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(is study develops the Multiobjective Grey Wolf Optimization (MOGWO) algorithm to obtain the optimum rules on the
operation of the Golestan Dam in Golestan Province, Iran, under the climate change conditions. (e tow objective functions
defined in the optimization process include minimizing the vulnerability and maximizing the reliability indices of the model
under baseline and climate change conditions periods. Results showed that the river flow would decline by 0.17 percent of the
baseline period under climate change conditions in addition to increasing the temperature by 20%, as well as decreasing the
rainfall by 21.1%.Moreover, the extent of vulnerability index variations in baseline and climate change conditions was 16–45% and
10–43%, respectively.(e range of reliability index variations in baseline and climate change conditions was 47–90% and 27–93%.
On the other hand, the vulnerability index has also been measured at 29% and 27% for baseline and climate change conditions,
respectively, with 75 percent of reliability. Comparison of the reservoir release rate and water demands for all of the Pareto points
indicates a rise in release rates for climate change conditions relative to the baseline one; as the result, the higher adjustment in the
reservoir release rates to its demand volumes will be highlighted as the higher dam efficiency in climate change conditions.

1. Introduction

Water resources systems are very complex, and in terms of
water resources management and use, the advantages of
water supplies can be maximized. (erefore, in order to
promote sustainable growth and optimize profits, it is im-
portant to participate in management activities to satisfy
customer needs, particularly in areas where the mismatch
problem is severe [1, 2].

(e operation of dam reservoirs is of great significance
because of the inadequate water supplies, owing to the
economic value of the reservoirs resulting from the optimum
management of water resources, growing water demands,
and the scarcity of usable water supply. Furthermore, it is
important to use a system that provides optimum man-
agement of the operation of dam reservoirs, particularly
under the conditions of climate change.(us, both priorities
and multiobjective modeling frameworks must be used to
derive decision-making alternatives [3].

(erefore, a group of approximate solution algorithms
called metaheuristic algorithms has been produced over the
last decades in the optimization of the reservoir system that
investigate the computational complexity efficiently and
safely and avoid the solution method from being stuck
within the boundaries of the search space. For multiobjective
optimization of water resource systems, particularly dam
reservoirs, several methods have been used in the recent
decades. Multiobjective evolutionary algorithms are among
the most significant and commonly used, providing a range
of optimal solutions in each iteration that can be expressed
in the form of the Pareto curve [4].

Sun et al. [5] proposed a model of multiobjective op-
timization for reservoir operation (MORO) with the ob-
jectives of maximizing water diversion and power
generation.(emultiobjective evolutionary algorithm based
on decomposition with adaptive weight vector adjustment
(MOEA/D-AWA) was applied to solve the MORO problem.
In addition, the performance of the MOEA/D-AWA was
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compared with two other algorithms based on the hyper-
volume index.

(eir results showed that (1) the proposed model was
effective and reasonable in theory; (2) the optimization
results obtained by MOEA/D-AWA demonstrated this al-
gorithm could be applied to the MORO problem, providing
a set of evenly distributed nondominated solutions; and (3)
water diversion and power generation were indeed con-
tradictory objectives.

Donyaii et al. [6] introduced a combined model of Crow
Search (CSA) and Grey Wolf (GWO) Optimization algo-
rithms called Grey Wolf -Crow Search Hybrid algorithm to
optimize the operation of the single-reservoir system of the
Golestan Dam, considering the objective function (supplying
downstreamwater demand). To compare the convergence and
performance of these algorithms, the statistical parameters of
each algorithmwere calculated and compared with each other,
as well as with the analytical solution of a nonlinear pro-
gramming model (i.e., GAMS Software). (en, in order to
analyze the performance of the algorithms, the Combinative
Distance-based Assessment (CODAS) Multicriteria Decision-
Making Model was used to rank the decision alternatives (i.e.,
optimization algorithms) based on volumetric and time-based
reliability, reversibility, and vulnerability criteria, as well as the
optimized objective function. (eir results showed that not
only the hybrid model approach has a response closer to the
absolute optimal value but also the CODAS Multicriteria
Decision-Making Model identified that it was better than its
constituent algorithms, namely, CSA Optimization and GWO
algorithm in optimizing the objective function.

