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Pipeline leak detection has always been a relatively difficult technical problem; especially in urban pipeline leak detection, there are
still many problems to be solved. A multipoint leak detection and location method for urban gas pipelines based on variational
mode decomposition and relative entropy was proposed. Firstly, the experiment pipeline system was built, and the original signal
was collected by acoustic emission technology; then, a variational model method was used to decompose the signal to obtain
multiple intrinsic mode function (IMF) components with different characteristic scales. According to the characteristics of relative
entropy, each component was analyzed, the appropriate IMF component was selected, and the selected component was
reconstructed to obtain the observation signal. 'e multipoint leakage location model of the urban gas pipeline was established.
'e number of source signals was estimated by singular value decomposition, and the leakage signals were separated; finally, the
accurate location of leakage point was achieved by cross-correlation positioning.'e results showed that the average relative error
of the pipeline leak location results is 2.97%, and the leak location accuracy is significantly improved, achieving the purpose of
precise location.

1. Introduction

Urban buried gas pipeline network, as one of the indis-
pensable infrastructure of the city, has developed rapidly in
many cities in recent years, and the scale of urban under-
ground pipeline is getting larger. With the increase in the
number of urban gas pipelines, the growth of operating time,
and the aging of the pipe network, the safety problem of
underground pipeline leakage has become increasingly
prominent, and accidents occur frequently. Once the gas
pipeline leaks, it is easy to cause fire, explosion, poisoning,
environmental pollution, and other malignant accidents.
'e early leakage of the underground gas pipeline in most
cities in China is often difficult to be discovered and
repaired. When the development becomes a major accident,
huge loss of life and property has been caused.'erefore, the
initial leakage of the pipeline is an important issue that
should be concerned. In actual working conditions, there are

often two or more leakage sources in a section of pipelines,
that is, multisource leakage. 'e multisource leakage signals
affect each other, coupled with the inherent characteristics of
the leakage signals and environmental noise interference; the
accurate location of multisource leakage has become an
unsolvable problem in the pipeline leakage location [1–3].

'e traditional pipeline leak detection technologies are
manual inspection method, portable instrumentation
method, in-pipe detector method, and so on. 'ese methods
not only can not be continuously detected but also have high
investment costs and large defects. While conventional
nondestructive testing such as ultrasonic testing crawlers,
magnetic flux leakage testing crawlers, and other related
technologies are relatively mature and have high testing
accuracy, the testing process of these testing technologies is
point-by-point scanning, and the tested equipment must be
discontinued, and the testing efficiency is low; it is difficult to
detect the city’s complex pipe network system [4–7]. 'e
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acoustic emission pipeline leak detection system has the
advantages of real-time continuous measurement analysis,
no need for digging and dismantling the pipeline, and so on.
It is especially suitable for small leak detection of urban
pipelines with circular laying, multinodes, and short dis-
tances, and the detection efficiency is high. However, the
acoustic emission signals collected by the acoustic emission
technology contain a large amount of environmental noise
and other sudden nonleakage signals. 'e signal has fre-
quency dispersion and is susceptible to noise interference. It
is difficult to extract effective leakage signals, especially for
the presence of many pipelines. In the case of a leakage
source, there is still a large error in the detection and po-
sitioning accuracy of acoustic emission. 'erefore, it is
necessary to explore a processing method for decomposing
and extracting the effective leakage signal of the acoustic
emission pipeline to achieve accurate positioning of the
pipeline at multiple points [8–10].

