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A novel condition monitoring method based on the adaptive multivariate control charts and the supervisory control and data
acquisition (SCADA) system is developed. Two types of control charts are adopted: one is the adaptive exponential weighted
moving average (AEWMA) control chart for abnormal state detection, and the other is the multivariate exponential weighted
moving average (MEWMA) control chart for anomaly location determination. Optimization procedures for these control charts
are implemented to achieve minimum out-of-control average running length. Multivariate regression analysis is utilized to obtain
the normal condition prediction model of wind turbine with fault-free SCADA data. After comparing the regression accuracy of
several popular algorithms in the MRA, the random forest is adopted for feature selection and regression prediction. Various tests
on the wind turbine with normal and abnormal states are conducted. (e performance and robustness of various control charts
are compared comprehensively. Compared with conventional control charts, the AEWMA control chart is more sensitive to the
abnormal state and thus has a more effective anomaly identification ability and better robustness. It is shown that the MEWMA
control chart combined with the out-of-limit number index can effectively locate and identify the abnormal component.

1. Introduction

With the increasing sustainable energy and environmental
demands, wind energy has become one of the world’s fastest
growing renewable and green energy sources. Due to un-
stable and unpredictable wind speed characteristics and
energy potentials, which are very sensitive to variations in
topography and weather patterns, the cost ratios of the
operation and maintenance (O&M) costs over the total
energy costs per unit output electrical energy from wind
turbine systems are considerately high, which is up to 20%∼
25% [1]. Such high ratios of O&M costs may impede the
applications of wind turbine systems compared to other
renewable energy systems, such as solar photovoltaic or hot
water systems. Consequently, effective conditionmonitoring
(CM) methods for wind turbines are essential for mainte-
nance decisions, which aim to reduce O&M cost [2]. Various
signals, such as vibration [3], acoustic emission [4], and
motor current [5, 6], have been utilized for wind turbine CM

systems. However, these approaches require the installation
of additional sensors and data acquisition devices, which
increase the capital cost and wiring complexity of wind
turbine systems. Supervisory control and data acquisition
(SCADA) systems have been installed in most modern wind
turbines to monitor operational performances.

Currently, the SCADA signal has received a lot of at-
tention owing to its application in wind speed-power
forecasting [7–9], wind power assessment [10, 11], and wind
farm performance analysis [12]. A typical SCADA system
records comprehensive wind turbine condition parameters,
including temperatures (e.g., bearing temperature and oil
temperature), wind parameters (e.g., wind speed and wind
direction), and energy conversion parameters (e.g., output
power, pitch angle, and rotor speed), which would be fault
informative. Since no additional sensors or data acquisition
devices are needed, the wind turbine CM method based on
SCADA data is a cost-effective approach to improve the
reliability of wind turbines [13].

Hindawi
Shock and Vibration
Volume 2020, Article ID 8865776, 16 pages
https://doi.org/10.1155/2020/8865776

mailto:hutao@cnu.edu.cn
https://orcid.org/0000-0003-4463-004X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8865776


Building a model to predict the normal behavior of SCADA
parameters is the first issue of the wind turbine CM system. By
using advanced SCADA data mining methods, various normal
condition prediction models (NCPMs) have been developed to
detect the significant changes in wind turbine behavior prior to
anomaly occurrences. Kusiak et al. [14–16] first employed
various data mining algorithms to construct NCPMs for wind
turbine anomalies. After detailed comparisons based on the
SCADA data collected at a large wind farm, they found that the
random forest (RF) algorithm models provided the best accu-
racy [14]. Gill et al. [17] developed a probabilistic model of a
power curve for CM purposes based on copula statistics. Its
practical use was demonstrated on the SCADA data taken from
a fleet of operational wind turbines. (e adaptive neurofuzzy
interference systems [18, 19] and neural networks [20] have also
been adopted to develop various NCPMs. Wang et al. [21]
proposed a new NCPM based on heterogeneous signals and
information collected from the SCADA system. A linear mix-
ture self-organizing map classifier was applied to differentiate
abnormal types. After simulations were carried out on the actual
data from a wind farm in north China, the proposed technique
was shown to be effective for abnormality detection and pre-
diction. Recently, the Bayesian framework [22], spatiotemporal
pattern network [23], and mathematical optimization models
[24] were introduced for the early and unsupervised fault di-
agnosis of wind turbines using SCADA data.

