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Rod fastened rotor is widely used in gas turbine, aero engine, and other occasions. )e bending stiffness of the contact interface
directly affects the stable operation of the rotor. Dynamic model of the rod fastened rotor-bearing system has been established
considering nonuniform stiffness of interface. )e motion equation of this system has been deduced from Lagrange’s equations.
)e linear dynamic characteristics of this rotor has been investigated, such as Campbell diagram, critical speed, and formation,
and the nonlinear characteristics of this system, such as chaos and bifurcation, has been investigated too. )e result shows that
“bistable state” characteristic appeared on the rod fastened rotor system; that is, there are two critical speeds for each order, and
they are all positive precession critical speed, and the amplitude response to the lower critical speed is much larger than that its
counterparts to the higher critical speed. In terms of nonlinear characteristics, the rod fastened bearing system has experienced
periodic 1 motion, multiple periodic motion, quasi-periodic motion, periodic 1 motion, and chaotic motion successively.

1. Introduction

)e rotor-bearing system is the core component of rotating
machines. Its dynamic characteristics affect the stable op-
eration of rotary machinery directly. In order to prevent
mechanical unstable operation, it is necessary to study the
stability and nonlinear characteristics of rotor-bearing
system. Studies on integral rotors are presented in literature
[1–6]. Ehrich [1] studied the bifurcation phenomenon of
Jeffcott rotor-bearing system and investigated the sub-
harmonic vibration phenomenon in the rotor system. Wang
[2] established the dynamic model of rub-impact rotor
system and studied the periodic response stability of the
system by Floquet theory. Gardner et al. [3] analyzed the
nonlinear motion of the rotor system under the long bearing
after linear instability and studied the subcritical and su-
percritical bifurcation in the method of multiscale. Bonello
et al. [4] studied the nonlinear dynamic response of an
extruded oil film damper-rotor system by harmonic balance
method. Choi and Naoh [5] established the rotor model of

bearing rubbing and analyzed the subharmonic, harmonic,
and superharmonic vibration caused by rubbing. Yu et al. [6]
studied the friction phenomenon of integral rotor by ex-
perimental method and discussed the influence of eccen-
tricity, damping, and other factors on the nonlinear
characteristics of this rotor.

)e researches above focus on the integral rotor-bearing
system. Rod fastened rotor has many advantages, such as
high strength, light weight, and being easy to assemble and
disassemble.)e rod fastened rotor-bearing system is widely
used in gas turbines and aeroengines (see Figure 1). Different
from the integral rotor, the rod fastened rotor is not integral,
and the disks at all levels are connected by the rod bolts.
)erefore, its dynamic characteristics are quite different
from the integral rotor. We have the following literature on
the research of rod fastened rotor [7–12]. Hu et al. [7]
considered the initial bending of the rotor when calculating
the dynamics of the rod fastened rotor and systematically
investigated the influence of rotational speed and initial
bending on the dynamic response of the system. Hei et al. [8]
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analyzed the dynamic characteristics of the fixed tilting pad
bearing on the rotor-bearing system and studied the in-
fluence of the moment of inertia on the nonlinear charac-
teristics of the system. Li et al. [9] built a model of rod
fastened rotor by the three-dimensional finite element
method and investigated the nonlinear dynamic charac-
teristics of the rotor by Floquet method. Based on the
harmonic balance method, the influence of system param-
eters on the nonlinearity of the rod fastened rotor was
proposed by Da et al. [10]. Wang et al. [11] analyzed the
influence of machining errors such as mass eccentricity on
the nonlinear characteristics of rotor-bearing system of rod
by the three-dimensional finite element method and Floquet
theory. Yi et al. [12] proposed a calculation model con-
sidering mass effect for the flexible rotor-ball bearing system
and analyzed the influence of preload and other factors on
the nonlinear characteristics of the rotor subsystem.

