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Based on the excavation of Yuelongmen tunnel on ChengLan Railway in China, this paper will probe into the forced ventilation
effect of harmful gas generated by drilling and blasting construction, simulate the diffusion process of harmful gas generated
during blasting operation on the tunnel face by establishing the finite element model of gas turbulent flow and concentration
diffusion in the tunnel, and study the spatial-temporal evolution law of CO concentration field under different air pipe layout
locations and tunnel excavation methods. ,e results show that, compared with corner layout, haunch layout, and central layout,
the ventilation effect is the best when the air pipes are arranged near the wall at the tunnel vault, and the CO concentration can be
reduced to the concentration limit after 588 s of ventilation; compared with the full-face tunneling method and the lower pilot
heading method, the benching tunneling method can effectively reduce the retention time of CO near the tunnel face, and the CO
concentration on the tunnel face can be reduced to the standard limit after 326 s of ventilation near the wall of tunnel vault.

1. Introduction

With the continuous construction of the railway network in
southwest China, tunnels have become the key works of the
railway network in southwest China due to geographical
limitation, such as mountainous and hilly areas. Owing to its
simple, efficient, and economical construction method,
drilling and blasting is the main tunnel construction method
for hard rock mass at present [1], but a large amount of
harmful gas, such as CO, will lead to the suffocation of
constructors and even tunnel explosion after blasting [2, 3].
,erefore, it is of great significance to study the concen-
tration distribution law of CO and other harmful gas in the
tunnel and reasonably set up the tunnel ventilation system,
so as to ensure the occupational health of construction
workers, as well as construction safety and project progress
[4–6].

Tunnel construction ventilation is to send fresh air near
the tunnel face by means of natural ventilation or me-
chanical ventilation, so as to dilute and reduce the con-
centration of harmful gas below the allowable concentration,
which is the only technical means of air exchange inside and
outside the tunnel [7, 8]. At present, the researchmethods on
the ventilation and discharge of harmful gas from tunnel
implosion can be divided into field measurement, model
test, theoretical analysis, and numerical simulation [9].
Nevertheless, the occurrence of the field measured flow
phenomenon is not controllable, and it is difficult to
summarize the fluid movement rule based on the measured
data [10]. ,e model test is to transform the test data into
actual prototype data based on the similarity theory, but it
often takes a long operation cycle and high cost [11, 12].
,eoretical analysis can only be used to solve some simple
hydrodynamic problems, but it is difficult to solve 3D
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hydrodynamic problems of tunnel construction ventilation
[13–15]. Numerical simulation has been widely used for its
advantages of low cost, strong operability, and fast simu-
lation results [16–18].

Because of the complex engineering geological condi-
tions and hydrogeological conditions in southwest China,
the full-face tunneling method can no longer meet the re-
quirements of tunnel construction in this region, and the
relevant research work on ventilation problems in other
construction methods is relatively insufficient [19–21]. ,e
difference in space structure at the tunnel face caused by
different construction methods makes it more difficult to
predict the diffusion process and distribution characteristics
of harmful gas [22, 23]. Due to the complexity of ventilation
problems, the existing ventilation experience of a single-
head tunnel with full section drilling and blasting excavation
cannot meet the ventilation requirements of other con-
struction methods. Based on HD3K0+ 148 section of No. 3
horizontal tunnel of Yuelongmen tunnel of Chenglan
Railway in China, this paper studied the influence of air pipe
layout and tunnel excavation on the ventilation effect of
explosive harmful gas and put forward the corresponding
optimization measures.

2. Numerical Model of Forced Ventilation for
Tunnel Construction with Single-Head
Drilling and Blasting

2.1. Fundamental Assumption. ,e forced ventilation of
tunnel under single-head drilling and blasting construction
is a typical turbulent flow problem in fluid dynamics. ,e
source of harmful gas in the tunnel is the explosive gas,
which is distributed evenly on the tunnel face. ,e tem-
perature in the tunnel is constant, the tunnel wall is adia-
batic, and the dissipative heat caused by fluid viscous force is
ignored. In addition to the air pipes, the influence of other
equipment in the tunnel on the flow field is ignored [24].