Wu et al. [7] carried out a multiobjective hydropower
reservoir activity using NSGA-II and objective functions to
optimize water supply and hydropower generation benefits
and mitigate water scarcity for environmental demands and
demonstrated the efficacy and reliability of the proposed
algorithm and model by using it in the Yellow River of
China’s Lango reservoir.

Ashofteh et al. [8] used the multipurpose genetic pro-
gramming (GP) to optimize the Aydoghmush dam reservoir
in East Azerbaijan Province in Iran under baseline and
climate change conditions.(e optimization results revealed
that the rules of reservoir performance that are involved in
climate change lead to an improvement from 29% to 32% in
the reservoir performance due to climate change compared
to baseline. Ehteram et al. [9] applied the kidney algorithm
to generate an optimal operation of the Aydoghmush res-
ervoir in Eastern Azerbaijan Province in Iran to decrease
irrigation deficit downstream of the dam. (ey compared
the results of the kidney algorithm with other evolutionary
algorithms, including bat (BA), genetic (GA), particle swarm
(PSO), shark (SA), and weed algorithms (WA). (e results
showed that the kidney algorithm provided the best per-
formance against the other evolutionary algorithms.

(e efficiency of two models of Extreme Learning
Machines (ELM), Artificial Neural Network (ANN), and the
combination of two models with wavelet propagation al-
gorithms (W-ELM and W-ANN) was evaluated by Afkha-
mifar & Sarraf [10]. (ey discovered the W-ELM-QPSO
hybrid model has increased quality than other models and

this model has a high speed in terms of training and testing
speed in addition to forecasting power than other models.

In the present study, as an innovative approach in the
field of water management, the development and imple-
mentation of the multiobjective Grey Wolf optimization
algorithm (MOGWO) was proposed, which was not dis-
cussed in the previous studies.

Moreover, the optimal operation rules of the Golestan
Dam reservoir (in Golestan Province, Iran) in baseline
conditions (from April 2006 to October 2018) and climate
change conditions (April 2021 to October 2033) using
MOGWO algorithm, with two objectives of minimizing
vulnerability and maximizing reliability index in demand-
supply, were determined and compared in the mentioned
periods as a necessity for the future water recourses planning
management.

(e methods applied in this research are as follows:

(i) Assessing climate change parameters

(ii) Simulation of rainfall-runoff processes for deter-
mining Golestan Dam reservoir discharge volume
in Iran

(iii) Estimation of baseline water demand volume and
climate change conditions and multiobjective op-
erating rules extraction (based on three variables of
storage volume, demand volume, and discharge to
the reservoir) in climate change and baseline
conditions

Ultimately, the procedures for this investigation were to
compare optimum allocation policies in baseline and climate
change conditions with the performance measures and ef-
ficiency indices of the reservoir.

2. Initial Information and Processing

In this study, in order to obtain a more realistic approxi-
mation, by averaging three scenarios (i.e., RCP 2.6, RCP 4.5,
and RCP 8.5), a new scenario named as the average scenario
was proposed after downscaling the CANESM2 Climate
model with SDSM 4.2 software. (e findings show that, also
in the average scenario, the monthly average temperature
increases in all three cases, which averages 20% for the
prediction duration. Analyzing the average monthly pre-
cipitation variations have shown that the drop in the next
period of precipitation rate was obvious, and this trend has
been diminished by to 21.1 percent regarding to the baseline.

A second-order Neurofuzzy model with a Gaussian
membership function was conducted to simulate the rain-
fall-runoff process focusing on the climate change phe-
nomena at the entrance to the Golestan Dam, including 20
training epochs and 10000 iterations for 95% of training data
(in each prediction). ANFIS’s best influence radius for
calculating the runoff reached 0.04.