For a given NCPM, the relationship between the input
and output SCADA state variables of the wind turbine could
be learned. Subsequently, the departure of the current
turbine state from the NCPM could be measured online and
yield a time series of residuals. (e control chart from
statistical process control is a time-honored tool to monitor
the residuals [25]. If the residuals are statistically different
from a normal (or fault-free) reference, the process is
considered out of control, and an alarm would be raised
accordingly. In recent years, the NCPM combined with
control charts has been increasingly used in wind turbine
CM systems. Most studies [26–30] used the Shewhart-type
control charts, which have been proven to be very effective
for detecting greater shifts [25]. However, they are slow in
reacting to small and moderate shifts in the mean process. In
that regard, the exponential weighted moving average
(EWMA) control chart was developed to provide more
sensitivity to small mean shifts [25]. Cambron et al. [31–33]
first applied the EWMA control chart for the CM of wind
turbines. Using several applications on the actual SCADA
data, the results showed that a shift of 3.4% in annual energy
production over a period of 5 years could be detected in time
to plan proper maintenance. Helbing and Ritter [34]
explained a straightforward method to incorporate non-
constant variance to construct a flexible EWMA control
chart. Simulations showed that the FEWMA has lower false
alarm rate than the EWMA. Wang et al. [35] deployed the
EWMA control chart to derive the criteria for detecting the
oil temperature shifts of wind turbine gearboxes. Yang et al.
[36] proposed an approach combining data mining and
control charts for fault detection in actual wind turbines.
Both EWMA and multivariate EWMA (MEWMA) control
charts were constructed for comparisons.(eir observations

showed that the MEWMA is more suitable for early de-
tection and avoidance of errors.

Although the EWMA control chart can provide greater
sensitivity to small shifts, it is not as effective as the Shewhart
chart, where the shifts in the process mean level are relatively
large due to the inertia problem [37]. In actual applications,
such as monitoring of wind turbines, the shift of the residuals
from the NCPM is unknown, which might cause the insuf-
ficiency of the EWMA control chart if the larger shift appears.
To overcome the inertia problem, Capizzi and Masarotto [38]
first presented an adaptive EWMA (AEWMA) by adaptively
adjusting the weight on past observations according to a
function of the prediction error. Later, Shu [39] extended the
idea of the AEWMA chart on monitoring process locations to
the case of monitoring process dispersion. (e AEWMA chart
is a smooth combination of the Shewhart and EWMA charts;
thus, it can reduce the inertia problem. Using the examples on
capsule weights and simulated data, both Capizzi and
Masarotto [38] and Shu [39] showed that the AEWMA control
chart is able to offer an overall good detection performance
against shifts of different sizes. However, in the CM of wind
turbines, the residual data would bemore complicated, and the
possibility of the AEWMA control chart holding a better
performance than the EWMA chart is still unknown. To the
authors’ knowledge, the AEWMA control chart has not been
used in the CM of wind turbines in the open literature.

In actual engineering, it is not only expected to alarm an
abnormal state as early as possible, but determining the cause
and location of the abnormal state is also expected. Since the
SCADA system records condition parameters of the main
components of wind turbines (e.g., the blade, gearbox, main
bearing, and generator), the components with the abnormal
state might be identified bymodeling the control charts of these
multivariate conditional parameters. Lately, Yang et al. [36]
used the MEWMA to determine which components are likely
to contribute to the fault. (eir results showed that the
MEWMA has a good potential in locating anomaly. (e
limitation of Yang et al.’s study [36] is that only specified values
of MEWMA parameters were tested, indicating that the pre-
sented MEWMA might not be the optimal control chart. (e
optimal design ofMEWMAshould be conducted to fully realize
the potential of the MEWMA in the CM of wind turbines.

A literature review indicated that only a few studies have
used the multivariate control charts for the CM of wind
turbines; this is particularly true for the abnormal state alarm
of wind turbine using adaptive control charts. Moreover,
there have been few attempts to comprehensively compare the
performance and robustness of both EWMA and AEWMA
control charts in monitoring the residuals from the NCPM of
wind turbine SCADA data. (erefore, the novelty and con-
tributions of this study can be summarized as follows:

(i) (e framework for the CM of wind turbines is in-
troduced based on the adaptive multivariate control
charts (AMCCs). Two AMCCs (AEWMA and
MEWMA) are introduced for abnormal state alarm
and anomaly location of wind turbines, respectively.
An optimal design is conducted to ensure that the
obtained control charts are in the optimal state.
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(ii) Multivariate regression analysis (MRA) is adopted
to obtain the NCPM of wind turbine with fault-free
SCADA data. Several popular algorithms in MRA,
including the RF, least absolute shrinkage and se-
lection operator (LASSO), and recursive feature
elimination (RFE), are used for feature selection and
regression prediction.

(iii) Various tests on a wind turbine with normal and
abnormal states are conducted. (e exact anomaly
time and type are known from the alarm log; thus,
the performance and robustness of various control
charts could be compared comprehensively.

(e remainder of this paper is organized as follows.
Section 2 introduces the proposed control charts. Section 3
provides the optimal design procedures. Section 4 describes
feature selection and regression prediction on the SCADA
data acquired from an operating wind turbine. Section 5
presents the flowchart of the AMCC-based CM method.
Section 6 provides several CM examples and discusses the
results. Finally, Section 7 lists the conclusions of the study.

2. AMCCs

Two AMCCs (AEWMA and MEWMA) are introduced for
abnormal state alarm and anomaly location of wind tur-
bines, respectively. (e structures and procedures for these
two control charts are derived in this section.

