zhao et al. found that the shapes of the laneway plastic
area would appear as elliptical and butterfly shapes in
nonuniform stress field [14]. Ma and Li and Guo et al.
introduced deviator stress to reveal the mechanical mech-
anism of the noncircular plastic area [15, 16]. Guo et al.
studied the general shapes of the circular laneway plastic area
in nonuniform stress field and gave the mathematical def-
initions of the different shapes [17, 18].

)e shape and range of the laneway plastic area in
nonuniform stress field is of great significance to study the
stability and control of surrounding rock. However, so far,
there is still no analytical solution of the boundary radius of
the laneway plastic area in the nonuniform stress field, which
brings great inconvenience to the research work. In this paper,
we studied the evolution of the circular laneway plastic area
shapes from circular to elliptical and derived the analytical
solutions of the boundary radii in the elliptical shape.
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2. Evolution andDistributionCharacteristics of
the Elliptical Plastic Area

2.1. Force Model and Boundary Conditions. )e plane strain
model of the circular laneway is often used to study the
elastoplastic problems of the underground laneway sur-
rounding rock under the condition of existing mathematical
and mechanical methods. So, any section of the laneway can
be taken as its representative in the infinite length. Con-
sidering the nonuniform distribution characteristics of
complex stress fields such as underground tectonic stress
andmining stress, we established the stress model of laneway
surrounding rock in nonuniform stress field, as illustrated in
Figure 1. In the figure, R and θ are the polar coordinates, and
a is the laneway radius. )e complex stress environment
around the laneway is represented by the regional principal
stress field, where P1 is the maximum confining pressure and

P3 is the minimum confining pressure. To reflect the uneven
distribution of regional stress field, the ratio of maximum to
minimum confining pressure is defined as the confining
pressure ratio, expressed as formula (1). )e nonuniform
distribution characteristics of complex stress field are rep-
resented by the size, direction, and ratio of confining
pressure in this model.

η �
P1

P3
. (1)

According to the Mohr–Coulomb strength theory and
the stress solutions around a circular hole in elasticity, the
boundary equation of the plastic area surrounding the
circular laneway in nonuniform stress field was deduced
[12–14]. We can study the shape of plastic area according to
the boundary equation. )e expression is as follows:
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where φ and C are the rock internal friction angle and
cohesion.

2.2. Evolution of the Elliptical Plastic Area. According to the
implicit boundary equation, we obtained the evolution of the
elliptical plastic area surrounding the circular laneway.
Under certain conditions of surrounding rock lithology, the
confining pressure ratio determines the shape of the laneway
surrounding rock plastic area. When η� 1, Figure 2 is the
uniform confining pressure stress model, boundary equation
(1) is the circular equation, and the plastic area of the
laneway surrounding rock is circular. With the confining
pressure ratio increased from 1, the transverse axis radius of
the plastic area decreases gradually, the longitudinal axis
radius increases gradually, the boundary of the plastic area is
smooth transition, and the plastic area is similar to ellipse
shape. With the increase of the confining pressure ratio, the
scope of the plastic area expands and elliptical feature is
gradually obvious, as shown in Figure 1.

When η≠ 1, the transverse radius of the plastic area is the
smallest and the longitudinal radius is the largest, and the
shape of plastic area is similar to ellipse. We define the shape
of the plastic area with the maximum radius on the lon-
gitudinal axis and the minimum radius on the transverse as
the elliptical shape.)emaximum radius on the longitudinal
axis is defined as the major axis radius, expressed by Rmaj; the
minimum radius on the transverse axis is defined as the
major axis radius, expressed by Rmin. Elliptical distribution

and special radii are shown in Figure 3. If the analytic
formulas of the special radii were found, we would get the
boundary radius of the plastic area at any position according
to the elliptic equation.