2.2. Governing Equation. ,e airflow model based on the
Navier–stokes equation is employed for tunnel construction,
and the equations are closed by using the RNG k − ε tur-
bulence model. ,e control equations of gas turbulent flow
and concentration diffusion in the tunnel are as follows:

(1) Continuity equation:

zρ
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+
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ρvi(  � 0, (1)

where ρ is the gas density, vi is the speed in xi di-
rection, t is the ventilation time.

(2) Momentum conservation equation:
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where p is the static pressure, τij is the viscous stress
component, and fxi is the gravity body force and
external body force in i direction.

(3) Energy conservation equation:
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where T is temperature, K is the heat transfer co-
efficient of fluid, cp is the specific heat capacity, and
ST is the viscous dissipation.

(4) Component mass conservation equation:
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where cs is the mass concentration of a component, andDs is
the diffusion coefficient of the component.

Due to the fact that tunnel construction ventilation is
often accompanied by the flow on the curved wall, RNG k −

ε turbulence model is introduced to calculate the turbulent
flow with a high strain rate and greater curvature in the
tunnel. ,e transport equations for k and ε are, respectively:
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where μeff is the effective viscosity coefficient, Gk is the
turbulent kinetic energy production term caused by average
speed gradient, k is the turbulent kinetic energy, and ε is the
turbulence dissipation rate. C∗1ε, C2ε, αk, αε are the model
constants, C∗1ε � 1.42, C2ε � 1.68, and αk � αε � 1.39.

3. Finite Element Model and Working
Condition Design

3.1. Finite Element Modeling. CFD business software FLU-
ENT can be used to simulate complex flows from incom-
pressible to highly compressible range. Its flexible unstructured
grid and solution-based adaptive grid technology and mature
physical models make FLUENT transform and turbulent. It is
widely used in heat transfer and phase change, chemical re-
action and combustion, and multiphase flow.

,e clearance size of HD3K0+ 148 section of No. 3
horizontal tunnel of Yuelongmen Tunnel is 7.65m (wide)×

6.85m (high), the section area is 47.68m2, and the sur-
rounding rock of the tunnel face is carbonic phyllite, as
shown in Figure 1.,e air pipe is suspended in the near-wall
area with a radius of 0.75m.,e tunnel and air pipe model of
this section are shown in Figure 2.,e established numerical
model contains 229,900 nodes and 241,480 elements.
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3.2. Initial Conditions of Explosion Gas and Tunnel
Boundary Conditions

3.2.1. Initial Conditions for Explosion Gas. After the com-
pletion of blasting operation in tunnel construction, the
content of CO in the explosion gas is about 70%, the content
of NOx and SO2 is about 20%, and there is a small amount of
H2S, HCl, and so forth, except CO, SO2, H2S, and HCl
cannot exist in the tunnel space steadily due to physical and
chemical properties, and the CO content is the largest.
,erefore, CO dilution and emission condition is used in
this paper tomeasure the ventilation effect of the tunnel [25].

It is assumed that the temperature immediately returns
to the average temperature of 19°C in the tunnel after the
blasting operation is completed, and the CO gas generated is
evenly distributed in the throwing space. ,e empirical
formula of blasting fume throwing is

L � 15 +
G

5
, (6)

where L is the throwing length of blasting fume, namely, the
length of the diffused area of blasting fume (m); G is the
amount of blasting explosive (kg).

,e formula for calculating the initial concentration of
CO is

C �
Gb

LA
, (7)

where C is the initial concentration of CO; b is the toxic gas
(m3/kg) generated by each kilogram of explosives, 0.04; and
A is the tunnel construction section area (m2).

According to the tunnel surrounding rock classification
and daily construction schedule, the amount of explosive in a
single blasting operation is 63 kg, producing a total of 929.76 L
CO gas, and the throwing length of blasting fume is 27.6m, so
the average initial concentration of CO is 903mg/m3.