2.1. Abnormal State Alarm. Monitoring data that obey the
same distribution are represented by Xi,1, Xi,1, . . . , Xi,1􏽮 􏽯,
where i � 1, 2, . . . is the sampling time and n is the size of each
sample. (e mean and variance of the data are denoted by μ0
and σ20, respectively. When the process is out of control, the
mean of the data becomes μ1 � μ0 + δσ0, in which δ is the shift
parameter. We define the mean of the sample data as
Xi � (1/n) 􏽐

n
j�1 Xij, and thus, the EWMA statistics for mon-

itoringmean shift of the sample data could bewritten as follows:

Yi � λXi +(1 − λ)Yi− 1, (1)

where λ is the smoothing parameter, and 0< λ< 1. Without
loss of generality, we can let Y0�0. Lucas and Saccucci [40]
pointed out that for smaller value of λ, the EWMA statics can
detect a smaller mean shift faster.When takes λ a greater value,
the EWMA statistic would have an accurate sensitivity to the
larger mean shift. (eoretically, the EWMA control charts can
be customized to detect specific shifts in the process.

However, for the actual wind turbine monitoring data,
the mean shift is usually fluctuated in a certain range. (e
designed value of λ makes it difficult to adapt to the change
in the actual mean shift. To overcome this inertia problem,
the AEWMA statistic is proposed by [38]

Yi � Yi− 1 + ϕ ei( 􏼁, (2)

where ei � Xi − Yi is the error term and ϕ(·) represents the
score function. Note that for ei ≠ 0, and the AEWMA statistic
can be rewritten as

Yi � w ei( 􏼁Xi + 1 − w ei( 􏼁( 􏼁Yi− 1, (3)

where w(ei) � ((ϕ(ei))/ei) is the equivalent smoothing pa-
rameter. Evidently, the AEWMA statistic can adaptively adjust
the weight of the estimate value at the previous time (Yi − 1)

according to the prediction error at the current time. (us, it
can balance the requirements of various mean shifts to the
smoothing parameters. Yashchin [37] suggested the Huber
function as the score function, and its expression is given by

ϕ(e) �

e +(1 − λ)c, e< − c;

λe, |e|≤ c;

e − (1 − λ)c, e> c;

⎧⎪⎪⎨

⎪⎪⎩
(4)

where c is the error limit. (e static Yi also obeys the same
distribution with Xi and has the same mean value with Xi.
When the sampling size n is large enough, the variance of Yi

can be expressed as σ2Y � σ2X, where σ2X is the variance of Xi,
leaving us with σ2X � (σ20/n). (erefore, the upper control
limit (UCL) and lower control limit (LCL) of the AEWMA
control chart could be expressed as follows:

UCLAEWMA � μ0 + kσX,

UCLAEWMA � μ0 − kσX,
(5)

where k is the control limit parameter. From equations
(3)–(5), it can be discovered that three parameters: λ, c, and k

should be determined to obtain the control limits of AEWMA
control charts. (e determination of these parameters will be
discussed in the following section. It is observed that for
c⟶∞, we have ϕ(ei) � λei and w(ei) � λ. In this case, the
AEWMA statistic degenerates into the EWMA statistic, and
its control limits can be expressed as

UCLEWMA � μ0 + kσX

������
λ

(2 − λ)

􏽳

,

UCLEWMA � μ0 − kσX

�������
λ

(2 − λ)
.

􏽳
(6)

2.2. Anomaly Location. In the abnormal state alarm of wind
turbines, the data monitored by the AEWMA control chart
are univariate, i.e., the output power data of the wind tur-
bine. In addition to the early warning of an abnormal state,
we also expect this method to identify the cause and location
of the anomaly state. Fortunately, the SCADA system rec-
ords condition parameters of the main components of wind
turbines (e.g., the blade, gearbox, main bearing, and gen-
erator). (us, we introduce the MEWMA control charts to
monitor these multivariate conditional parameters, and then
the components with anomaly state might be identified.

From the univariate EWMA control chart, Lowry et al.
[41] proposed the MEWMA control chart, and its statistic
can be expressed as

Yi � rXi +(1 − r)Yi− 1, (7)
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whereYi andXi are the p dimensionalmultivariate data vectors.
We assume that Y0 � 0. r denotes the smoothing parameter,
leaving us with 0< r< 1.(eMEWMAcontrol chart will sound
an alarm if the following conditions are satisfied:

Qi � Yi( 􏼁
T

􏽘Yi􏼐 􏼑
− 1
Yi >H, (8)

in which H is the given control limit and 􏽐Yi denotes the
covariance matrix of the Yi. Hence, we have

􏽘Yi �
r

2 − r
􏼒 􏼓 􏽘Xi, (9)

where 􏽐Xi denotes the covariance matrix of the Xi. To
evaluate the contribution of different dimensional data to
the MEWMA statistic, following variables are defined as

Qij � Qi

􏼌􏼌􏼌􏼌􏼌the jth variable is excluded
, (10)

in which j � 1, 2, . . . , p. (e larger variation of Qij indicates
that the contribution of the jth dimensional variable to the
MEWMA statistic is significant. (e component corre-
sponding to this variable is more likely to be in the abnormal
state. (erefore, the MEWMA control chart is adopted to
monitor the multidimensional SCADA data and also to
identify and locate the anomaly component of the wind
turbine by analyzing the variation of Qij.

