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In this work, the energy density responses of one-dimensional structures with random properties are investigated analytically.
Based on Green kernels, analytical representations of energy density for vibrating rods and beams are proposed using the
superposition of energy waves. Considering random properties in rods and beams, formulations of energy density responses are
obtained. .en, the mathematical expectations and variances are derived. And response intervals for random responses are
developed. Finally, numerical simulations are performed to validate the proposed formulations, and characteristics of the random
energy density responses of rods and beams are analysed. .e main contribution of this work is that a new approach to energy
density responses is proposed which facilitates the vibration analysis of structures with uncertainty parameters.

1. Introduction

Prediction of structural vibration is of interest in engineering
applications. In low frequencies, the finite element method
(FEM) is usually used. However, as the frequency increases,
the wavelengths become smaller and more degrees of
freedom are desired to obtain accurate results. FEM becomes
time-consuming and even unfeasible for many problems. An
approach is evaluating the responses with an averaged
variable. .us, statistical energy analysis (SEA) was pro-
posed by Lyon et al. [1–3]. SEA, providing averaged energy
for subsystems, reduces the scale of computation dramati-
cally and has been widely studied and applied in various
fields [4–8].

However, there are several limitations in SEA, and
one that must be noticed is the energy distribution in
subsystems, often concerned in many applications, is lost.
.erefore, alternative methods become necessary. Energy
flow analysis (EFA), introduced by Belov et al. [9, 10], is
the representative method. In EFA, space- and frequency-
averaged energy density is used as the main variable to
reduce the scale of computation. .en, the dynamic

behaviour of structures can be described by the control
equation of energy density which is analogous to the heat
conductivity equation. FEA, who desires much less
computation than traditional FEM with displacement
being a main variable, allows more detailed results than
SEA. To provide a numerical solution for the energy
responses, Nefske and Sung [11] applied FEM in solving
control equations of energy density for vibrating beams.
It is part of evocation of the energy finite element method
(EFEM). Developing control equations for basic struc-
tures is a prerequisite for other works and is what much
work is focused on. Wohlever and Bernhard [12] pro-
duced a systematic procedure to obtain energy density
control equations of rods and Euler–Bernoulli beams.
Bouthier et al. [13, 14] analysed Kirchhoff plates,
membranes, and acoustic cavities by EFEM after con-
structing control equations of energy density. In-plane
motions were not concerned before Park et al. [15]
formulated the control equation of energy density for in-
plane shear waves in coupled thin plates. To take into
account the effects of rotational inertia and shear dis-
tortion, Park and Hong [16] classified the flexural waves
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into two kinds of waves and developed the energy control
equations for Timoshenko beams. .ey further derived
the energy control equations for three kinds of far-field
propagating waves in Mindlin plates [17]. Considering
lateral motion plays a more important role in high-fre-
quency vibration, Han et al. [18] derived the energy
control equation for Rayleigh–Love rods. And the energy
control equation of Rayleigh–Bishop rods was formulated
by taking into account both lateral motion and shear
stiffness. Chen et al. [19] derived the energy density and
energy intensity of an Euler–Bernoulli beam with con-
stant axial force. .en, the energy density governing
equation is established after introducing the relationship
between the wavenumber and group velocity.

In practical engineering, objects to analyse consist of
many basic structures. .e energy transmission relation-
ships between coupled structures become an essential
problem. To predict responses for built-up structures, Cho
[20] described energy relationships of coupled structures
through energy reflection and transmission coefficients.
.en, the global matrix can be obtained by using a joint
matrix. Bitsie [21] formulated the coupled relationships
between acoustic fields and structures through radiation
coefficients..e coupled relationships were used in EFEM to
compute responses of plates under point excitation, and the
results show that energy dissipation is related to the total
dissipated power. Zhang et al. [22–24] applied the energy
flow method on plates with fluid load, showing that fluid
load leads to a different energy density control equation for
plates and influences the energy transmission between the
plate and its reinforcement beams. Kwon et al. [25] analysed
the wave transmission between cylindrical shells and ob-
tained power reflection and transmission coefficients which
can be used to predict energy flow for coupled cylindrical
thin shells. Lin et al. [26] proposed a junction formulation
for the discontinuity problem of energy density at the
junction of two beams with stepped thickness. However,
most works on transmission relationship neglect wave fil-
tering effects and are only enough accurate when for weak
damping effect. Liu et al. developed an alternative approach
for energy transmission relationships using the coupling loss
factors (CLFs) and validated the approach on coupled beams
and coupled plates [27].