Consequently, the volume of runoff during the climate
change conditions with respect to the baseline period would
be decreased to 0.17 percent. (erefore, this could be a
warning for water resources management.
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3. Optimization Model Development

(e simulation of the reservoir through the continuity
equation would be described as follows:

S(t+1) � S(t) + Q(t) − Re(t) − Sp(t) − Loss(t), (1)

Loss(t) � A(t) × Ev(t), (2)

A(t) � aS
3
(t) + bS

2
(t) + cS(t) + d, (3)

where A(t) implies to the reservoir surface in the t-th month,
Ev(t) is the net evaporation from the reservoir (the difference
among the amount of rainfall and evaporation in the t-th
month), and a, b, c, and d imply the constant coefficients of
the volume-area equation of the reservoir for the Golestan
Dam reservoir. Q(t) is the inflow to the reservoir in the t-th
month, Re(t) is the release from the reservoir in the t-th
month, Sp(t) is the reservoir overflow in the t-th month,
Loss(t) s the evaporation losses in the t-th month, and
shortage is the difference between the demand and the actual
release when it is less than the demand. Overflow of the
reservoir imposes some constraints on the calculations as
follows:

SPt
�

St + Qt − Ret − Loss(t) − Smax, if St + Qt − Ret − Loss(t) > Smax,

0, if St + Qt − Ret ≤ Smax.
􏼨

(4)

Other constraints are as follows:

Smin ≤ St ≤ Smax, (5)

Remin ≤Ret ≤Remax, (6)

where Smax and Smin imply the maximum and minimum
volumes of the reservoir and Remax and Remin are referred to
as the maximum and minimum releasable volumes from the
reservoir, respectively [11].

Two objective functions have been used in the present
study to mitigate vulnerability and optimize the reliability
index in baseline and climate change conditions based on the
following equations [12]:

MinimizeF1 �
􏽐

T
t�1 Dt − Ret|Ret <Dt( 􏼁

N
T
t�1 Ret <Dt( 􏼁􏽨 􏽩 · DMax

, ∀t � 1, 2, . . . , T,

(7)

MaximizeF2 �
N

T
t�1 Dt − Ret|Ret ≥Dt( 􏼁

T
, ∀t � 1, 2, . . . , T,

(8)

where F1 implies the objective function of a vulnerability
index, F2 is the objective function of the reliability index, Dt

is referred to as the demand volume throughout the t-th
period, DMax implies the maximum water demand in the
operating period, NT

t�1(Ret <Dt) implies the number of
months of water shortage, and NT

t�1(Dt − Ret|Ret ≥Dt)

implies the number of months of water supply equations:

St ≥ Smin, ∀t � 1, 2, . . . , T, (9)

Ret ≤Remax, ∀t � 1, 2, . . . , T. (10)

In the event of violations of constraints 9 and 10, penalty
functions will be introduced to the objective functions as
follows:

F1 orF2( 􏼁 � F2 orF1( 􏼁 ± A′ ·
Smin − St

Smax − Smin
􏼠 􏼡 + B′􏼢 􏼣,

∀t � 1, 2, . . . , T,

(11)

F1 orF2( 􏼁 � F2 orF1( 􏼁 ± C′ ·
Ret

DMax
􏼠 􏼡 + D′􏼢 􏼣,

∀t � 1, 2, . . . , T,

(12)

where [A′ · (Smin − St/Smax − Smin) + B′] implies the penalty
function achieved from the violation of equation (9) and
[C′ · (Ret/DMax) + D′] is referred to as the penalty function
resulted from the violation of equation (10).A′ toD′ coef-
ficients imply the positive constants of penalty functions
with A′� 1, B′� 0.5, C′� 1, and D′� 16 values [12].

3.1. Operation Rule Curve. In the existing study, the rule of
decision is derived based on equations (13) and (14) for the
operation of the Golestan Dam single-reservoir system to
minimize the vulnerability resulted from the system shortage
and to provide the necessary demand and also to optimize
the demand-supply reliability using MOGWO algorithm
equations:

Rebt � g1 Qbt + Sbt + Dbt( 􏼁, ∀t � 1, 2, . . . , T, (13)

Reft � g2 Qft + Sft + Dft( 􏼁, ∀t � 1, 2, . . . , T, (14)

where g1(Qbt + Sbt + Dbt) of the first option implies the rule
from MOGWO in the baseline operating period for baseline
conditions and g2(Qft + Sft + Dft) of the second option
implies the rule from MOGWO in the climate change op-
erating period for climate change conditions. (e b index is
for baseline conditions, and the f index is for climate change
conditions [12].