)e stiffness of the contact interface has a great influence
on the dynamic characteristics of the rod fastened rotor.
Unsuitable or nonuniform stiffness will generate system
instability. )e stiffness of the rod fastened rotor has been
studied as follows [13–18]. Based on the theory of double
friction, Liu et al. [13] analyzed the influence of preload
force, gravity bending moment and other factors on the
bending stiffness of the interface and verified this model by
modal test. Isa et al. [14] calculated the bending stiffness
under the action of gravity bending moment based on bi-
linear model and verified the simulation by experimental
research. Lu et al. [15] calculated the natural frequencies
under different preload by using the three-dimensional finite
element model and analyzed the relationship between the
natural frequencies and the preload. Gao et al. [16] simplified
the bending stiffness to the stiffness of bending and twisting
spring and analyzed the influence of preload on the bending
stiffness of contact interface. Based on Hertz contact theory
and Greenwood model, Rao [17] established a contact
stiffness model of the rod fastened rotor and verified the
model with hammering test. Xia et al. [18] proposed a
piecewise bilinear torsional deformation mode and studied
the influence of the preloading force and the friction co-
efficient of the contact interface on the bending stiffness of
the contact interface.

In this paper, the dynamic characteristics of rod fastened
rotor under nonuniform stiffness have been studied, such as
Campbell diagram, critical speed, and formation. )e dy-
namic model of rod fastened rotor-bearing system has been
established. )e fourth-order Runge–Kutta method is used
to get the solution of the nonlinear model. Bifurcation di-
agram, frequency spectrum, phase trajectory, and Poincare
map have been applied to study the nonlinear dynamic
phenomena of the rod fastened rotor.

2. Theoretical Analysis

)e rod fastened rotor is complicated; in order to simplify
this model, the following assumptions are proposed:

(1) )ere is no torsional vibration and axial vibration in
vibration process

(2) )e disks at all levels do not separate, in vibration
process

(3) Bearings at both sides of the rod fastened rotor are
identical

2.1. Equation of Motion. As is shown in Figure 2, the rotors
are closely connected through circumferential uniform rods,
and the rotor is supported by sliding bearings.

mb1 and mb2 are the lumped mass of the rotor at the
sliding bearing, respectively, while m1, m2, and m3 are the
lumped mass of the rotor at the interface, where k is the
stiffness of the shaft and k2 and k2′ are the maximum bending
stiffness and the minimum bending stiffness of interface of
rod fastened rotor, respectively. c1 is the bearing damping
and c2 is the rotor damping. According to the literature [7],
the directions of k2 and k2′ are perpendicular to each other, so
the coordinate system is established with the direction of k2
as the x-axis and the direction of k2′ as the y-axis.

)e equation of the rod fastened rotor-bearing system
can be deduced by Lagrange equation. Lagrange’s equation
can be described by

d
dt
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where L is Lagrange function and L�V−U, V is the kinetic
energy of the system, U is the potential energy of the system,
qi and qi are the generalized coordinates and velocities of the
system,D is the dissipation energy of the system, and fi is the
generalized force in the direction of qi. )e plane of the rotor
center is zero potential energy reference surface of the
gravitational potential energy.

)e total kinetic energy of the rod fastened rotor system
can be expressed as follows:
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)e total potential energy of the rod fastened rotor
system can be expressed as follows:
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Figure 1: Rod fastened rotor model.
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)e total dissipation energy of the rod fastened rotor
system can be expressed as follows:
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where xbi, ybi present the displacement of Obi, (i� 1, 2). xi, yi
present the displacement of Oi, (i� 1,2,3).

In (3), (1/2)k(xb1 − x1)
2 + (1/2)k(yb1 − x1)

2 represents
the elastic potential energy of lumpedmass of the rotor at the
left sliding bearing, (1/2)k2(x1 − x2)
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2
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lumped mass of the rotor at the right sliding bearing.
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dissipated energy of the lumpedmass of the rotor at the right
sliding bearing.