3. Elliptic Equation of Plastic Area Boundary

3.1.Analytic FormulaofMajorAxisRadius. According to the
elliptical shaped plastic area, by substituting θ� π/2 into the
solution of stress around a circular hole in elasticity [19, 20],
the solution of stress around a circular laneway on the
vertical axis can be obtained as follows:
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(3)

where σyθ is the tangential stress, σyr is the radial stress, and
τyrθ is the shearing stress of every point on the vertical axis.

)e Mohr–Coulomb strength theory is applied to
analyze the elastoplasticity of surrounding rock in this
study. )e maximum principal stress and minimum

2 Shock and Vibration



principal stress on the vertical axis are shown as follows
[19, 20]:
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where σ1 is the maximum principal stress and σ3 is the
minimum principal stress.

)e difference between radial stress and tangential stress
in formula (3) leads to the following formula:
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)en, formula (4) can be transformed as follows:

σ1 � σyθ,

σ3 � σyr.
⎧⎨

⎩ (6)

Based on the Mohr–Coulomb strength theory, the fol-
lowing condition needs to be satisfied at the elastic-plastic
interface on the vertical axis:

σyθ � 2C
cosφ

1 − sinφ
+
1 + sinφ
1 − sinφ

σyr, (7)

where C and φ are the rock cohesion and internal friction
angle. Furthermore, the plastic area boundary equation on
the vertical axis is expressed as follows:
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Before the laneway is excavated, the surrounding rock is
in an elastic state, while local surrounding rock around the
laneway is in a plastic state after excavation. Based on the
Mohr–Coulomb failure criterion, the stress around the
laneway before excavation must meet the following
conditions:
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+
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. (10)

)erefore, a1 > 0 and c1 < 0, and − b1 −

���������
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􏽱

< 0
and y2 < 0. y2 is a meaningless solution. )e analytical
formula for the major axis radius of the elliptical plastic area
is expressed as follows:

Rmaj �
a
��
y1

√ , (11)

where y1 is the analytic expression about the stresses (the
maximum and minimum principal stresses) and the li-
thology of the surrounding rock (rock cohesion and internal
friction angle), so the major axis radius can be solved when
these parameters are known.

Elastic zone

Plastic zone

(a) (b) (c) (d)

Figure 1: Evolution of the elliptical plastic area in nonuniform stress field (a� 2.5m; C� 3MPa; φ� 25°; P3 � 20MPa). (a) η� 1. (b) η� 1.2.
(c) η� 1.4. (d) η� 1.6.
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Figure 2: Circular laneway force model in nonuniform stress field.
a: laneway radius; r, θ: polar coordinates of any point on the
boundary; P1: maximum confining pressure; P3: minimum con-
fining pressure.
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3.2. Analytic Formula of Minor Axis Radius. Based on the
method of solving the major axis radius, by substituting θ � 0
into the solution of stress around a circular hole in elasticity,
the solution of stress around a circular laneway on the
abscissa axis can be obtained as follows:
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where σxr is the radial stress, σxθ is the tangential stress, and
τxrθ is the shearing stress.

)e difference between radial stress and tangential stress
in formula (12) leads to the following formula:
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Because the sign of the difference between radial and
tangential stresses cannot be judged directly, assuming
x � a2/r2, formula (13) is expressed as follows:

P(x) � 3(η − 1)P3x
2
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)e expression of two roots is obtained by solving
equation P (x)� 0.
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When x meets the conditions of x< xp1 or x> xp2,
P(x)> 0P(x)> 0. When x meets the conditions of
xp1 < x<xp2, P(x)< 0.

(1) When P(x)> 0, σxr is the maximum principal stress
and σxθ is the minimum principal stress. Substituting
stresses into the Mohr–Coulomb strength theory, the
plastic area boundary equation on the abscissa axis
can be expressed as follows:
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where a2 > 0, c2 < 0, − b2 −
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< 0, and x2 < 0. x2 is a
meaningless solution. When x1 meets the condition of
x1 < xp1 orx1 > xp2, it will be a useful solution.