3. Optimal Design of Control Charts

(e average run length (ARL), which refers to the average
number of extracted samples from the beginning of the
control to the emission of alarm, is used to measure the
performance of various control charts. Here, the ARL0 is
used as the in-control ARL and the ARL1 as the out-of-
control ARL. Typically, ARL0 is desired to be as large as
possible and ARL1 to be as small as possible. Hence, the
designed control chart can raise an alarm on the existence of
abnormal deviations as soon as possible on the premise of a
lower false alarm rate. By satisfying the goal of minimizing
the ARL1 under certain ARL0, the optimal design procedures
for the AEWMA andMEWMA control charts are presented,
respectively, in the following subsections.

3.1. AEWMA. (ree parameters, including λ, c, and k, should
be determined for the AEWMA control charts. Clearly, the
selection of λ and c plays a key role in the performance of

AEWMA control charts. Generally, the lower value of λ or
greater value of c should be selected for small mean shift,
while the greater value of λ or lower value of c would be
favorable for detecting large mean shift. (erefore, the
design of AEWMA control charts is a multiobjective
optimization problem. Capizzi and Masarotto [38] uti-
lized the simulated annealing algorithm (SAA) for the
parameter optimization of AEWMA control charts.
However, the requirement for the initial value of SAA is
relatively high. Once the initial value significantly deviates
from the optimal value, it is difficult to converge to the
optimal value. To improve the convergence speed of SAA,
Shu [39] proposed a “two-step method.” First, the
AEWMA control chart is treated as a conventional
EWMA control chart, and the optimal value of λ is ob-
tained under certain ARL0 using SAA. (en, on the
premise of given value of λ, the value of c is optimized.
Figure 1 shows the flowchart for the optimal design of the
AEWMA control chart. Detailed procedures are described
as follows:

(1) Sample size n and in-control ARL ARL0 are selected.
Two mean shift values δ1 and δ2 are given to ensure
that δ1 < δ2.

(2) Typically, the range of parameter optimization is
selected as λ< 0.8, 3< λ< 7, and k< 10.

(3) By setting c⟶∞ (e.g., c � 1000), the AEWMA
control chart is degenerated to the EWMA control
chart.(e parameter of the EWMAunder the shift δ1
is denoted by θ1 � (λ, k). (e optimal θ1 should
satisfy the following optimization problem:

min ARL0 δ1, θ1( 􏼁

s.t. ARL1 0, θ1( 􏼁 � ARL0.
􏼨 (11)

(4) A small positive number α (taken as α � 0.05 in this
study) is selected to ensure that the control chart
will not lose too much accuracy after the intro-
duction of c. Based on the optimal parameter λ
obtained in step (3), the optimal parameter θ2 �

(c, k) of the AEWMA control charts with mean
shift δ2 could be obtained by solving the following
optimization problem:

min ARL1 δ2, θ2( 􏼁

s.t. ARL1 0, θ2( 􏼁 � ARL0, ARL1 δ2, θ1( 􏼁≤ (1 + α)ARL1 δ1, θ1( 􏼁.
􏼨 (12)

In the above steps, the calculation of ARL can be ob-
tained using the Monte Carlo sampling method.

3.2. MEWMA. (e MEWMA control chart has two pa-
rameters: r and H. Similar to the AEWMA control chart,
small values of the smoothing parameter r should be selected

for small mean shifts, while large r values have advantages in
detecting large mean shift. Runger and Prabhu [42] pro-
posed a Markov chain algorithm (MCA) for designing a
MEWMA control chart. For i, j � 0, 1, 2, . . . , m1, the tran-
sition probability from state i to state j is denoted by p(i, j),
and its definition is given by
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p(i, j) �

P
(j − 0.5)

2
g
2
1

r
2 < χ2(p, c)<

(j + 0.5)
2
g
2
1

r
2􏼨 􏼩, if j≠ 0;

P χ2(p, c)<
(0.5)

2
g
2
1

r
2􏼨 􏼩, if j � 0;

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where χ2(p, c) is the noncentral chi-square random variable,
p is the number of dimensions, c � (((1 − r)ig1)/r)2 is
noncentral parameter, and g1 � (2/(2m1 + 1))�����������

(r/(r − 2))H
􏽰

. Based on the transition probability, the
(m1 + 1) dimension transition matrix P0 could be con-
structed. (us, the ARL0 of MEWMA control charts could
be calculated by

ARL0 � lim
m1⟶∞

sT
(I − P)

− 11, (14)

where s is the initial probability vector, I is the unit vector,
and 1 is a vector with all of its elements equal to 1. Similarly,
the ARL1 of the MEWMA control chart could also be
obtained.