To obtain experimental data of energy densities, Navazi
et al. [28] proposed a new method for experimental mea-
surement of energy densities of plates. Using the method,
kinetic and potential energy densities were obtained by the
experiment. It is shown that the experimental results agree
well with that from analysis.

Since space- and frequency-averaged variables are
adopted to describe dynamic response of structures, there
are no mandatory requirements to decrease the size of the
elements or increase the order of the interpolating functions
as the frequency increases which happens in FEM for nu-
merical computation. EFA demands much less computation
power and provides a potential solution to high-frequency
problems. However, most works are focused on determin-
istic structures whose parameters are known precisely. Due
to natural uncertainties in practical parameters,

deterministic models may produce unacceptable errors.
Since totally avoiding uncertainties is impossible, it is
meaningful to improve deterministic methods to predict
uncertainties in structural vibration. .ere are many works
dealing with uncertainties in structures [29–33]. Among
them, the probabilistic method is preferable. In probabilistic
analysis, parameters are supposed to satisfy a certain
probabilistic distribution, and responses are provided in
probabilistic form by random variables. .e responses
subject to a certain probabilistic distribution are supposed to
be more feasible than deterministic results. In this work, new
analytical formulations of energy density responses of vi-
brating rods and beams are developed with Green kernels.
.e analytical formulations facilitate the analysis of struc-
tural vibration from the point of view of energy. Energy
densities can be obtained directly without solving control
equations using numerical solutions. .en, random energy
density responses are derived for rods and beams with
probabilistic parameters. Considering the excitation location
as a probabilistic variable, numerical simulations are per-
formed to validate the derived analytical solutions and the
characteristics of random response are analysed comparing
with deterministic results. .e analytical formulations
provide helpful representations for further research on
energy densities of structures. And for practical structures
whose uncertainties should not be neglected, the probabi-
listic formulations of energy density responses provide a
potential approach for the analysis of vibration in high
frequencies.

2. Materials and Methods

2.1. Energy Density Governing Equation and Numerical
Solution. .e energy density control equation for rods and
beams is as follows [12]:

c
2
g

ηω
d2Ee

dx
2 − ηωEe + πin � 0, (1)

where Ee is the energy density, cg is the group velocity of
waves, η is the material damping coefficient, and πin is the
input power by the excitation with the frequency ω. To
obtain the energy density responses, the control equation
can be solved by the finite element method. .e discrete
control equation becomes

K
e

􏼂 􏼃 E
e

􏼈 􏼉 � F
e

􏼈 􏼉 + Q
e

􏼈 􏼉. (2)

In equation (2),

K
e

􏼂 􏼃 � 􏽚
c
2
g

ηω
zN

T

zx

zN

zx
+ ηωN

T
N⎛⎝ ⎞⎠dD, (3)

is the coefficient matrix,

F
e

􏼈 􏼉 � 􏽚 N
TπindD, (4)

indicates the input power, and
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Q
e

􏼈 􏼉 � 􏽚
c
2
g

ηω
N

T
(− n)

dEe

dx
dΓ, (5)

is the power flow in elements. .e boundary of elements is
denoted by Γ, and the normal vector of the boundary is
denoted by n.

2.2. Analytical Formulations of Energy Density. Equation (2)
provides the numerical form for the calculation of the energy
density responses which is suitable for complex structures.
However, it is less convenient for studying the characteristics
of energy flow in structures than analytical forms. To obtain
analytical solutions, one point should be noticed is that
energy density responses are reverberant in high frequen-
cies, so the vibration power of a single wave is totally re-
flected at free and clamped boundaries regardless of the
phase. .en, the responses are the summation of a series of
energy waves.

2.3. Analytical Solutions for Rods. .e control equation of
motion for a uniform longitudinally vibrating rod is as
follows [12]:

EcS
z
2
w

zx
2 + ω2ρSw � Fδ x − x0( 􏼁e

jω t. (6)

In the equation, the coordinate system in Figure 1 is
adopted, w is the longitudinal displacement, S is the cross-
sectional area, ρS indicates the mass density per unit length,
and Fδ(x − x0)e

jωt is the harmonic point force applied at
location x − x0. .e damping effect is considered by in-
troducing the complex modulus of elasticity Ec � E(1 + jη),
where η is the hysteretic damping coefficient and j �

���
− 1

√
∘.