(2) When P(x)< 0, σxθ is the maximum principal stress
and σxr is the minimum principal stress. Substituting
stresses into theMohr–Coulomb strength theory, the
plastic area boundary equation on the abscissa axis
can be expressed as follows:
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Figure 3: Elliptical distribution and special radii. (a) η� 1. (b) η� 1.2. (c) η� 1.4. (d) η� 1.6.
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When x3 and x4 meet the condition xp1 < x3 <x4 < xp2,
they will be useful solutions.

At least one of the three roots (x1, x3, and x4) is a useful
root, and the minimum of the roots should be used. )e
analytical formula for the minor axis radius of the elliptical
plastic area is expressed as follows:

Rmin �
a
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min x1, x3, x4( 􏼁

􏽱 ,
(20)

where x1, x3, and x4 are the analytical formulas about the
stresses and the lithology of the surrounding rock, so the
minor axis radius will be obtained when the parameters are
known.

3.3. Elliptic Equation. With the confining pressure ratio
increased from 1, the minor axis radius of the plastic area
decreases gradually, the major axis radius increases grad-
ually, the boundary of the plastic area is smooth transition,
and the plastic area shows elliptical shape. )e analytic
expressions of the major and the minor axis radii of the
ellipse are obtained. We can get the boundary radius of the
plastic area at any position according to the elliptic equation.
)e elliptic equation of plastic area boundary around the
circular laneway in nonuniform stress field is expressed as
follows:
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�������������������

R
2
maj sin

2 θ + R
2
min cos

2 θ
􏽱

, (21)

where Rθ is the boundary radius of the elliptical plastic area
corresponding to polar angle θ. Rmaj and Rmin are the an-
alytical formulas about the stresses and the lithology of the
surrounding rock, as shown in formulas (11) and (20), and
they will be solved when the parameters are obtained. )e
special radii and boundary radium of the elliptical plastic
area are shown in Figure 4.

3.4. Comparison with Existing 3eoretical Formulas. On the
basis of the Mohr–Coulomb failure criterion and the stress
solutions around the circular laneway in elasticity, the implicit
boundary equation of the plastic area surrounding the circular
laneway in nonuniform stress was obtained [12–14]. So far, it
has been widely used in in many fields of coal mine, such as
the rock burst in the laneway [16, 21, 22], the coal and gas
outburst in the laneway [21], the roof falling in the laneway
[23, 24], the large deformation in the laneway [14], and the
permeability enhancement of coal seam [25, 26]. However,
through the implicit boundary equation, we can only get the
numerical solutions of the plastic area boundary radii with the
help of relevant software.)e analytical solutions of the plastic
area boundary radius can be obtained by the elliptic equation.
In this study, we discuss the reliabilities of the solutions of
elliptic equation by comparing with the results of implicit
boundary equation, as shown in Figure 5.

In Figure 5, the coal mechanical parameters (C� 3MPa
and φ� 25°) are referred [17]; the circular laneway radius is
2.5m; the minimum confining pressure is fixed
(P3 � 20MPa); and the different force models are set by

changing the maximum confining pressure. )e numerical
solutions of boundary radii can be obtained by solving the
implicit boundary equation withMATLAB.)e results show
that the analytical solutions of themajor andminor axis radii
are in good agreement with the numerical solutions and that
the analytical formula of special radii is reliable. )ere is a
certain deviation between the numerical solutions and the
analytical solutions for the medial radius (θ� π/4); when the
confining pressure ratio is less than 1.6, the deviation is
small; when the confining pressure ratio is greater than 1.6,
the deviation gradually increases with the increase of the
confining pressure ratio. So, we can conclude that the el-
liptical plastic area defined in this paper is not a standard
ellipse. And there is an error in solving the boundary radius
beyond the special radii by using the elliptic equation of the
plastic area boundary. In the following, the applicable
conditions of elliptic equation are analyzed in detail.

a

Plastic zone
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x
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θ

Figure 4: Special radii and boundary radium of the elliptical plastic
area.
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Figure 5: Error analysis for analytical solutions of special radii
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4. Analysis of Influence Factors on Special
Radii and Shapes of Plastic Area

)e shape of the elliptical plastic area is determined by the
major and minor axes radii. In order to explore the influence
of various factors on the laneway plastic area shape, it is
necessary to study the relationship between the special radii
and parameters. From the analytical formula, we can know
that the main factors affecting the special radii are laneway
radius, confining pressure ratio, internal friction angle,
cohesion, and minimum confining pressure.