In recent years, time-frequency analysis methods have
been widely used in the field of signal processing, but they all
have their own limitations [11]. Huang et al. [12] initially
proposed empirical mode decomposition (EMD) as an
adaptive time-frequency method to decompose a complex
signal into a set of inherent mode functions (IMFs).
However, due to the intermittent components in the signal,
modal aliasing occurs in the EMD decomposition results.
Smith [13] proposed the local mean decomposition (LMD)
method, which effectively improved the modal aliasing
problem of EMD, but like the EMD method, the LMD
method still has the problem of end effects [14]. 'erefore, it
is necessary to find a signal processing method to effectively
solve the problem of modal aliasing. VMD is a new non-
stationary signal processing method proposed by Keda-
douche et al. [15] in 2016. It uses a variational model to
decompose the processed signal and searches for the optimal
solution. It is a completely nonrecursive model. It uses the
optimal component of the model and the corresponding
center frequency to effectively solve the end effect problem
in LMD [16, 17] and the modal aliasing phenomenon after
EMD decomposition [18, 19]. In terms of multipoint leak
location of pipelines, Verde [20, 21] first proposed the use of
fault detection stagger generators and the analysis of leak
locations and applied the analytical redundancy method to
achieve the location of two leaks in the pipeline. A model
method based on the internal flow and pressure of the
pipeline is proposed to detect and locate the multipoint
leakage source of the pipeline. By establishing a static re-
lationship matching the physical leakage position, the ex-
istence conditions for the stagger generator are met, thereby
reducing the number of two nonconcurrent leakage pa-
rameters.. 'e average error of the two-point leakage lo-
cation is 14.67%, but continuous leakage location cannot be
achieved; on this basis, Delgado et al. [22] uses the extended
Kalman filter detection principle to establish a model to
realize the detection and location of pipeline multipoint
leakage sources. However, when the number of leakage
points is too large, this method cannot effectively locate the
multipoint leakage. Lazhar et al. [23] uses the test pipeline in
the laboratory to solve the two-point leakage problem of the

viscoelastic pipeline through the transient fluid model
method.'e pipeline leakage was located, and the two-point
leakage positioning error was 4.2%. Negrete and Verde [24]
introduced a sliding mode observer to reconstruct the
multipoint leakage signal in the pipeline to achieve the
location of the leakage source, but the key point is detection.
Only the precise pressure at the leak point can realize the
positioning of multiple leaks.

Generally speaking, although people have made some
progress in detecting and locating multipoint leakage
sources in pipelines, there are not many methods to truly
realize convenient, effective, and accurate multipoint
leakage detection in pipelines, especially in engineering
applications. EMD, LMD, and other methods have certain
advantages in signal processing, but there are also many
problems such as modal aliasing, end effects, and so on.
'erefore, this paper combines previous studies to pro-
pose a method based on variational mode decomposition
(VMD) and relative entropy. 'e multipoint leakage lo-
cation method of urban pipelines uses the acoustic
emission system to collect multipoint leakage source
signals without excavation of the gas pipeline and uses the
VMD method to decompose the leakage signals to ef-
fectively eliminate the interference of nonleakage signals
such as noise. On this basis, a multipoint leakage location
model for pipelines is established, and the leakage location
of the pipeline is accurately calculated through cross-
correlation positioning.

'e rest of this article is organized as follows. Section 2
introduces the principle and simulation analysis of the VMD
method. Section 3 introduces the pipeline multisource leak
location model. 'e content of Section 4 is to verify the
effectiveness of this method for pipeline multisource leakage
location through field experiments. Section 5 outlines the
main conclusions of this paper.

2. Signal Extraction Based on VMD and
Relative Entropy

2.1. Variational Mode Decomposition. 'e variational mode
decomposition (VMD) was proposed by Kedadouche et al.
in 2016. Different from EMD, VMD uses the variational
model to decompose the processed signal and search for the
optimal solution. It is a completely nonrecursion model. It
can solve the mode mixing problem in EMD by using the
optimal amplitude modulation-frequency modulation
component and the corresponding center frequency re-
quired by the model, and it has a high precision decom-
position function. 'erefore, the number of decomposed
components can be determined by the actual signal setting,
and the effective IMF components can be obtained.

'e VMD algorithm [25] can decompose complex actual
signals into components of different scales, which can be
expressed as follows:

uk(t) � Ak(t)cos ϕk(t)􏼂 􏼃, (1)

where k is the number of components, uk is the modal
function, ϕk(t) is the number of phases, where ϕk(t)≥ 0,
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Ak(t) is the instantaneous amplitude, and ωk(t) is the in-
stantaneous frequency; and the envelope Ak(t)≥ 0.

According to the Carson principle, the bandwidth es-
timation of IMF can be expressed as follows:

BWAM−FM � 2 Δf + fAM + fFM( 􏼁, (2)

where Δf is the maximum deviation of ωk(t); fAM is the
offset rate for ωk(t); and fFM is the highest frequency of
ωk(t).