)e generalized coordinates of the system are qi � (x1, y1,
x2, y2)T, and submitting (2)–(4) into (1), the equation of
motion can be deduced as follows:
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where, Fx1, Fy1, Fx2, and Fy2 are the components of the oil
film forces on the left and right sides of the bearings in the x-
and y-directions, respectively. Based on Assumption 2, it can
be considered that Fx1 � Fx2, Fy1 � Fy2.
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Figure 2: Dynamic model of a rod fastening rotor.
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2.2. Oil Film Force of Bearing. )e sliding bearing model is
shown in Figure 3, where Ob is the bearing center, Oj is the
journal center, θ is the attitude angle, Fε is the radial
component of the nonlinear oil film force on the axis di-
ameter, and Fθ is the radial component of the nonlinear oil
film force on the axis diameter. )e oil film force of bearing
can be obtained by solving the Reynolds equation.

Reynolds’s equations are described by

1
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According to literature [19], when the oil film meets the
following conditions, the oil is adiabatic, the flow of the oil is
laminar, and the oil is incompressible; the oil film force can
be expressed as follows:
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where μ is kinematic viscosity of oil film, L is the bearing
length, R is the bearing diameter, ω is angular velocity of
bearing, c is the bearing clearance, and ε is the eccentricity
ratio.

2.3. Bending Stiffness. Different from the integral rotor, rod
fastened rotor can not be seen as a whole, the disks at all
levels are connected by preload, and the bending stiffness of
the contact interface plays an important role in the stability
of the system. )ere are two methods to calculate bending
stiffness: one is based on the theory of contact mechanics, the
Green-Woods model, to calculate the bending stiffness, and
another is calculated with finite element method. In this
paper, the finite element method has been used to calculate
the stiffness.

Figure 4 is a model of calculating the bending stiffness of
a certain type of rod fastened rotor. )e model consists of
two disks and rods; there are four kinds of contact in this
model: rough contact between the contact interface, no
separation contact between the disk and rod, radial contact
between two disks, plane contact between disk and rod nut,
and boundary conditions and external load is shown in
Figure 4. It should be noted that in order to adapt to the
geometric characteristics of the disk, the rod nut has been
modeled to be in the form of circle. Hexahedral elements
have been used for mesh generation of this model. In order
to improve the calculation accuracy, more precise grids have
been arranged on the rod, as shown in Figure 5.

)e stiffness of disks is

Kra �
M

α
. (8)

)e stiffness of rod is

Krb �
EA
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. (9)

)e stiffness of rod fastened rotor is
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2
p

2
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where M is the bending moment applied and α is the de-
flection angle of the left disk, E is the elastic modulus of the
rod,A is the cross-sectional area of the rod, L1 is the length of
the rod, N is the number of rods, and rp is the radius at the
center of the rod.
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Figure 3: Model of sliding bearing.
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Figure 4: Model of bending stiffness.

Figure 5: Mesh of the rod.
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2.4. Dimensionless Equation of Motion. In order to simplify
the calculation, the dimensionless transformations are given
as follows:
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c
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c
,
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(11)

According to (11), (5) can be simplified as
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where Fx10, Fy10, Fx20, and Fy20 are nondimensional oil film
force of the bearing.

2.5. Solving Method. Considering the nonuniform bending
stiffness of the rod fastened rotor, k2≠ k2′, (12) has strong
nonlinearity, and it is difficult to solve such problems by
analytical method. Numerical integration methods are often
used to solve the nonlinear problem.

Because of its high precision, Runge–Kutta method can
calculate the influence of system parameters on system
response, and it is the main method to solve nonlinear
differential equations.

)e normal form of the Runge–Kutta method is
expressed as
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After determining the order number, the coefficient ci, λi,
μij can be determined through Taylor expansion and com-
paring coefficient.