3.2.2. Tunnel Boundary Condition. ,e inner wall of the
tunnel is the standard solid wall boundary, and the wall
roughness function is as follows:

ΔB �
1
κ
ln 1 + CsKs( , (8)

where κ is the empirical constant, 0.4; No. 3 horizontal
tunnel of Yuelongmen Tunnel has been lined for the first
time to HD3K0+ 128 section, the wall surface of the lined
support section is uniform concrete sand surface, with the
roughness constant Cs1 � 0.5, the rough particle height
Ks1 � 0.09; the wall surface of unsupported section is bare
rock, with the roughness constant Cs2 � 0.7, and the rough
particle height Ks2 � 0.3 [26–28].

,e tunnel face is equipped with a 2× 200 kw SDF (B)-6-
No18 ventilator, which can provide the air volume of
5792m3/min, and the pipe inlet is a constant speed
boundary condition, with the radius R� 0.75m, and the
outlet wind speed of 13.2m/s.

(a) (b)

Figure 1: Tunnel face of HD3K0+ 148 section.

L1 = 100m, L2 = 72m, L3 = 15m, W = 7.65m, H = 6.85m, R = 075m
L1 is the simulated ventilation length of the tunnel;
L2 is the throwing length of CO;
L3 is the distance from the air duct outlet to the tunnel face;

W is the width of the tunnel;

R is the radius of air duct.

Hd is the air duct layout height;

Air inlet
Tunnel exit

Ventilation pipeTunnel

W

H

R

H
dL 2

L 3
L 1

Figure 2: Tunnel model size design.
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,e tunnel exit pressure is assumed to be
1.01325×105 Pa, and the free exit boundary condition is
adopted. ,e normal gradient of all flow parameters is 0
except for the pressure at the tunnel exit surface.

3.3. Operation Condition Design

3.3.1. Different Air Pipe Layout Modes. According to the
Technical Guide for Railway Tunnel Engineering Con-
struction (TZ204-2008) [29], the air pipe is generally laid in
the central vault, the middle of the tunnel, or beside the
haunch and corner, as shown in Figure 3, in which Point A is
the monitoring point of CO concentration on the tunnel
face, and the monitoring period is the change of CO con-
centration near the tunnel face within 30min after blasting.

3.3.2. Different Tunnel Construction Methods. Different
tunnel construction methods also have a great influence on
the diffusion of CO concentration. In addition to the full-
section construction method adopted at the present stage,
both the step-construction method and lower pilot heading
construction method are applicable to this section. ,e step-
construction method and lower pilot heading method are
shown in Figures 4 and 5. In this paper, the influence of
different tunnel construction methods on CO concentration
distribution characteristics under the same simulation
condition is discussed by taking the full-section method,
benching tunneling method, and lower pilot heading
method as examples.

4. Numerical Simulation Analysis of Forced
Ventilation of Tunnel

4.1. Influence of Air Pipe Layout on CO Diffusion Law.
Figure 6 shows the variation curve of CO ventilation dif-
fusion concentration at A on the tunnel face. After the
single-head tunneling and blasting construction, the change
of CO concentration near the tunnel face can be divided into
three stages. Stage I: 5min before ventilation, CO rapidly
diffuses from the tunnel face to the middle of the tunnel
under the effect of fresh jet air dilution, and CO concen-
tration decreases most rapidly at this moment. Stage II:
ventilation for 5min∼15min, the residual CO near the
tunnel face is continuously diluted under the action of jet air
and vortex wind inside the tunnel, during which the decline
rate of CO concentration decreases continuously until the
CO concentration on the tunnel face decreases to the
standard limit. Stage III: after 15min of ventilation, there is a
very small amount of CO remaining near the tunnel face,
and the decline rate of CO concentration is gradually close to
0, until the CO near the tunnel face is completely diluted and
eliminated. When the air pipe is laid at the vault near the
tunnel wall, the time required to reduce the CO concen-
tration to the standard limit is 588 s. However, it will take
738 s, 840 s, and 786 s to reduce the CO concentration to the

standard limit when the air pipe is laid at the corner, haunch,
and center of the tunnel, respectively. ,e numerical sim-
ulation results are close to the monitoring results, and the
rules are similar, indicating that this numerical model can
effectively reflect the dilution process of the CO concen-
tration in the tunnel.