Unlike the EMD method which uses cyclic filtering to
solve iterative operations, when VMD obtains IMF com-
ponents, it seeks the optimal solution from the signal dis-
tribution to the constraint variational model to solve IMF
[25]. In the decomposition process, the center frequency ωk

of each component and the corresponding bandwidth es-
timate BWAM−FM are iteratively updated continuously, and
the adaptive decomposition of the signal band is realized
according to the frequency characteristics of the actual
signal. In short, VMD is to decompose the signal f into K
bandwidth modal function uk(t). 'e specific decomposi-
tion steps of the algorithm are as follows [26]:

(1) Calculate the unilateral spectrum of uk(t) and per-
form Hilbert transform on it to obtain the analytical
signal.

δ(t) +
j

πt
􏼔 􏼕∗ uk(t). (3)

(2) By adjusting and carrying the parameters, the center
frequency e− jωkt of each mode is added, and the
modal function is transformed to the corresponding
fundamental frequency.

δ(t) +
j

πt
􏼔 􏼕∗ uk(t)e

− jωkt
. (4)

(3) Calculate the bandwidth of each modal signal by the
2-norm square L2 gradient, and the objective
function of the constrained variational problem can
be expressed as

min
uk{ }, ωk{ }
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where zt is the partial derivative of the function with respect
to time t, uk􏼈 􏼉 represents the K IMF components obtained by
decomposition, and ωk􏼈 􏼉 represents the center frequency of
each component. z(t) is the Dirichlet function, j is the
symbol of the imaginary number, and s.t. is the English
abbreviation for constraint conditions.

(4) In order to obtain the optimal model, the con-
strained variational model is transformed into the
unconstrained variational model, and the second
penalty term αand the Lagrange operator λ(t) are
introduced. Here, α can guarantee the recon-
struction accuracy of the signal, which generally
takes the value of 2000, and λ(t) can guarantee the
rigor of the constraint model. 'erefore, the
Lagrange formulation is as follows:

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 ≔ α􏽘
K

zt δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕exp −jωkt( 􏼁
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2

+〈λ(t), f(t) − 􏽘
K

uk(t)〉. (6)

Find the effective change points of the Lagrange for-
mulation (L) by alternately updatingun+1

k , ωn+1
k , and λn+1. On

the whole, during the iterative solution of the variational
model, the frequency center and bandwidth of each com-
ponent are continuously updated until the iteration ter-
mination condition is met. In this iterative process, the
VMD method can obtain K components according to the
frequency domain characteristics of the actual signal, ef-
fectively avoiding the mode mixing.

2.2. Relative Entropy 2eory. 'e initial use of entropy
originated from the description in the lower thermody-
namics. 'e “entropy” was the meaning of change. It was
later cited to describe the mixing degree of information and
defined in mathematics as a general function of the prob-
ability distribution. In information theory, people use

entropy to describe the degree of chaos in an information
system and define it as the more chaotic and unstable a
system is, the greater the entropy of the system will be. On
the contrary, the less chaotic and stable the system is, the
smaller the information content is and the smaller the en-
tropy value of the system will be. In general, entropy is the
one that describes the uncertainty of a random variable.
Entropy is introduced into the signal characteristics of
nonstationary randomness in signal information processing.
It can express the characteristics and quantitative repre-
sentation of signals at different levels. To this end, it is in-
troduced into the characteristic description of the variational
mode decomposition signal component, and then the useful
signal component is extracted [26].

Relative entropy, also known as Kullback-Leibler di-
vergence, or information gain, is originally proposed by
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Solomon Kullback and Richard Leibler in 1951. In proba-
bility theory and information theory, relative entropy is used
to calculate the symmetry or difference of two distributions,
which can describe the difference between two random
probability distributions. When the relative entropy value is
larger, it indicates that the difference of these two random
probability distributions is greater and vice versa [27].

SKL(P‖Q) � 􏽘
i

ln
P(i)

Q(i)
􏼠 􏼡P(i). (7)

Among them, P and Q, respectively, represent the
probability distribution of the two signals and SKL represents
the relative entropy.