Based on the MCA [42], we use the partition method to
obtain the optimal parameters of MEWMA control charts.
(e partition method generates a combination of a
smoothing parameter r and a control limit H, satisfying a

given ARL0, and finding the optimal smoothing parameter.
Figure 2 presents the flowchart for the optimal design of
MEWMA control charts. Detailed procedures are described
as follows:

(1) For a fixed smoothing parameter r, the method
inspects the middle point of a lower control limit
Hlow and a upper control limit Hup such that
ARLHlow

≤ARL0 and ARLHup
≥ ARL0.

(2) Once Hmid, the middle point of two control limits is
obtained, and ARL can be calculated by using the
MCA. If the difference between ARL0 and the newly
computed ARL is less than a small number (i.e.,
ϵ< 10− 3), the smoothing parameter r and the control
limit Hmid is a pair that can satisfy the given ARL0.
Otherwise, keep following the previous procedures
until a sought pair is found.

(3) If this task is carried out until the method covers a
whole range of smoothing parameter (0< r ≤ 1), a
number of combinations of r and H can be obtained.
With the combinations obtained, ARL1 values can be
calculated for a given shift δ. (en, the smoothing
parameter r for which ARL1 is the smallest can be
identified.

4. MRA on Fault-Free SCADA Data

In previous sections, both control charts of AEWMA and
MEWMA have been introduced for the abnormal state
alarm and anomaly location of wind turbines. (e optimal
design procedures for these control charts have been pre-
sented. (e residuals monitored by these control charts are
yielded by the departure of real-time SCADA data from the
predictions of NCPM. In this section, we utilize the MRA to
construct the NCPM of wind turbines with fault-free
SCADA data. Several popular algorithms in MRA, including
the RF, LASSO, and RFE, are used for feature selection and
regression prediction.

4.1. Data Descriptions. (is study aims to monitor and
diagnose doubly fed wind turbines with rated power of
2MW. Typically, the SCADA data of the unit include output
power, speed, torque, temperature, and pitch angle. (e data
record interval is 10min. To correctly establish the NCPM of
wind turbines, the anomaly data should be avoided as much
as possible. By reading the record table of the SCADA
system, it was found that no anomaly was reported in the
time period from 12/26/2013 to 2/12/2014.(e wind turbine
unit was built and connected to the grid in early 2012. In this
time period, the unit has passed the initial running stage and
is in the stage of normal power generation. (erefore, the
data segment is ideal for MRA to construct the NCPM of
wind turbines. (ere are 45 variables recorded by the
SCADA system. After excluding the lost data points and data

Parameter selection
n, ARL0, δ1, δ2 (δ1 < δ2)

Optimal Parameters
λ, γ, k 

γ = 1000

Fixed λ

Optimization range
λ < 0.8
3 < γ < 7
k < 10

Optimization of EWMA under shi� δ1

min ARL1 (δ1, θ1)
s.t. ARL1(0, θ1) = ARL0

Optimization of AEWMA under shi� δ2
min ARL1 (δ2, θ2)

s.t. ARL1(0, θ2) = ARL0, ARL1(δ2, θ1) ≤ (1 + α)ARL1(δ1, θ1)

Figure 1: Flowchart for the optimal design of AEWMA control
charts.
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points during the maintenance downtime, the total amount
of data is 6135 points.

4.2. Feature Selection and Regression Prediction. At the
beginning of MRA on the fault-free SCADA data, to
minimize the problem of model deviation due to the lack
of important variables, we usually select as many argu-
ment variables as possible. In this study, we select the
output power as the response variable and the remaining
44 variables as argument variables. However, in the
process of actual modeling, it is necessary to select a
variable subset (feature selection) which has the best
ability to explain the response variable to improve the
regression and prediction accuracy of the NCPM
([43, 44]). Before feature selection, the raw SCADA data
should be standardized as follows:

Zij �
xij − min xj􏼐 􏼑

max xj􏼐 􏼑 − min xj􏼐 􏼑
, (15)

where xij is the ith sample point of the jth variable. max(xj)

and min(xj) denote the maximum and minimum values of
the jth variable, respectively. (ree metrics, including root
mean square error (RMSE), mean absolute percentage error
(MAPE), and mean absolute error (MAE), are defined to
measure the goodness of fit of NCPM using MRA. (ey are
expressed by

RMSE �

�����������

􏽐
n
i�1 yi − 􏽢yi( 􏼁

n

􏽳

,

MAPE �
1
n

􏼒 􏼓 􏽘

n

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

MAE �
1
n

􏼒 􏼓 􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(16)

where n is the sample size and 􏽢yi and yi are predicted and
actual values of output power, respectively.

(e RF, LASSO, and RFE, which are popular algorithms
in MRA, are utilized for feature selection and regression
prediction. Basic ideas and characteristics for these algo-
rithms are introduced.

(e RF is an integrated machine learning method [45]. It
employs random resampling technology bootstrap and node
random splitting technology to construct multiple decision
trees, with the final classification results are obtained by
voting. (e RF has the ability to analyze the classification
characteristics of complex interactions. It has a fine ro-
bustness for noise data and a faster learning speed. Its
variable importance measure can be used as a feature se-
lection tool for high dimensional data. (e core algorithm
uses the RF package in R software, in which the parameter
takes the value of

�
n

√
recommended by Breiman [45] (n is

the number of features of the training data set). (e number
of trees is set to be ntree � 500.