Since the CO concentration on the tunnel face can reach
the standard limit of 20mg/m3 within 900 s under different air
pipe layout conditions [30], the CO concentration distribution
in the tunnel cross section after ventilation for 300 s, 600 s, and
900 s on the tunnel face ventilation is analyzed, as shown in
Figure 7.

(1) When the air pipe is laid at the corner close to the
tunnel wall (as shown in Figure 7(a)), the high-
concentration CO area appears on the tunnel face
opposite to the air pipe, and the distribution height
of the high-concentration area is similar to the
suspension height of the air pipe. With the increase
of ventilation time, the area of high-concentration
CO keeps decreasing and the concentration keeps
decreasing. ,e maximum CO concentration
corresponding to ventilation for 300 s, 600 s, and
900 s is 151.2 mg/m3, 39.2 mg/m3, and 11.2mg/m3,
respectively.

(2) When the air pipe is laid near the haunch of the
tunnel wall (as shown in Figure 7(b)), the area with
high CO concentration appears on the tunnel face at
the lower left of the air pipe, and the highest CO
concentration at different periods is 156.8mg/m3,
49.0mg/m3, and 17.4mg/m3, respectively.

(3) When the air pipe is laid in the middle of the tunnel
(as shown in Figure 7(c)), the low concentration of
CO appears on the tunnel face at the pipe orifice,
with the distribution pattern similar to a concentric
circle, and CO concentration is increased continu-
ously along the side and reaches the highest con-
centration at the intersection between the tunnel
bottom and inner tunnel wall, with the highest CO
concentrations at different times of 134.4mg/m3,
30.8mg/m3, and 7.3mg/m3, respectively.

(4) When the air pipe is arranged near the vault of the
tunnel wall (as shown in Figure 7(d)), the high
concentration of CO appears at the tunnel bottom,
and the highest concentration of CO is 81.2mg/m3,
10.6mg/m3, and 1.5mg/m3, respectively. ,e dis-
tribution range is small, the distribution of CO
concentration on the tunnel face above the tunnel is
relatively uniform, and the difference of CO con-
centration between adjacent positions is not large.

After comparing the CO concentration distribution and
changes under different air duct layout methods, it was
found that when the air duct is laid near the arch of the
tunnel near the wall, the CO concentration distribution on
the palm face is more uniform, and it is easy to accumulate at
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the bottom of the tunnel. ,erefore, the air pipe layout here
is conducive to the occupational health of tunnel con-
struction and construction personnel.

In addition, under different air pipe layout conditions,
the CO concentration in the tunnel face reaches a stable state
within 1800 s. ,e distribution of CO concentration in the
longitudinal section of the tunnel in the tunnel face after
ventilation for 600 s, 1200 s, and 1800 s is analyzed, as shown
in Figure 8. By comparing different time periods, it can be

seen that when the air pipe is laid near the wall (as shown in
Figures 8(a), 8(b), and 8(d)), the occurrence state of CO in
the tunnel can be divided into two stages with the increase of
the distance from the tunnel face.

In the first stage, namely, the section near the tunnel face,
when the fresh jet air moves to the face, it is obstructed and
forms the impinging jet. ,erefore, the direction of air blow
organization on the other side of the tunnel fan is changed,
and the wind speed on this side is lower than that on the

15m

5m

3.
5m

3.
35

m

4m

Air outletAir inlet

Unexcavated part

Hd = 4.2m

Figure 5: Schematic diagram of ventilation under the lower pilot heading method.

Hd = 4.2m

15m

20m

3m
3.

85
m

Air outletAir inlet

Unexcavated part

Figure 4: Ventilation diagram of the benching tunneling method.

A

Hd = 3m Hd = 4.2m Hd = 5m Hd = 6m
A A A
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CO monitoring point
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Air outlet
A

15m

6.
85
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Unexcavated part
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Figure 3: Indication of simulated cross section and longitudinal section for air pipe layout. (a) Cross section. (b) Longitudinal section.
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wind tube. Due to the different air blow organization speed
on both sides of the tunnel, CO in this stage is mainly
accumulated in the other side of the fan and gradually
discharged out of the tunnel.