3. Pipeline Multisource Leak Location Model

'e single point leakage can directly realize the accurate
location of the pipeline leakage by using the mutual time-
frequency analysis method and the modal acoustic emission
technology through the extraction of the effective leakage
signal. However, when there are multiple leak points in the
pipeline, the leakage location cannot be achieved on the
extraction of the effective leakage signal, and the collected
multisource leakage signal needs to be separated and
extracted. 'erefore, the single point leak location model
detection method is not suitable for pipeline multisource
leak detection and location.

Pipeline multisource leakage is not only interfered by
nonleakage signals, noise signals, and sudden signals but also
affected by signals between various leakage signals, which
will lead to a large positioning error of multisource leakage.
In addition, environmental noise and other factors influence
the precise positioning of multisource leakage source.
'erefore, a method is proposed to effectively solve the
problem that the multisource leakage source signals of
pipelines are affected by noise and nonleakage signals [28].

When two acoustic emission sensors installed on the
pipeline are used to collect the acoustic emission signals of
pipeline leakage and if there are multiple leaks, the signals
received by the two sensors are the overlapping results of
multiple leakage sources. 'erefore, the independent
component analysis technique is used to separate the mixed
signal. In the theory of blind source separation, according to
the relationship between the signal source and the output of
the detection system, there is [29]

x1(n) � s1(n) + s2(n)+, · · · , +sn(n) + η1(n),

x2(n) � ς1s1 n − t1( 􏼁 + ς2s2 n − t2( 􏼁+, · · · , +ςnsn n − tn( 􏼁 + η2(n),
􏼨

(8)

where x1(n) and x2(n) are signals received by sensor no. 1
and acoustic emission sensor no. 2, respectively; s1(n) and
ς1s1(n − t1) are signals received by the acoustic emission
sensor no. 1 and no. 2, respectively, from the initial location
signal of leakage source no. 1; s2(n) and ς2s2(n − t2) are
signals received by the acoustic emission sensor no. 1 and no.

2, respectively, from the initial location signal of leakage
source no. 2; sn(n) and ςnsn(n − tn) are signals received by the
acoustic emission sensor no. 1 and no. 2 from the initial
location signal of leakage source no. n, respectively; ς1, ς2, and
ςn are attenuation constants; s1(n − t1) and sn(n) are signals
of no. 1 leakage source, no. 2 leakage source, and no. n leakage
source received by acoustic emission sensor, respectively;
η1(n) and η2(n) are noise signals received by the two acoustic
emission sensors; and t1, t2, and tn are the delay of the leakage
signal. In the theory of blind source separation, in order to
solve the problem of source signal separation, it is assumed
that each source signal is independent of each other, and the
independent signal is recovered from the mixed signal by
using ICA technology to estimate the source signal.

Establishment of the multipoint leakage location
model is as follows. In order to separate the signals in
different positions from the multisource leakage signals, it
is necessary to process the leakage signals after noise
reduction. Before that, the number of source signals
should be estimated to estimate the accurate leakage
source signals. By using the effective leakage signal ex-
traction method, the best observation signal xd(t) of
multisource leakage is obtained. 'e singular value de-
composition and eigenvalues are combined to estimate
the number of source signals. In the eigenvalue calculation
of singular value decomposition, when the estimated
covariance matrix and the relative noise power are set to
be small, the space dimension can be estimated by judging
the foot mutation point; that is, the number of numerical
values of the minimum eigenvalue can be used to de-
termine the number of sources in the blind source signal
[28, 30]. According to the principle of pipeline leakage
location, the leakage source signals at the same position
have obvious correlation. 'e correlation between the two
signals is strong, and the corresponding peak value is
large. 'e correlation between the two signals is weak, and
the corresponding peak value is small or even none.
'erefore, it is necessary to conduct cross-correlation
analysis on the separated pipeline leakage signal to de-
termine whether the signal is from the same leakage
source.

'e specific steps of the pipeline multisource leak lo-
cation model are as follows:

(1) Use the VMD-relative entropy adaptive effective
leakage signal extraction method to obtain the op-
timal upstream observation signal xd(t) of the
pipeline multisource leakage;

(2) Calculate the observed signal xd(t) correlation
matrix and then perform singular value decompo-
sition to obtain the eigenvalues and obtain the es-
timated number of sources;

(3) Centralize the optimal observation signal xd(t);
obtain the estimated signal Yϑ1(t) of the leak signal
source of the upstream sensor no. 1;
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(4) Similarly, obtain the estimated signal y of the
downstream leakage signal source of the pipeline and
calculate the correlation coefficient of Yϑ1(t) and
Yϑ2(t);

(5) Determine whether the leakage signal is the same
leakage source signal and match it one by one. Use
the time-frequency analysis relationship between the
delay and frequency of the time-varying cross-cor-
relation function to determine the delay and wave
speed;

(6) 'e location of the pipeline leakage point can be
determined by the time difference positioning
method.