Division of r, 0 < ri ≤ 1, i = 1, 2, 3, ..., l

Lower and upper control limits
ARLHlow ≤ ARL0 ≤ ARLHup

Give middle point Hmid

ARL calculation using MCA
∈ = ARL –ARL0

∈ < 10–3?
No

No

Yes
Yes

Pairs of parameter satisfying the in-control ARL

(ri, Hmid)
ri = 1?

Out-of-control ARL for given shi�
ARL1

Identification of optimal parameters
r, H

Figure 2: Flowchart for the optimal design of MEWMA control charts.
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LASSO [46] is a linear model for estimating sparse
parameters, especially for reducing the number of param-
eters. (is method uses the l1 norm to compress the coef-
ficient of the model and directly makes the values of
insignificant model parameters smaller (including zero).
(is gives the LASSO the advantage of feature selection and
ridge regression. Without changing the accuracy of the
model test set, the dimension of the feature could be ef-
fectively reduced by using the LASSO regression model. (e
core algorithm adopts the LARS package in R software, and
the cross validation is utilized to select the penalty parameter
that controls the sparse parameter estimation.

(e main idea of RFE [47] is to build the model itera-
tively and then select the best (or worst) feature (which can
be selected according to the value of coefficients). (e it-
eration process on the remaining feature will be conducted
until all the features have been traversed.(e stability of RFE
mostly depends on the type of iteration model.

In this study, the core algorithm is implemented through
the CARETpackage in R software. After a series of tests, the
decision tree model (treebagFuncs) is selected as the iter-
ation model.

For the fault-free wind power SCADA data, the above
three algorithms are used for regression prediction and
feature selection. Table 1 displays the regression accuracy in
the metrics of RMSE, MAPE, and MAE. After comparisons
have been conducted, it can be observed that the RF has the
best accuracy in regression. (us, the feature selection based
on the RF is carried out, and the top 15 features are shown in
Table 2. According to the common sense, the parameters
closely related to the output power of the wind turbine are
wind speed, generator speed, torque, rotor speed, etc. (ese
features have been reflected in the feature ranking of RF. In
addition, the rankings of generator phase current and phase
voltage, as well as the parameters of several temperature
measuring points (including the gearbox, bearing, generator,
and even nacelle), were relatively higher. (ese parameters
are not easy to judge and select directly through common
sense. Figure 3 also presents the comparison between the
source SCADA data and regression prediction results. For
the sake of simplicity, only four argument variables (i.e., the
rotation torque, generator current, average wind speed in
10min, and generator speed) on the response variable
(output power of the wind turbine unit) are illustrated in the
figure.

5. Wind Turbine CM System Based on AMCCs

Some key contents, including the structures of AMCCs,
optimal design procedures of these control charts, and
construction of NCPM with fault-free SCADA data, have
been introduced in the previous sections, respectively.

How to implement these core algorithms needs to be
explained for engineering applications. Figure 4 presents the
flowchart for the wind turbine CM system based on AMCCs.
(e entire process could be summarized as follows:

(1) MRA is utilized to construct the NCPM of wind
turbines with fault-free SCADA data. In this study,

the RF shows better performance in feature selection
and regression prediction.

(2) Time-variable residuals of output power are pro-
duced by measuring the difference between the real-
time SCADA data and the predictions of NCPM.

(3) For the goal of minimum out-of-control ARL (see
Figure 1), the optimal AEWMA control chart is
constructed to monitor the output power residuals.
Steps (2) and (3) will be continued until the ab-
normal state is alarmed.

(4) (e optimal MEWMA control chart is established
(see Figure 2) to model conditional parameters of
main components, which are acquired from real-
time SCADA data. (e component under an
anomaly state could then be located.

In the following, the effectiveness of the proposed CM
method is shown by several examples. (e performance and
robustness of various control charts are compared in detail.

6. CM Examples

Based on the feature selection and regression prediction
results, CM practice on the wind turbine unit is carried out.
During the period from 12/1/2015 to 6/1/2016, there were
three anomalies, namely, the generator brush worn, gearbox
running hot in low generator stage, and shaft bearing
overtemperature. (e specific time of alarm log is shown in
Table 3. For each anomaly, the number of monitored data
points is 500, and the exact anomaly data point is also given
in the table for comparisons.

Table 1: Comparisons of regression accuracy using various
algorithms.

RMSE MAPE MAE
RF 0.002208326 0.01083009 0.001168414
LASSO 0.006998046 0.05116372 0.005377479
RFE 0.005929714 0.03291574 0.004997808

Table 2: Feature selection result based on RF.