In the second stage, namely, the section far away from
the tunnel face, as the movement of air blow organization in
this section is continuously subjected to the impinging jet at
the face section and the movement of air blow organization
is obstructed by the air pipe, it is difficult to reach the gap
between the inner wall of the tunnel and the air pipe.
,erefore, CO is detained and accumulated in the gap be-
tween the inner wall of the tunnel and the air pipe, and
finally discharged out of the tunnel.

When the air pipe is laid in the center (as shown in
Figure 8(c)), CO will not gather at the gap between the inner
wall of the tunnel and the air pipe, but the detention time of
CO in the tunnel will increase due to the lower air pipe
position.

4.2. Influence of Tunnel Construction Modes on CO Diffusion
Rule. If the air pipe is laid near the wall at the tunnel vault
for ventilation, the variations of CO concentration on the
tunnel face under different construction methods are
shown in Figure 9, in which you can see the CO con-
centration on the tunnel face in the benching tunneling

method is decreased to the standard limit of 20mg/m3 after
ventilation for 326 s, while it will take 874 s and 784 s for the
full-face tunneling method and lower pilot heading
method. Due to the smaller space in the benching stage of
the benching tunneling method, the influence of airflow on
the tunnel face of this section is stronger, which is con-
ducive to the dilution and discharge of CO near the tunnel
face. ,erefore, the ventilation time is shorter than that of
the full-face tunneling method and the lower pilot heading
method.

By comparing the full-face tunneling method and lower
pilot heading method, it is found that CO concentration
declines in the same way at the initial ventilation stage under
the two construction methods, and then the air at the tunnel
face will continuously flow into the heading section of the
lower pilot tunnel as the ventilation time increases, so that
the CO concentration on the tunnel face in the lower pilot
heading method declines more slowly than that in the full-
face tunneling method at some ventilation stages, and the air
at the heading stage of the lower pilot tunnel will flow back to
the tunnel face after continuous ventilation, so as to promote
the dilution of CO, thus making the decrease of CO con-
centration on the tunnel face slightly faster than that in the
full-face tunneling method.

As can be seen from Figure 10, CO is prone to gather in
the gap between the inner wall of the tunnel and the air pipe
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Figure 6: CO ventilation diffusion concentration curve at the point a of the face after blasting.
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after ventilation in the full-face tunneling method, and the
highest concentration after ventilation for 1800 s is
224mg/m3. But, compared with the full-face tunneling
method, the highest CO concentration in the detention area
in the lower pilot heading method is significantly decreased.
,e highest CO concentration after ventilation for 1800 s is

30.8mg/m3. If the benching tunneling method is used, the
highest CO concentration after ventilation for 1800 s is the
same as that of the lower pilot heading method. However,
CO is distributed evenly in the tunnel without any retention
and accumulation phenomenon, which is favorable for the
elimination of CO.

Ventilation 300s Ventilation 600s Ve ntilation 900s

(a)

Ventilation 300s Ventilation 600s Ventilation 900s

(b)

Ventilation 300s Ventilation 600s Ventilation 900s

(c)

Ventilation 300s Ventilation 600s Ventilation 900s

(d)

Figure 7: Cloud diagram of CO ventilation diffusion concentration change on the tunnel face after blasting. (a) Corner. (b) Haunch. (c)
Center. (d) Vault.
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4.3. Influence of Airflow Structure on Working Face.
Figure 11 shows the effect of tunnel construction on CO
diffusion characteristics. When using the step method (as
shown in Figure 11(b)), when ventilating for 300 s, CO is
mainly concentrated in the space 50 to 60m away from the
face of the palm, and the highest CO concentration is less
than the other two construction methods. ,e safe area has
appeared on the subface. When ventilated for 600 s, the CO
concentration of the palm surface of the upper step has
basically met the construction requirements, but the CO
concentration of the palm surface of the lower step is higher
than that of the surrounding space. When ventilating for 900
s , the expansion of the safety space on the palm surface of
the upper step is smaller, and the CO concentration on the
palm surface of the upper step is reduced, but it does not
meet the construction needs. When using the down-lead
tunnel construction method (as shown in Figure 11(c)), the
CO occurrence in the 600 before ventilation is similar to the
full-sectionmethod construction, but when the ventilation is
900 s, most of the 25m space in front of the palm is in the
area CO concentration is lower than 20mg/m3.