3.2. Grey Wolf Optimization. Mirjalili et al. [13] proposed
the Grey Wolf Optimization Algorithm (GWO) to mimic
the hunting behavior of Grey Wolves in nature. (e key goal
of the GWO strategy is to use a network of searching agents
to determine the optimal for a specific problem. Usually,
these wolves reside in groups of between five and twelve.(e
basic difference between the algorithm of Grey Wolf Op-
timization and the other algorithms of optimization is the
dominant social structure that decides the convergence rate
for each optimization iteration. Furthermore, the Grey Wolf
Optimization algorithm mimics the wolves’ foraging actions
in finding and assaulting prey [13]. Figure 1 shows the
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hierarchical order of the group of wolves. (e leader is
shown by alpha as the strongest alternate member. In reality,
the alpha, accompanied by the other wolves, is the leader
wolf. Beta is the second alternative candidate who en-
courages alpha in decision-making and is a conduit between
the leader and the rest of the squad. (e third alternate
nominee responsible for providing data for two higher stages
(alpha and beta) is indicated by delta. In comparison, the
remaining alternatives are indicated by the omega, which is
responsible for submitting information to the three higher
stages. Furthermore, the hunting process consists of three
steps: the prey is found, surrounded, and targeted.(erefore,
the Grey Wolves Empirical hunting technique used to ad-
dress a structural optimization topic is demonstrated by
GWO. It is, then, presumed that the victims are the ideal
solution to the issue.

(e motion of the top three stages, provided in the given
equations, replicates the covering of the victim by Grey
wolves [13].

D � C
→

· Xp

��→
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (15)

where in t represents the current iteration, Xp represents the
victim’s location vector, X indicates the Grey wolf’s position,
and C is the coefficient’s vector. As stated in Figure 2, the
consequence of vector D is, then, used by the following
equations tomove the individual object to or away from the area
where the best solution representing the victim is located [13]:

X
→

(t + 1) � Xp

��→
(t) − A

→
· D
→

, (16)

A
→

� 2 a
→

· r
→

1 − a
→

, (17)

C
→

� 2 · r
→

2, (18)

where r
→

1 is selected randomly in [0, 1] and a
→ is reduced

from 2 to 0 using a fixed quantity of iterations.
In case |A|< 1|, this corresponds to the behavior of the

exploitation and simulates the behavior of the attack on the
prey. Otherwise, if |A|< 1, this fits the exploration behavior
and simulates the victim’s wolf spacing away, as illustrated in
Figure 2. (e proposed values for A are given in [−2, 2].
(erefore, the following mathematical expressions are used
to measure three higher levels alpha, beta, and delta [13].

(is refers to the exploitation action in the case |A|< 1
and approximates the actions of the attack on the victim.
Otherwise, if |A|> 1, this matches the exploration actions and
approximates the positioning of the victim’s wolf, as seen in
Figure 2. In [−2, 2], the suggested values for A are provided.
(e following mathematical equations are, then, used to
calculate alpha, beta, and delta at three higher stages [13].

Dα
�→

� C1
�→

· Xα
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X1
�→

� Xα
�→

− A1
�→

· Dα
�→

􏼒 􏼓,

Dβ
�→

� C2
�→

· Xβ
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X2
�→

� Xβ
�→

− A
→

2 · Dβ
�→

􏼒 􏼓,

Dδ
�→

� C3
�→

· Xδ
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X3
�→

� Xδ
�→

− A
→

3 · Dδ
�→

􏼒 􏼓.