4.1. Laneway Radius. According to formulas (11), (20), and
(21), it can be concluded that the boundary radius of the
plastic area is proportional to the laneway radius. Figure 6
shows the relationship between the special radii and the
laneway radius. In Figure 6, the coal mechanical parameters
are referred (C� 3MPa and φ� 25°), the confining pressure
ratio is set as 1.4 (η�1.4), and the minimum confining
pressure is set as the fixed value (P3 � 20MPa). With the
laneway radium increasing gradually from 1m, the major
andminor radii increase linearly, and the range of the plastic
area will increase proportionally.

4.2. Confining Pressure Ratio. Figure 7 shows the relation-
ship between the special radii and the confining pressure
ratio. In Figure 7, the rock mechanics parameters are set as
C� 3MPa and φ� 25°, the laneway radium is set as 2.5m,
and the minimum confining pressure is set as the fixed value
(P3 � 20MPa). When the confining pressure ratio is 1, the
major axis radius andminor axis radius of the plastic area are
equal, and the plastic area is in a circular shape. With the
confining pressure ratio increasing from 1, the major axis
radium increases gradually, while the minor axis radium
decreases linearly; the difference between the radius of major
axis and minor axis increases, and the elliptical shape of the
plastic area tends to be obvious gradually (the larger the
difference between major axis radium and minor axis ra-
dium, themore obvious the ellipse feature). So, the confining
pressure ratio is the key factor affecting the shape of the
plastic area.

4.3. Cohesion. In Figure 8, the laneway radium is taken as
2.5m, the rock internal friction angle is taken as 25°, the
confining pressure ratio is taken as 1.4 (η�1.4), and the
minimum confining pressure is set as the fixed value
(P3 � 20MPa). As can be seen from the relationship between
special radii and cohesion, there is a negative correlation
between them. With the increase of rock cohesion, the range
of the plastic area decreases gradually. When the confining
pressure ratio is constant, the two characteristic radius
curves are approximately parallel. )e influence of rock
cohesion on the difference of the major axis radius and the
minor axis radium is small. It can be concluded that the
change of rock cohesion is significant in the range of the
plastic area but has little effect on the shape.

4.4. Internal Friction Angle. In Figure 9, the laneway radium
is set as 2.5m, the rock cohesion is taken as 3MPa, the
confining pressure ratio is set as 1.4 (η�1.4), and the
minimum confining pressure is taken as the fixed value
(P3 � 20MPa). From the relationship between special radii
and internal friction angle, we can see that there is a negative
correlation between them. With the increase of the internal
friction angle, the difference between the major axis radius
andminor axis radium decreases, and the elliptical feature of
the plastic area gradually weakens. )e internal friction
angle is another important factor affecting the shape of
plastic area, which not only controls the range of the plastic
area but also affects the shape characteristics.
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Figure 6: )e relationship between special radii and laneway
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4.5. Stress Level. )e minimum confining pressure repre-
sents the stress level of the laneway surrounding rock.
Figure 10 shows the relationship between the special radii
and the stress level (minimum confining pressure). In
Figure 10, the rock mechanics parameters are set as
C� 3MPa and φ� 25°, the laneway radium is set as 2.5m,
and the confining pressure ratio is set as 1.4 (η�1.4). )e
characteristic radius has a positive correlation with the stress
level, that is, with the increase of the stress level, the range of
the plastic area will also increase. Under certain other
conditions, the two curves are almost parallel, and the
difference between the major axis radius and the minor axis
radium does not change. It can be concluded that the stress

level is significant in the range of the plastic area but has little
effect on the shape.