Feature no. Feature ranking
1 Rotation torque
2 Generator phase A current
3 Average wind speed in 10min
4 Generator speed
5 Rotor speed
6 Blade yaw angle
7 Generator temperature
8 Gearbox bearing temperature
9 Nacelle angle
10 Generator phase A voltage
11 Nacelle revolution
12 Gearbox temperature
13 Ambient temperature
14 Nacelle temperature
15 Bearing temperature
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6.1. Abnormal State Alarm. By using the NCPM model
obtained in the previous section, the output power of the unit
before and after the fault (500 data points in Table 3) is
predicted, and then the residual is obtained by measuring the
difference in the actual output power. (e mean and variance
of the predicted residuals for three fault data are all less than
0.05 and 0.08. Given ARL0 � 500 and shift range (0.4–4), the
optimal parameters of AEWMA control chart are then ob-
tained, as shown in Table 4. For comparison, the parameters
of the optimal EWMA control charts corresponding to dif-
ferent shifts (0.4, 2, 4) are also given in the table.

As mentioned before, the out-of-control ARL is an im-
portant index to evaluate the performance of control charts.
Figure 5 shows the variation of ARL1 with mean shift in the
range of 0–4 for the designed control charts in Table 4.
Evidently, when the shift is zero, the out-of-control ARL is
equal to the in-control ARL, i.e., ARL1 � ARL0. With an

increase in a shift, the value of ARL1 gradually decreases.
Under small shifts (δ < 1.5), the value of ARL1 for the
AEWMA is lower than that of the EWMA control charts,
especially for the EWMA control chart with larger smoothing
parameters (EWMA-2 and EWMA-3). (is means that the
AEWMA behaves more sensitively and could give warnings
of abnormal states earlier than the EWMA control charts.

When the shift becomes large enough (δ > 2), the dif-
ference in ARL1 between the AEWMA and EWMA control
charts is not significant, indicating that under large shift, the
AEWMA can still maintain a performance comparable to
the EWMA control charts. (is is consistent with the the-
oretical expectation of the AEWMA.

(e AEWMA control charts are established for the
output power residuals with anomaly A, B, and C, as shown
in Figure 6. Figure 7 also presents the residuals monitored by
various EWMA control charts for comparisons. It can be
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Figure 3: Comparison between the source SCADA data and regression prediction results: (a) rotation torque, (b) generator current, (c)
average wind speed in 10min, and (d) generator speed.
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observed from the figures that the AEWMA control chart
can effectively identify the abnormal state caused by the
anomaly. Compared with the alarm log of the SCADA
system, the AEWMA control chart can send the alarm in
time. For anomaly A (see Figure 6(a)), one can see that

the AEWMA alarm time is (440 − 407)∗ 10 � 330min
(about 5.5 h) ahead. For anomaly B and C (see Figures 6(b)
and 6(c)), the time of advance is about (421 − 398)∗ 10 �

230min (about 3.8 h) and (429 − 407)∗ 10 � 220min
(about 3.7 h), respectively. (us, one can say that the alarm
time of AEWMA control charts could be several hours ahead
of the SCADA system, and in this study, the maximum
promptness appears in anomaly A (about 5.5 h).

Compared with the AEWMA control chart, the EWMA
control charts behave less sensitively to fault and have poor
robustness. For the EWMA-3 of anomaly A (see
Figure 7(a)), and EWMA-1, EWMA-2, and EWMA-3 of
anomaly B (see Figure 7(b)), the abnormal state is not
identified during the monitoring period. Although the faults

Real-time SCADA data

Measured
output power

Predicated
output power

Fault-free SCADA
data

NCPM of wind
turbine using MRA

Output power
residuals

AEWMA
control chart

MEWMA
control chart

Optimal design for
the goal of minimum
out-of-control ARL

Abnormal state?No

Yes

Location of anomaly
component

Conditional data of
main components

Figure 4: Flowchart for the wind turbine CM system based on AMCCs.

Table 3: Anomaly information for the wind turbine unit during the period from 12/1/2015 to 6/1/2016.

Anomaly
no. Anomaly description Monitored period Number of data

points Time of alarm log

A Generator brush worn 12/3/2015 19 :10–12/7/2015
6 : 30 500 12/6/2015 20 : 30 (alarm log: point

no. 440)

B Gearbox running hot in low
generator stage

2/1/2016 00 : 00–2/4/2016
11 :10 500 2/3/2016 22 :10 (alarm log: point

no. 421)

C Shaft bearing overtemperature 5/28/2016 15 : 50–6/1/2016
3 :10 500 5/31/2016 15 : 20 (alarm log: point

no. 429)

Table 4: Optimization results of AEWMA and EWMA control
charts for abnormal state alarm.

ARL0 Mean shifts λ c k

AEWMA 500 δ1 � 0.4, δ2 � 4 0.1 5.4750 1.3531
EWMA-1 500 δ � 0.4 0.1 — 6.8110
EWMA-2 500 δ � 2 0.2 — 5.9430
EWMA-3 500 δ � 4 0.4 — 6.9531
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are signaled earlier than the SCADA system, the alarm time
still lags behind the AEWMA control chart among the rest of
EWMA control charts. For anomaly A, the EWMA-2
control chart (see Figure 7(a)) sends the earliest alarm, about
(440 − 414) ∗ 10� 206min (about 4.3 h), which still lags
behind the AEWMA control chart for (5.5 − 4.3) � 1.2 h.
For anomaly C, the EWMA-2 control chart (see Figure 7(c))
has the best performance and its promptness is
(429 − 410)∗ 10 � 190min (about 3.2 h), which still lags
behind the AEWMA control chart for (3.7 − 3.2) � 0.5 h.