(19)

We consider that alpha, beta, and delta have enough
knowledge of the potential location of the prey for math-
ematically mimicking the Grey Wolf hunting process. In
reality, as defined in the following equations, the first three
best solutions that have been obtained are rescued and
enable the other agents to adjust their positions based on the
best agents alpha, ß, and d [13]:

X
→

(t + 1) �
X1
�→

+ X2
�→

+ X3
�→

3
. (20)

4. Results and Discussion

Using metaheuristic algorithms in civil engineering opti-
mization issues is inevitable [14, 15]. In this study, the
MOGWO metaheuristic algorithm was used to derive the
operating rules from the Golestan Dam Single-Reservoir
System in Northeastern Iran, Golestan Province (Figure 3),
and a 4200-hectare downstream network.(e reservoir has a
capacity of 43.7 million cubic meters at the normal level, 100
meters above sea level, and 54 million cubic meters at the
level of overflow.

(e curve of the surface-volume of the reservoir was
extracted through the following equation with the R2 � 0.997
correlation coefficient and based on Figure 4:

Y � −0.003X
2

+ 0.184X + 1.435. (21)

Xp
X(t + 1)X(t + 1)

X(t)

X(t + 1)

X(t + 1) X(t + 1)
X(t + 1)

X(t + 1)D

Figure 2: Graphical representation of Grey wolf hunting procedure
in a circle or sphere space around the prey (Xp) based on the
direction (D) between the wolf (X(t)) and the prey [13].

Alpha

Beta

Delta

Omega

Figure 1: Social hierarchy of the group of Grey Wolves [13].
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(e maximum baseline and climate change demands are
37.84 and 41.86 million cubic meters. Figure 5 indicates the
averagemonthly release volume, as well as themonthly average
evaporation volume and the monthly average demand volume
for water under baseline and climate change conditions.

(e results revealed that the ratio of discharge into the
reservoir and demand for water under climate change
conditions decreased by approximately 17 percent and in-
creased by 10 percent relative to baseline conditions,
respectively.

(e optimum operating rules of the Golestan Dam
reservoir were obtained from a two-targeted problem, using
the MOGWO algorithm. (e two-target problem involved
maximizing demand reliability and reducing system
vulnerability.

According to Figure 6, if we assume the model reliability
index of 75%, there will be an obvious difference between
the vulnerability values under the climate change and
baseline conditions. In other words, Figure 6 displays the
effects of the two-objective optimization algorithm in the

sense of the Pareto curve for baseline and climate change
conditions. (ere are 16 percent to 45 percent and 10
percent to 43 percent of vulnerability shifts in baseline and
climate change conditions as stated in Figure 6. In baseline
and climate change conditions, the number of reliability
adjustments is 47 percent to 90 percent and 27 percent to 93
percent. In comparison, for baseline conditions and climate
change conditions, 29 percent and 27 percent of vulner-
abilities are generated for every 75 percent of reliability,
respectively. In other words, the degree of vulnerability and
reliability of climate change is higher than that of the
average. A reservoir activity rule, including its vulnerability
and reliability indices, is shown by each point in the Pareto
curve (Figure 6). None of the Pareto points has taken
precedence over others; based on catchment conditions
and policies, they can differ. (e next phase was to de-
termine the optimum level of rules on water demand in the
sense of baseline and climate change conditions. (erefore,
the optimum rules were compared to the optimum rules
arising from climate change conditions. On the other hand,
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Figure 6 shows that, in all the values of common reliability
between baseline and climate change conditions (i.e., 45%
to 89%), the vulnerability values of the model have been
significantly reduced, which will evaluate the model more
stable in climate change conditions.

For the baseline and climate change conditions, the
results for the supply of water demands for the 75 percent
reliability index are stated in the Figures 7(a) and 8(a).

Compared to the corresponding demand for water, the
following two alternatives were determined by the changes
for shortages due to the optimal operational rules arising
from the proposed optimization algorithm, as shown earlier.
A comparison of the baseline and climate change conditions
shows that, in the climate change conditions, the volume of

released water from the reservoir is more consistent with
irrigation demand. In addition, reservoir storage in the
climate change conditions is lower compared with the
baseline one, which is due to increases in the release
(Figure 8(b)). (e results are seen, respectively, in
(Figure 7(b)) and (Figure 8(b)). Climate change release rates
are higher than under baseline conditions, according to
(Figure 7(a)) and (Figure 8(a)), which will be 10 percent due
to the increased demand for water under climate change
conditions.