4. Experimental Verification

4.1. Introduction to the Experiment. 'e positioning test
platform of pipeline leakage acoustic emission detection is
mainly composed of a pipe network system and an
acoustic emission detection system. 'e test pipeline
consists of three U-shaped seamless steel pipes of different
diameters. 'e specifications of the pipes are DN150,
DN100, and DN65, and the total length is 135 meters.
'ere is a section of a buried polyethylene pipe (PE pipe),
which is connected to the downstream of the DN150
seamless steel pipe and is about 32 meters long. Control
valves, liquid electromagnetic flowmeters, and gas vortex
flowmeters are provided at the start and end points of the
pipeline. At the end of the pipeline, there is a surge tank of
1 cubic meter. Pressure gauges, thermometers, and
flowmeters are installed at the inlet and outlet of the
pipeline.

As shown in the pipeline test site diagram of Figure 1,
the seamless steel pipe test subject of DN150 is selected,
and the size is φ165 × 4.5 mm.'e gas tank is inflated by an
air compressor, and the gas tank supplies a medium-low
pressure airflow to the steel pipe. Among them, the
pipeline pressure is 0.25MPa. In order to simulate a more
real leak, the leak hole is drilled directly in the pipeline,
the leak hole diameter is 1.5 mm, and the leak hole is
shown in Figure 2(a). 'e three leakage holes are located
6m, 16m, and 30m upstream from the no. 1 sensor. As
shown in Figure 2(b), the distance between the upstream
and downstream AE sensors is 42m, and the type of the
acoustic emission sensor is DP3I, and the amplifier gain is
40 dB. 'e AE sensor is coupled to the outer wall of the
pipe. In the field inspection of the urban underground gas
pipeline, the sensor can be arranged at the end of the pipe
section in the inspection well between the pipe sections, as
shown in Figure 2(c). 'e sampling frequency of the
acoustic emission instrument is set to 1Msps, and the
sampling length is 2 K, that is, 2048 sampling points. After
many times of trial testing, the threshold value is set to
35 dB, to filter out part of the environmental noise. 'e
multisource leakage location arrangement of the test
pipeline is shown in Figure 3. During the test, the three
leakage holes are opened simultaneously to collect the
leakage acoustic emission signal.

4.2. Data Processing and Signal Feature Extraction. In the
pipeline leakage state, the original acoustic emission
leakage signal is collected, and then the original leakage
signal is analyzed through the acoustic emission detector;
the results are shown in Figures 4(a)–4(f ). Among them,
Figures 4(a) and 4(b) are the waveform and spectrum of
the initial location signal of pipeline multisource leakage
detection, respectively, and Figures 4(c)–4(f ) represent
the signal RMS diagram, signal amplitude map, signal
energy diagram, and signal ASL diagram of the initial
leakage location. It can be seen from the diagram that
when there is a multisource leakage in the local pipeline,
the acoustic emission technology is difficult to locate
effectively, and the error is large. 'erefore, the signal is
analyzed by Matlab programming. 'e time-frequency
distribution of the upstream and downstream pipeline
leakage original signal is obtained in Figure 5. Taking the
original signal of the upstream no. 1 sensor as an example,
the signal is divided into seven IMF components by VMD
decomposition, each of which is shown in Figure 6.

Combined with the effective signal extraction method of
relative entropy analysis, the observed signal is obtained, as
shown in Figure 7. 'e source number estimation based on
the singular value decomposition is performed, and the
obtained eigenvalues are as shown in Figure 8. It can be seen
from Figure 9 that the first three feature values are large.
'erefore, the number of source signals is estimated to be
three based on the correlation matrix eigenvalues.