)e Fourth-order Runge–Kutta method is expressed as
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(14)

3. Results and Discussion

)e parameters of the rotor model have been shown in
Table 1. Based on Assumption 2, the bearings on the left and
right sides of the rotor are identical. Without considering
nonuniform stiffness, the first- to third-order critical speed of
this system is 470.63 rad/s, 1223.06 rad/s, and 2022.56 rad/s,
respectively, as shown in Figure 6. )e nonlinear dynamic

behaviors of the rod fastened rotor-bearing system are per-
formed by using the fourth-order Runge–Kutta method and
implemented inMATLAB. Bifurcation diagram, time domain
diagram, phase trajectory diagram, frequency spectrum, and
Poincare map are used to illustrate the nonlinear
characteristics.

)e nonuniform bending stiffness will generate the
circumferential anisotropy of the rod fastened rotor in the
process of motion. In the analysis of the rotor fastened rotor-
bearing system, the bending stiffness is an important factor.
Figure 6 shows the Campbell diagram of the rod fastened
rotor under different degrees of nonuniform. It can be seen
from Figure 6 that when the bending stiffness of the contact
interface is nonuniform, the rotor appears to be “bistable
state” phenomenon; that is, there are two critical speed of
each order, and all of them are positive precession critical
speed, and the higher critical speed is almost not affected by
the nonuniform stiffness, while the smaller critical speed is
greatly affected by k2′. Taking k2 � 5k2′ as an example, the first-
to third-order formation of the rotor have been shown in
Figure 7. As can be seen from Figure 7, the amplitude re-
sponse to a smaller critical speed is much larger than its
counterpart to a higher critical speed.

Figures 8–10 are the bifurcation diagram of dimen-
sionless horizontal displacement X1 at the right bearing
location for three different types of stiffness k2 � 5k2′,
k2 �10k2′, k2 � 20k2′. It can be seen from Figure 8 that, at
lower rotation speed, ω< 2135 rad/s, and the rod fastened
rotor systemmaintains periodic 1 motion, which is shown as
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a closed loop in Figure 11(b) and one isolated point in
Figure 11(d). )e system turns into a quasi-periodic motion,
at a speed of ω� 2135 rad/s. As shown in Figure 12(b), the
phase trajectory presents a lot of closed loops that do not
overlap each other, and the Poincare map of the quasi-
periodic motion presents a closed loop in Figure 12(d).
Experienced a short quasi-periodic motion,
2135<ω< 2605 rad/s, the system returns into periodic-1

motion again. With the increasing speed, ω> 3745 rad/s, the
system response finally presents a chaos motion, which can
be seen in Figure 13(d), Poincare map appears as messy, and
irregular scatter.

Figure 9 is the bifurcation diagram of dimensionless
horizontal displacement X1 at the right bearing location
for k2 �10k2′. It can be seen from Figure 9 that the bi-
furcation diagrams of the system have a little difference.

Table 1: Parameters of the rod fastened rotor and bearing.

Parameters Values
Lumped mass m1/kg 12
Lumped mass m2/kg 12
Lumped mass m3/kg 12
Lumped mass mb1/kg 3
Lumped mass mb2/kg 3
Stiffness of the shaft k/(N/m) 2.5e7
Max stiffness of interface k2/(N/m) 1.0e8
Damp coefficient of bearing c1(N·s/m) 1400
Damp coefficient of rotor c2(N·s/m) 3500
Bearing radius R(mm) 48
Bearing length Lb(mm) 25
Clearance of bearing c(mm) 0.18
Lubricant viscosity μ (Pa·s) 0.018
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Figure 6: Campbell diagram of rod fastened rotor under nonuniform stiffness. (a) k2 � k2′, (b) k2 � 5 k2′, (c) k2 �10 k2′, and (d) k2 � 20 k2′.
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System keeps period 1 motion, at low rotational speed,
ω< 1769 rad/s. With the increasing of rotational speed,
1769<ω< 1987 rad/s, system comes into quasi-periodic mo-
tion. 1875<ω< 1987 rad/s; the system returns to periodic
motion in the form of a period 3 inverse bifurcation; as shown
in Figure 14(b), the phase trajectory presents three closed loops,

and the Poincare map of the quasi-periodic motion presents
three isolate points in Figure 14(d). With the increasing of
speed, the system enters chaotic motion after a short period 1
motion.