,e maximum concentration after full-section con-
struction for 900 s after ventilation is 476mg/m3, and the

step construction and the leading tunnel construction are
336mg/m3 and 420mg/m3, respectively. Compared with the
three construction methods, the step method construction
makes the dead space of the palm surface of the lower step
exist, but the overall CO concentration in the tunnel is lower
than that of the full-section method. In the later stage of
ventilation, the CO concentration in most areas of the palm
face space was lower than 20mg/m3 by the advancedmethod
of the lower guide tunnel. In summary, step-construction
ventilation has the best effect on CO dilution.

Due to the different spatial structure of the tunnel under
different construction methods, the airflow structure in the
tunnel is changed, which ultimately leads to differences in
the CO dilution effect on the palm face. ,erefore, it is
necessary to analyze the differences of the wind flow
structure near the palm face under the three construction
methods. It can be seen from Figure 11 that the difference in
the CO occurrence state at the palm face under each con-
structionmethod is caused by the vortex in front of the palm.
When the full-section method is used for construction (as
shown in Figure 11(a)), there is a vortex zone 2 to 7m in
front of the palm, which causes CO to stay in front of the
palm in the early stage of ventilation. When using the step
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Figure 8: Influence of pipe setting on CO diffusion characteristics (mg/m3). (a) Corner. (b) Haunch. (c) Center. (d) Vault.
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Figure 10: Influence of tunnel construction mode on CO diffusion characteristics (mg/m3). (a) Full-section construction. (b) Step-
construction. (c) Lower pilot heading construction.
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Figure 9: Variation curve of CO ventilation diffusion concentration at A of the tunnel face after blasting.
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method (as shown in Figure 11(b)), the jet air impacts the
bottom surface of the step and changes direction. Its trajectory
moves in a parabolic shape toward the exit of the tunnel,
resulting in a dilution dead zone on the lower step. When the
lower guide tunnel is used in advance construction (as shown
in Figure 11(c)), there are vortex zones in front of the lower
guide tunnel and in front of Palm face. During the ventilation
stage, CO retention occurs near these two parts.

5. Conclusions

In this paper, based on the actual working conditions of
HD3K0+ 148 section of No. 3 horizontal tunnel of Yue-
longmen Tunnel, the CO concentration variation and dif-
fusion characteristics of the tunnel after drilling and blasting
construction are simulated, and the following conclusions
are drawn through analysis:
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Figure 11: CO ventilation diffusion concentration change in the tunnel after blasting cloud map and working face speed vector. (a) Full-
section construction. (b) Step construction. (c) Advance construction of lower guide tunnel.
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(1) ,e airflowmodel of the Navier–stokes equation and
the RNG k − ε turbulence model are established
based on the assumption of tunnel ventilation flow,
so as to achieve the dynamic simulation of CO
diffusion in 3D space.

(2) It is found after the comparison of air pipe layout
methods that when the air pipe is laid near the wall at
the tunnel vault, the CO near the tunnel face could
reach the standard limit in the shortest time, which
will decrease to the standard limit after ventilation
for 588 s, but it will take 738 s, 840 s, and 786 s if the
air pipe is laid at the corner, haunch, and center,
respectively. When the air pipe is laid at the tunnel
vault, CO is easy to gather at the bottom of the tunnel
face and vault, which has the least impact on the
occupational health of construction workers because
this position is far away from the worker’s breathing
height.

(3) Benching tunneling method could effectively reduce
the retention time of CO near the tunnel face, and
the CO concentration on the tunnel face decreases to
the standard limit after ventilation for 326 s, while
847 s and 784 s is required for the full-face tunneling
method and lower pilot heading method, respec-
tively. In addition, when the full-face tunneling
method and lower pilot heading method are used for
construction, ventilation will easily cause CO to be
retained in the gap between the inner wall of the
tunnel and the air pipe.
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