As shown in Figure 9, the mixed signals are separated to
obtain three estimated upstream and downstream leakage
signals of the pipeline. 'e correlation coefficients of the
separated original signal and the three separated signals are,
respectively, calculated to be 0.8541, 0.9064, and 0.8503; the
correlation coefficient between the estimated leakage signal
downstream and the original signal is 0.8074, 0.9464, and
0.8792. It is known from the correlation coefficient that the
effect of blind source separation is better. In the multisource
leak location of the pipeline, the signals after the mixed signal
separation are pipeline leakage signals. In order to distinguish
whether the source of the signal is the same, the correlation
between the three upstream no. 1 sensor signals and the three
downstream signals is calculated by using the principle of cross
correlation so as to distinguish whether the signals are from the
same leakage source and obtain the corresponding upstream
and downstream leakage signals. 'e results obtained are
shown in Table 1.

It can be seen from Table 1 that the signal Yζ1 and the
signal Yζ4 come from the same leakage source, the signal Yζ2

Figure 1: Pipeline multisource leakage test pipeline.
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(a) (b) (c)

Figure 2: Acoustic emission detection system layout: (a) sensor arrangement, (b) leakage hole diagram, and (c) arrangement of field
detection sensors.
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Figure 3: Test pipeline leakage location diagram.
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Figure 4: 'e result of using acoustic emission to deal with multisource leakage: (a) waveform of the initial positioning signal; (b) spectrum
of the initial location signal; (c) RMS of the initial positioning signal; (d) amplitude of the initial positioning signal; (e) energy map of the
initial positioning signal; (f ) ASL of the initial positioning signal.
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Figure 5: Pipeline leakage original signal: (a) upstream no. 1 sensor pipeline leakage original signal and (b) downstream no. 2 sensor
pipeline leakage original signal.
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and the signal Yζ6 come from the same leakage source, and
the signal Yζ3 and the signal Yζ5 come from the same leakage
source so that the cross-correlation analysis can be per-
formed on the corresponding signal.

4.3. Analysis of Results. In order to prove the effectiveness of
this method, the direct mutual time-frequency analysis
method, EMD-based component analysis method, and the
method mentioned in this paper are, respectively, used to
process the upstream and downstream leakage signals, and
the delay and corresponding frequency of the pipeline

leakage signal are calculated, and the results are shown in
Figure 10.

It can be seen from Figure 10 that in the multisource leak
pipeline detection, due to the interference of nonleakage
signals such as noise, it is easy to generate multiple peaks and
difficult to obtain the delay of the signal and the leak location
by using the direct mutual time-frequency analysis method;
based on the EMD analysis method, due to the mode mixing
characteristics of EMD, the difference in signal identification
is low so that the extracted signal also contains partial noise
and produces errors; and the mode mixing is effectively
solved by the method in the text. 'e characteristics elim-
inate the interference of nonleakage signals such as noise,
extract the effective leakage signal to the maximum, and
reduce the error of pipeline leakage location. For compar-
ison, the multisource leak location experiment of multiple
pipelines was carried out with the pipeline pressure of
0.1MPa, 0.15MPa, and 0.25MPa, respectively, and the
detailed results of the calculation are shown in Table 2.
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Figure 9: Estimated upstream and downstream leakage signals diagram: (a) upstream no. 1 sensor leakage noise reduction signal diagram
and (b) downstream no. 2 sensor leakage noise reduction signal diagram.

Table 1: Two-two correlation coefficient between separated signals.

Correlation coefficient Yζ1 Yζ2 Yζ3

Yζ4 0.8341 0.3541 0.0254
Yζ5 0.1398 0.1548 0.8653
Yζ6 0.0987 0.8246 0.0398
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Figure 10: 3D time-frequency diagram of different methods: (a) direct mutual time-frequency analysis method; (b) EMDmethod; (c) VMD
method.

Table 2: Multisource leak location results under different pressures.