Figure 10 is the bifurcation diagram of dimensionless
horizontal displacement X1 at the right bearing location
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Figure 7: Mode shape of rod fastened rotor. (a) 1st mode shape, (b) 2nd mode shape, and (c) 3rd mode shape.
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Figure 9: Bifurcation diagram of rotor with k2 �10k2′.
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Figure 11: Numerical analysis results at ω� 2000 rad/s, k2 � 5k2′. (a) Time domain waveform, (b) phase trajectory, (c) frequency spectrum,
and (d) Poincare map.
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Figure 12: Numerical analysis results at ω� 2605 rad/s, k2 � 5k2′. (a) Time domain waveform, (b) phase trajectory, (c) frequency spectrum,
and (d) Poincare map.
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Figure 13: Numerical analysis results at ω� 4000 rad/s, k2 � 5k2′. (a) Time domain waveform, (b) phase trajectory, (c) frequency spectrum,
and (d) Poincare map.
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Figure 10: Bifurcation diagram of rotor with k2 � 20k2′.
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for k2 � 20k2′. )e system response becomes more com-
plicated under this condition. Compared with Figures 8
and 9, the quasi-periodic motion happens earlier and the
quasi-periodic region narrows with 1027 < ω< 1125 rad/
s. With the increase in the speed, system enters an un-
stable periodic motion, 1125 < ω< 1193 rad/s. At
ω� 1193 rad/s, the system bifurcates again, and the sys-
tem causes periodic 2 motion under certain conditions.
Figure 13 is the response of the system at ω� 1250 rad/s,
and the system presents periodic 2 motion, which is
shown as two closed loops in Figure 15(b), two obvious
frequency components in Figure 12(c), and two isolated
points in Figure 15(d). As the rotational speed increases,
the system enters chaotic motion without jump
phenomenon.

4. Conclusion

Based on Lagrange’s equation, the model of rod fastened
rotor-bearing system under the condition of nonuniform
bending stiffness of interface has been established in this
paper. )e linear dynamics behaviors have been explored,
such as Campbell diagram and critical speed. )e nonlinear
dynamics behaviors have been studied by using the fourth-
order Runge–Kutta method. )e bifurcation diagram, vi-
bration waveform, spectrum, phase trajectory, and Poincare
map are given to illustrate the nonlinear dynamic phe-
nomena of the system. )e following conclusions can be
drawn from the above research.

(1) With the increase of the rotating speed, the rod
fastened rotor system has experienced periodic 1
motion, multiple periodic motion, and quasi-peri-
odic motion successively.)en, the system returns to
periodic 1 motion by an inverted bifurcation. With
the speed increasing, the system enters chaotic
motion in the end.

(2) With the increasing of k2/k2′, the critical value of
the system entering the chaotic phases is smaller,
and the interval of quasi-periodic motion gets
smaller.

(3) Because of the difference between k2 and k2′, the
rod fastened rotor system appears to be “bistable
state” phenomenon. )ere are two critical speeds
of each order, and both of them are positive
precession critical speed. )e smaller critical speed
is greatly influenced by k2′, and the amplitude
response to the smaller critical speed is much
larger than the counterparts to the higher critical
speed.

)is study can provide guidance for the failure caused by
nonuniform bending stiffness of the interface of the rod
fastened rotor, and, at the same time, it is helpful to further
study the nonlinear dynamic characteristics of the rod
fastened rotor.

)e further research work will focus on the modeling of
the stability of the rod fastened rotor caused by the non-
uniform stiffness.
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Figure 14: Numerical analysis results at ω� 2061 rad/s, k2 �10k2′. (a) Time domain waveform, (b) phase trajectory, (c) frequency spectrum,
and (d) Poincare map.
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Figure 15: Numerical analysis results at ω� 1250 rad/s, k2 � 20k2′. (a) Time domain waveform, (b) phase trajectory, (c) frequency spectrum,
and (d) Poincare map.
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