Using the wavenumber, we obtain

z
2
w

zx
2 + k

2zw
zx

�
Fδ x − x0( 􏼁

EcS
, (7)

where

k �
ω2ρ

E(1 + jη)
􏼠 􏼡, (8)

is a complex wavenumber. In lightly damped rods, i.e.,η≪ 1,
the wavenumber can be approximated as

k � k1 + k2, (9)

where k1 �
�����
ω2ρ/E

􏽰
and k2 � − ηk1/2.

.e Green kernel, which indicates the displacements of
the rod under a unit point force, for a longitudinally vi-
brating rod with infinite length is as follows [34]:

Gr �
1

jESk
e

− jkxd , (10)

where xd indicates the distance between the response point
and the excitation.

.e total energy of a vibrating rod includes two parts: the
potential energy and the kinetic energy. .e time-averaged
kinetic (T) and potential (V) energy densities are, respec-
tively, [12] as follows:

T �
1
2
ρS

zw

zt
􏼠 􏼡

2

,

V �
1
2

ES
zw

zx
􏼠 􏼡

2

.

(11)

.e averaged complex forms can be written as

T �
1
2
ρS

zw

zt
􏼠 􏼡

zw

zt
􏼠 􏼡

∗

, (12)

V �
1
2

ES
zw

zx
􏼠 􏼡

zw

zx
􏼠 􏼡

∗

, (13)

in which the star ∗ indicates the conjugation.
Substituting the Green kernel into equations (12) and

(13), the averaged kinetic and potential energy densities
become

T �
1
4

ρSω2

ESk1( 􏼁
2e

2k2xd ,

V �
1
4

1
ES

e
2k2xd ,

(14)

by taking |k| ≈ k1. .us, noticing k1 �
�����
ω2ρ/E

􏽰
, the energy

density responses of an infinite rod under a unit point force
are

Ger � T + V �
1
2

ρSω2

ESk1( 􏼁
2e

2k2xd . (15)

.e representation for an infinite rod under a sinusoidal
force with amplitude F is then written as

Eer �
F
2

2
ρSω2

ESk1( 􏼁
2e

2k2xd . (16)

To obtain the representation for a finite rod, the
boundary effect should be taken into account. Since what

y

x=0 x=L x

Figure 1: .e coordinate system for a rod or beam.
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exists in a vibrating rod is a reverberant field, power flow is
considered to be reflected totally at boundaries regardless of
the phase. .en, the response is the summation of a series of
energy waves, which can be written as

Eer �
F
2

2
ρSω2

ESk1( 􏼁
2 􏽘

N

n�0
e
2k2 xd+2nL( )⎛⎝

+􏽘
N

n�0
e
2k2 xd+2(L− x)+2nL( )⎞⎠,

(17)

where N is the order of reflection, L is the length of the rod,
and x indicates the location of the concerned location. As the
order of reflection tends to infinite, the representation of the
energy density responses is

Eer �
F
2

2
ρSω2

ESk1( 􏼁
2

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑. (18)

.en, the energy density Green kernel for a finite rod can
be written as

Ger �
ρSω2

2 ESk1( 􏼁
2

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑. (19)

2.4. Analytical Solutions for Beams. .e control equation of
motion for a uniform Euler–Bernoulli beam excited by a
transverse harmonic point force is as follows [12]:

EcI
z
4
w

zx
4 + ρS

z
2
w

zx
2 � Fδ x − x0( 􏼁e

jωt
. (20)

In the equation, w is the transverse displacement, S is the
cross-sectional area, ρS is the mass density per unit length,
Fδ(x − x0)e

jωt is the harmonic point force applied at lo-
cation x0, the complex modulus of elasticity is
Ec � E(1 + jη), and EcI indicates the flexural rigidity.

.e wavenumber k of the bending beam is

k �
ω2ρS

EcI(1 + jη)
􏼠 􏼡

1/4

. (21)

In lightly damped beams, the wavenumber can be
written as

k � k1 + jk2, (22)

where k1 �
�����
ω2ρ/E

􏽰
and k2 � − ηk1/4.