Number Pressure
(MPa)

True positioning
value (m)

'e proposed method EMD method
Detection

location value
(m)

Absolute
error (m)

Relative
error (%)

Detection
location value

(m)

Absolute
error (m)

Relative
error (%)

1 0.1 6 6.11 0.11 1.83 5.45 0.55 9.17
2 0.1 6 6.14 0.14 2.33 5.55 0.45 7.50
3 0.1 6 6.13 0.13 2.17 6.49 0.49 8.17
4 0.15 6 5.48 0.52 8.67 6.39 0.39 6.50
5 0.15 6 5.83 0.17 2.83 5.98 0.02 0.33
6 0.15 6 5.74 0.26 4.33 5.37 0.63 10.50
7 0.25 6 6.17 0.17 2.83 6.48 0.48 8.00
8 0.25 6 6.42 0.42 7.00 5.13 0.87 14.50
9 0.25 6 6.23 0.23 3.83 5.94 0.06 1.00
10 0.25 6 6.44 0.44 7.33 6.56 0.56 9.33
11 0.1 16 15.81 0.19 1.19 14.86 1.14 7.13
12 0.1 16 15.09 0.91 5.69 14.68 1.32 8.25
13 0.1 16 15.84 0.16 1.00 17.89 1.89 11.81
14 0.15 16 16.28 0.28 1.75 16.98 0.98 6.13
15 0.15 16 16.32 0.32 2.00 16.49 0.49 3.06
16 0.15 16 16.29 0.29 1.81 18 2.00 12.50
17 0.25 16 16.32 0.32 2.00 15.02 0.98 6.13
18 0.25 16 15.83 0.17 1.06 15.69 0.31 1.94
19 0.25 16 16.19 0.19 1.19 16.08 0.08 0.50
20 0.25 16 16.48 0.48 3.00 16.99 0.99 6.19
21 0.1 30 29.26 0.74 2.47 28.33 1.67 5.57
22 0.1 30 29.20 0.80 2.67 27.34 2.66 8.87
23 0.1 30 29.05 0.95 3.17 28.41 1.59 5.30
24 0.15 30 30.32 0.32 1.07 27.39 2.61 8.70
25 0.15 30 30.95 0.95 3.17 34.52 4.52 15.07
26 0.15 30 31.13 1.13 3.77 31.89 1.89 6.30
27 0.25 30 29.26 0.74 2.47 28.31 1.69 5.63
28 0.25 30 30.51 0.51 1.70 25.98 4.02 13.40
29 0.25 30 30.54 0.54 1.80 28.6 1.40 4.67
30 0.25 30 29.13 0.87 2.90 27.36 2.64 8.80
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Among them, the absolute error is the difference be-
tween the detected positioning value and the real positioning
value, and the unit is “m”; the relative error is the ratio of the
absolute value of the absolute error to the real positioning
value, and the unit is “%.”

'rough the multiple sets of positioning results in
Table 2, the absolute and relative errors of positioning are
summarized, as shown in Figures 11 and 12. It can be seen
from the diagram that the positioning error of the proposed
method is normally distributed with an average absolute
positioning error of 0.47m, and the distribution is dense
and compact, and the relative locating error is 2.97%; the
average absolute locating error of the EMD-based analysis
method is a normal distribution centered on 1.31m. 'e
distribution range is wide and not concentrated enough.
'e relative positioning error is 7.36%. 'erefore,
according to the multisource leakage model, the relative
locating error based on the VMD-relative entropy method
proposed in this paper is less than 3.4% [23], which is
compared with the relative locating error of the multi-
source leakage location method proposed by Ayed Lazhar

based on the model location method, and the locating
accuracy is higher.

5. Conclusion

Aiming at the problem that the detection and location ac-
curacy of multipoint leakage of urban gas pipelines is not
high, this paper proposes a multipoint leakage location
method for pipelines based on VMD and relative entropy.

(1) In terms of acoustic emission signal feature ex-
traction, compared with traditional acoustic emis-
sion technology, this method eliminates the
influence of noise and other unrelated signals in the
signal acquisition process by VMD and extracts the
characteristics of the signal according to the sample
entropy value of each component.

(2) In terms of multipoint leakage localization of urban
gas pipelines, establish a multipoint leakage locali-
zation model for pipelines and obtain each estimated
signal by ICA blind source separation of multiple
leak source signals and then analyze the estimated
signals to identify each leak source, and finally the
cross-correlation location calculation is performed
on the leakage source.

(3) After experimental verification, the average relative
error based on the signal feature extraction and
multipoint leakage positioning method proposed in
this paper is 2.97%. Compared with the EMD
method, the average relative positioning error of the
method proposed in this paper is significantly re-
duced. 'erefore, the method proposed in this paper
can effectively identify and locate leaks at multiple
points in urban gas pipelines.
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