From the above CM examples, one can say that com-
pared with the EWMA control charts, the AEWMA control

chart behaves more sensitively to the abnormal state.(us, it
can effectively identify the abnormal state and has better
robustness. (is is of great application value to the CM of
practical wind turbine units.

6.2. Anomaly Location. In the previous section, it is dem-
onstrated that the AEWMA control chart can effectively
identify the abnormal state. However, for complex elec-
tromechanical systems (i.e., the wind turbine), in addition to
the early warning of abnormal state, it is also expected to
identify the anomaly component, which is called the
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Figure 6: Residuals monitored by AEWMA control chart with (a) anomaly A, (b) anomaly B, and (c) anomaly C.
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anomaly location. From the important features in Table 2, in
addition to environmental features (such as the average wind
speed and ambient temperature), there are also features
characterizing the working conditions of main components,
including the generator speed, gearbox temperature, and
blade yaw angle. (is section uses the MEWMA control
chart to model multidimensional data, studies the influence
of various features on the monitoring statistics, and realizes
the effective location and identification of the anomaly.

(e input parameter for MEWMA control chart should be
determined by δ � μT􏽐Xi

μ, where μ represents the mean

vector of multidimensional data. After calculation, it is dis-
covered that the values of δ for three samples are all lower than
4.5. (us, by setting δ � 4.5, data dimension p � 15, and
ARL0 � 500, the optimal parameters of MEWMA control
chart can be obtained as r � 0.48 and H � 29.65. For the 15-
dimensionalmonitoring data containing the anomalyA, B, and
C, the MEWMA statistic could be evaluated. In Section 2.2, we
have defined Qij (see equation (10)) to evaluate the contri-
bution of various dimensional data to the MEWMA statistic.

When the different dimension variables are excluded,
the changes in Qij are shown in Figure 8, respectively. As
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Figure 7: Residuals monitored by various EWMA control charts with (a) anomaly A, (b) anomaly B, and (c) anomaly C.
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can be identified from the figures, some specific di-
mension variables contribute greatly to the MEWMA
statistic, while others seem to have little influence on the
statistic. Nevertheless, from Figure 8, it is not easy to
directly identify which dimension variables have re-
markable contribution on Qij. We can define the number
(or frequencies) of MEWMA statistic beyond the control
limit as an metric. (en, the out-of-limit number (OLN)
variation of various dimensional data is shown in Fig-
ure 9, respectively. Some observations could be sum-
marized as follows:

(1) For anomaly A (see Figure 9(a)), the variations of
OLN after the removal of variable 7, 1, and 2 are
greater than the removal of other variables. From
Table 2, one can see that the variable 7 represents

“generator temperature,” the variable 1 “rotation
torque,” and variable 2 “generator phase A current.”
Consequently, it is estimated that the generator is
more likely to have an anomaly. (e alarm log of the
SCADA system confirms that anomaly A does ap-
pear in the generator, which is described as the
generator brush worn in Table 3.

(2) For anomaly B, as shown in Figure 9(b), the max-
imum OLN variation occurs at variable 12 (“gearbox
temperature”), indicating that the gearbox might be
in an abnormal state. (is is also consistent with the
anomaly description “gearbox running hot in low
generator stage” (see Table 3).

(3) When anomaly C is considered (see Figure 9(c)), one
can find that the maximumOLN variation appears at
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Figure 8: Multidimensional SCADA data monitored by the MEWMA control chart with (a) anomaly A, (b) anomaly B, and (c) anomaly C.
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variable 15 (“bearing temperature”), and the main
bearing is more likely to be in an abnormal state.(is
agrees well with the description of anomaly C “shaft
bearing overtemperature” (see Table 3).

(rough the accurate location of the three different
anomalies, one can see that the MEWMA control chart
combined with the OLN index can effectively locate and
identify the abnormal component.

7. Conclusions

A novel CMmethod of wind turbines is introduced based on
AMCCs and SCADA data. Two AMCCs (AEWMA and
MEWMA) are proposed for abnormal state alarm and
anomaly location of wind turbines, respectively. Optimi-
zation procedures for these control charts are implemented
with the goal of minimum out-of-control ARL. MRA is
utilized to obtain the NCPM of wind turbine with fault-free
SCADA data. After conducting comparisons of the re-
gression accuracy of several popular algorithms in the MRA,
the RF is used for feature selection and regression prediction.
Various tests on a wind turbine with normal and abnormal
states are conducted. (e performance and robustness of
various control charts are compared comprehensively.
Compared with the EWMA control charts, the AEWMA
control chart behaves more sensitively to the abnormal state
and thus has a more effective anomaly identification ability
and better robustness. By accurately locating three different

anomalies, it is demonstrated that the MEWMA control
chart combined with the OLN index can effectively locate
and identify the abnormal component.
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