.e Green kernel for an infinite beam is as follows [35]:

Gb � −
1

4EcIk
3 je

− jkxd + e
− kxd􏼐 􏼑. (23)

Similar to a rod, the average total energy density in a
beam is the sum of the kinetic and potential energy density:

T �
1
2
ρS

zw

zt
􏼠 􏼡

zw

zt
􏼠 􏼡

∗

,

V �
1
2
EI

zw

zx
􏼠 􏼡

zw

zx
􏼠 􏼡

∗

,

(24)

where the star ∗ indicates the conjugation.
Substituting the displacement with the Green kernel, the

energy densities become

T �
F
2ρSω2

16 EcI( 􏼁
2
k
6 e

2k2xd + je
− jk+k∗( )xd − je

jk∗− k( )xd + e
− 2k1xd􏼒 􏼓,

V �
F
2

16EcIk
4 e

2k2xd + e
− jk+k∗( )xd + e

− jk∗+k( )xd + e
− 2k1xd􏼒 􏼓.

(25)

Based on the approximation k1 − k2 ≈ k1, the energy
density representation for an infinite Euler–Bernoulli beam

Eeb �
F
2

8
ρSω2

EcI( 􏼁
2
k
6 e

2k2xd , (26)

can be adopted without introducing unacceptable errors by
noticing that k2≪ k1.

.e energy density responses for a finite beam are cal-
culated by the superposition of a series of bending waves:

Eeb �
F
2

8
ρSω2
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2
k
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􏽘

N
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e
2k2 xd+2nL( ) + 􏽘

N

n�0
e
2k2 xd+2(L− x)+2nL( )⎛⎝ ⎞⎠,

Eeb �
F
2

8
ρSω2

EcI( 􏼁
2
k
6
1

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑.

(27)

.en, the energy density Green kernel for a finite rod can
be written as

Geb �
ρSω2

8 EcI( 􏼁
2
k
6
1

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑. (28)
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It can be observed that excitation terms are introduced in
equations (18) and (27). .e effect of boundaries is taken
into account by the sum of reflected waves. .e expressions
become analytical forms which have no unknown constants,
and it is convenient for analysing the energy density
characteristics of rods and beams.

3. Energy Densities for One-Dimensional
Structures with Random Uncertainties

3.1. Energy Densities for Rods with Random Uncertainties.
According to equation (18), the energy density formulation
of vibrating rods with random parameters can be written as

􏽥Eer �
F
2

2
􏽥ρ􏽥Sω2

􏽥E􏽥Sk1􏼐 􏼑
2

e
2k2􏽥xd

1 − e
4k2􏽥L

1 + e
4k2(􏽥L− x)

􏼒 􏼓, (29)

where 􏽥a denotes an independent random variable with the
mathematic expectation a and the standard deviation σa.

.en, the expectation of the response is

Eer � Eer + EXP 􏽘
a�ρ,E,S,L,xd

zEer

za
δa⎛⎝ ⎞⎠ , (30)

in which EXP means expectation, and Eer indicates the
function which possesses the same form as the deterministic
formulation of energy densities:

Eer � Eer �
F
2

2
ρSω2

ESk1( 􏼁
2

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑,

δa � 􏽥a − a.

(31)

.e variance of response is obtained as

σ2er � 􏽘
a�ρ,E,S,L,xd

zEer

za
σa􏼠 􏼡

2

. (32)

And the standard deviation is

σ2er �

�����������������

􏽘
a�ρ,E,S,L,xd

zEer

za
σa􏼠 􏼡

2
􏽶
􏽴

. (33)

As an example, the energy density of vibrating rods
experiencing a random-location excitation can be written as

􏽥Eer �
F
2

2
ρSω2

ESk1( 􏼁
2

e
2k2􏽥xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑 . (34)

.emathematic expectation and variance of the random
variable 􏽥xd are

EXP 􏽥xd( 􏼁 � xd,

var 􏽥xd( 􏼁 � σ2xd
.

(35)

Equation (34) can be expanded as a Taylor series at xd,
and the first two terms are retained as

􏽥Eer �
F
2

2
ρSω2

ESk1( 􏼁
2

e
2k2􏽥xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑

· 1 + 2k2 􏽥xd − xd( 􏼁( 􏼁.

(36)

.en, assuming the random location as a Gaussian
random parameter, the expectation of energy density for
rods is as

Eer �
F
2

2
ρSω2

ESk1( 􏼁
2

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑, (37)

with

mean 􏽥xd − xd( 􏼁 � 0. (38)

It is the same expression as that of rods experiencing a
deterministic-location excitation at x � xd. .us, the stan-
dard deviation of the energy density responses is

σer � −
F
2

2
ρSω2

ESk1( 􏼁
2

2k2σxd
e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑. (39)

Within n standard deviations, the corresponding energy
density interval is

E
I
er � Eer − nσer, Eer + nσer􏼂 􏼃 , (40)

in which at least 1 − (1/n2) of the values of response are
covered. .e maximum and minimum values in the interval
are

Eermax �
F
2

2
ρSω2

ESk1( 􏼁
2

1 − 2nk2σxd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑e
2k2xd ,

Eermax �
F
2

2
ρSω2

ESk1( 􏼁
2

1 + 2nk2σxd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑e
2k2xd .