5. Analysis of Applicable Conditions

In the above analysis about comparison with existing the-
oretical formulas, when the confining pressure ratio is
greater than 1.6, the deviation gradually increases with the
increase of the confining pressure ratio. )e error of
boundary radius of plastic area calculated by the elliptic
boundary equation is too large, and it is no longer applicable.
)e confining pressure ratio is the key factor affecting the
shape of the laneway plastic area. To explore the reasons for
the increase in error, we continue to study the evolution of
plastic area morphology with confining pressure ratio. At
this time, the variation range of confining pressure ratio is
expanded, as shown in Figures 11 and 12. In Figures 11 and
12, the rock cohesion is set as 5MPa, the rock internal
friction angle is set as 25°, the laneway radium is set as 2.5m,
and the minimum confining pressure is set as the fixed value
(P3 � 20MPa).

With the increase of confining pressure ratio, the shape
of plastic area changes from ellipse to butterfly shape, as
shown in Figure 11. When the confining pressure ratio is less
than 1.6, both themaximum radius and theminimum radius
of the plastic area lie on the coordinate axis, and the plastic
area around the circular laneway is elliptical. When the
confining pressure ratio is greater than 1.6, the minimum
radius of the plastic area is on the coordinate axis, while the
maximum radius of the plastic area is near the angle bisector
of the four quadrants. And the plastic area of the circular
laneway surrounding rock is butterfly shaped.

With the increase of the confining pressure ratio, the
shapes of the plastic area change and the radii at different
positions also have different changing rules, as shown in
Figure 12. When the confining pressure ratio is less than 1.6,
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Figure 8: )e relationship between special radii and cohesion.
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friction angle.
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the medial axis radium is less than the major axis radium,
and the plastic area of the circular laneway surrounding rock
is elliptical.When the confining pressure ratio is greater than
1.6, the medial axis radium is larger than the major axis
radium and the plastic area is butterfly shaped. )e error of
the boundary radius of the plastic area calculated by the
elliptic boundary equation is large, and it is no longer
applicable.

So, when the confining pressure ratio is less than 1.6, the
plastic area of the circular laneway surrounding rock is
elliptical, and the elliptic boundary equation is applicable.
When the confining pressure ratio is greater than 1.6, the
plastic area is butterfly shaped, and the elliptic boundary
equation is no longer applicable.

6. Conclusions

)is paper studied the evolution law of the plastic area
shapes of the circular laneway surrounding rock from

circular to elliptical and derived the analytical solutions of
the boundary radii in the elliptical shape. Based on the
work presented in this paper, the following conclusions
are made:

(1) )e shape evolution of the elliptical plastic area in
nonuniform stress field was revealed. With the in-
crease of the confining pressure ratio from 1, the
major axis radius of the plastic area increases
gradually, the minor axis radius decreases gradually,
and the shape of the plastic area gradually evolves
from circular to elliptical.

(2) )e analytical expressions of major axis and minor
axis radii of the elliptical plastic area were derived,
and the elliptic boundary equation of the plastic area
of circular laneway in nonuniform stress was
established. )e analytical formula of the boundary
radius at any position in the elliptic plastic area was
obtained.

(3) )e confining pressure ratio is the key factor af-
fecting the shape of plastic area. When the con-
fining pressure ratio is less than 1.6, the plastic area
of the circular laneway surrounding rock is el-
liptical, and the elliptic boundary equation is ap-
plicable. When the confining pressure ratio is
greater than 1.6, the plastic area is butterfly shaped,
and the elliptic boundary equation is no longer
applicable.
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Figure 11: Evolution of the plastic area shape with confining pressure ratio (a� 2.5m; C� 5MPa; φ� 25°; P3 � 20MPa). (a) Elliptical shape.
(b) Butterfly shape.
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