(41)

3.2. Energy Density for Beams with Random Uncertainties.
For an Euler–Bernoulli vibrating beam with random pa-
rameters, the energy density representation is

Eeb �
F
2

4
􏽥ρ􏽥Sω2

􏽥EcI( 􏼁
2
k
6
1

e
2k2􏽥xd

1 − e
4k2􏽥L

1 + e
4k2(􏽥L− x)

􏼒 􏼓. (42)

.en, the expectation of responses is similarly

Eeb � Eeb + EXP 􏽘
a�ρ,E,S,L,xd

zEeb

za
δa⎛⎝ ⎞⎠, (43)

in which

Eeb � Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑,

δa � 􏽥a − a.

(44)
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.e variance of response is obtained as

σ2eb � 􏽘
a�ρ,E,S,L,xd

zEeb

za
σa􏼠 􏼡

2

. (45)

And the standard deviation is

σ2er �

�����������������

􏽘
a�ρ,E,S,L,xd

zEer

za
σa􏼠 􏼡

2
􏽶
􏽴

. (46)

.en, for a vibrating beam experiencing random-loca-
tion excitation, the energy density is

􏽥Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

e
2k2􏽥xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑. (47)

.e mathematic expectation and the variance of the
random variable 􏽥xd are given as

EXP 􏽥xd( 􏼁 � xd,

var 􏽥xd( 􏼁 � σ2xd
.

(48)

.e first two terms of the Taylor series at xd are retained.
.e energy density formulation is approximately written as

􏽥Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑

· 1 + 2k2 􏽥xd − xd( 􏼁( 􏼁.

(49)

.en, the expectation and the standard deviation of the
energy densities can be obtained by assuming the location as
a Gaussian random parameter:

Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑,

σeb � −
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

2k2σxd
e
2k2xd

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑.

(50)

Within n standard deviations, the corresponding energy
density interval is

E
I
eb � Eeb − nσeb, Eeb + nσer􏼂 􏼃, (51)

in which at least 1 − (1/n2) of the values of response are
covered. Maximum and minimum energy densities in the
interval for beams are

Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

1 − 2nk2σxd
􏼐 􏼑

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑e
2k2xd ,

Eeb �
F
2

4
ρSω2

EcI( 􏼁
2
k
6
1

1 + 2nk2σxd
􏼐 􏼑

1 − e
4k2L

1 + e
4k2(L− x)

􏼐 􏼑e
2k2xd .

(52)

4. Results and Discussion

4.1. A Simulation for the Rod. For the rod cases, the uniform
clamped-free rod shown in Figure 2 with ρS � 200 kg/m,
E � 7.1 × 105Pa, L � 1m, and η � 0.02 is driven by a har-
monic point force with ω � 0 ∼ 1000 rad/s. Figure 3 shows
the analytical energy density distribution in frequencies at
location x � L/2 with that obtained from EFEM and wave
methods. And the distributions in space at ω � 872 rad/s are
presented in Figure 4.

In Figures 3 and 4, it can be observed that the proposed
analytical solution to the rod coincides well with the nu-
merical (EFEM) solution of the energy density governing
equation. Both of them represent well the global variation in
the classical wave solution regardless of the excitation
frequency.

Figure 5 shows the energy density interval at point x � L/2
in frequencies by assuming the excitation coordinate as a
Gaussian randomvariable and the standard deviation σ � 0.1 L.
Due to the random effect of the excitation location, the energy
densities are no longer deterministic. A confidence response
interval is generated by potential energy densities for both
frequency and space responses. .e practical responses can be
any value in the interval. However, the mean energy densities
are equal to the results from deterministic parameters without
deviations. As the excitation frequency increases, the energy
density interval width increases. And it is indicated that the
uncertainty of energy densities for the rod becomes more
significant in high frequencies than in low frequencies.

.e random energy densities in space at ω � 872 rad/s
are shown in Figure 6. .e mean energy densities are
identical to the results from deterministic parameters
without uncertainties. .e energy density interval width
remains with increasing distance from the driving point
which indicates that energy densities of the rod in different
locations possesses the same uncertainty at a fixed
frequency.

.e standard deviations and the relative standard de-
viations of energy densities are presented, respectively, in
Figures 7 and 8. It is shown that the standard deviation at the
free end of the rod increases while that at the clamped end
decreases as the frequency increases. .e relative standard
deviation of energy density increases as the frequency in-
creases, and it stays the same with increasing distance from
the driving point. It is indicated that, although the absolute
uncertainty changes in various ways in different locations,
the relative uncertainty of energy densities for the rod in-
creases in high frequencies and remains at a steady level at a
fixed frequency regardless of the coordination.

4.2. A Simulation for the Beam. .e beam used for the
validation is shown in Figure 9 with L � 5m,
EI � 7200(1 + jη)Nm2, η � 0.01, and ρS � 200 kg/m. Fig-
ure 10 provides the energy density distributions in fre-
quencies at x � L/2 from the proposed analytical, the
numerical (EFEM), and the wave methods. And the energy
density distributions in space at ω � 973 rad/s are shown in
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Figure 11. It is observed that, for the beam, results from the
proposed analytical method and the numerical method
coincide well and represent well the global variation in the
classical wave solution regardless of the excitation
frequency.

Similar to the previous example for the rod, Figure 12 shows
the energy density responses of the beam at point x � L/2 in the
case of the excitation location standard deviation σ � 0.2 L. Due
to the random effect of the excitation location, the energy
densities of the beam become random. And the potential re-
sponses cover an interval in the frequency domain and spatial
domain. And the mean energy densities are equal to the results
from deterministic parameters without deviations. As the ex-
citation frequency increases, the uncertainty of energy density

F

Figure 2: A free-clamped vibrating rod.
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Figure 3: Energy densities of the rod in frequency field. .e
reference energy density is 10− 12 J/m2.
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Figure 5: Energy density interval of the rod with a random-lo-
cation excitation in frequency field. .e reference energy density is
10− 12 J/m2.
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Figure 6: Energy density interval of the rod with a random-lo-
cation excitation in space.
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for the beam becomes more significant. Figure 13 shows the
energy densities in space at ω � 973 rad/s whose potential
values form an interval too. .e mean energy densities are
identical to the results from deterministic parameters without
uncertainties. And the energy densities of the beam in different
locations possess the same uncertainty at a fixed frequency.

.e standard deviation and the relative standard devi-
ation of energy densities are presented, respectively, in
Figures 14 and 15. It is observed that the standard deviation
is shown to decrease with the increasing frequency at all
locations of the beam. .e relative standard deviation in-
creases with the increasing frequency at all locations of the
beam and stays the same with increasing distance from the
driving point. It is indicated although the absolute uncer-
tainty goes down, the relative uncertainty of energy densities
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Figure 7: Standard deviations of energy densities of the rod. .e reference energy density is 10− 12 J/m2.
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Figure 9: A cantilever beam.
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Figure 10: Energy densities of the beam in the frequency field. .e
reference energy density is 10− 12 J/m2.
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Figure 11: Energy densities of the beam in space.
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Figure 12: Energy density interval of the beam with a random-location excitation in the frequency field. .e reference energy density is
10− 12 J/m2.
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Figure 13: Energy density interval of the beam with a random-location excitation in space.
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for the beam is more significant in higher frequencies and
remains at a steady level in space at a fixed frequency. And
the rate of growth becomes smaller in higher frequencies
which differ from that for the rod.

5. Conclusions

Vibration prediction of many practical structures demands
more on vibration research due to structural complexity and
high-frequency analysis. As an approach to high-frequency
responses, EFA is now widely applied to many engineering
fields. In this work, a general method was presented for pre-
dicting the energy density responses. Based on the Green
kernels of vibrating rods and beams, the method provided new
formulations for rods and beams using the summation of
propagating waves. .e advantage of the proposed method is
that it provides a systematic way to analyse energy responses of
structures with analytical formulations and enabled direct
solutions of energy density for vibrating structures which
promotes the analysis of vibration in energy view. With the
proposed method, formulations of energy densities are derived
for rods and beams with probabilistic parameters. Simulations
for a random-location excitation case were performed to
validate the formulations. .e proposed method provides an
approach to predict energy density responses analytically which
facilitates vibration energy analysis of structures. And the
extension of the method to structures with an uncertain pa-
rameter of other types is the subject of future research.
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