On the other hand, Figures 7(b) and 8(b) indicate that,
under climate change conditions, the output of the dam has
also improved. In the next step, the objective function values
of 75 percent reliability per Pareto point were calculated in
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the conditions to evaluate the reservoir output in the supply of
downstream water requirements, as described in (Table 1).
Reservoir release is more compatible with climate change
conditions, according to (Table 1). (erefore, under the effects
of climate change, the dam’s performance is even better.

It should be mentioned that the results obtained in this
study are consistent with the results obtained by other re-
searchers such as Ashofteh et al. [12] and Donyaii et al. [4]
who applied genetic programming and Farmland Fertility
optimization algorithm, respectively.
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5. Conclusions

One of the main considerations in water resources man-
agement is to take into account all priorities within policies
governing the development of water resources systems to
satisfy water demand. Moreover, in the light of climate

change, it is important to include a range of decision-
making alternatives (Pareto curve) in such a manner that
executive managers and operators can assess the relative
value of the objectives in this respect. (erefore, it is un-
avoidable to derive multiobjective operating rules from
reservoirs, as each of the curve points in the Pareto curve
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Figure 8: (e comparison of (a) release volume and (b) shortage volume per each Pareto point resulted from 75% reliability in climate
change conditions.

Table 1: (e comparison of objective functions in baseline and climate change conditions for each Pareto point (75% reliability).

Conditions Reliability (%) Vulnerability (%)
Baseline 75 29
Climate change 75 27
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means a reservoir operation rule that can be modified
under the conditions and policies regulating the catchment.
(e objective of this work was to draw up a general
guideline for the operation of such Pareto points so that it
could determine how to achieve these points such that 75
percent of the downstream Golestan Dam lands in Iran are
provided with water needs.

In the current research, after assessing the climate
change parameters such as temperature and precipitation
values for baseline condition, they were predicted for the
future period as the parameters of climate change conditions
by downscaling the CANESM2 climate model with SDSM
4.2 software. Analyzing the average monthly precipitation
variations have shown that the drop in the precipitation rate
in the next period was obvious, and this trend has been
diminished by to 21.1 percent regarding to the baseline as a
warning for water resources management. Next, a second-
order Neurofuzzy model with a Gaussian membership
function was conducted to simulate the rainfall-runoff
process focusing on the climate change phenomena at the
entrance to the Golestan Dam. Results showed that the
volume of runoff during the climate change conditions with
respect to the baseline period would be decreased to 0.17
percent. Finally, the Grey Wolf Optimization algorithm was
used to solve the problem of the reservoir system of the
Golestan Dam under baseline and climate change conditions
in the province of Golestan. In order to obtain reservoir
discharge rules (based on the Pareto curve), objective
functions, including maximizing the reliability index and
minimizing the vulnerability index, were based on param-
eters such as the discharge volume to the reservoir, the
storage volume, and the water demand volume derived from
the MOGWO algorithm. (e study showed that the amount
of vulnerability changes under the baseline and climate
change conditions was 16 percent to 45 percent and 10
percent to 43 percent, respectively. Moreover, the reliability
increase under the baseline and climate change conditions
ranged from 47 percent to 90 percent and 27 percent to 93
percent, respectively. Meanwhile, for 75% reliability index of
the model, the vulnerability ranged between 29% and 27%
under the baseline and climate change conditions, respec-
tively. In the next step, in order to evaluate the efficiency of
the reservoir in meeting the downstream water require-
ments, in the abovementioned conditions, the values of the
objective function were compared to 75 percent reliability.
(e results show that the rate of release of the reservoir is far
more in line with the demand for climate change, so evi-
dence is given that the Golestan Dam performs better under
the conditions of climate change.

Abbreviations

A(t): Reservoir surface in the
t-th month

Ev(t): Net evaporation from
the reservoir

a, b, c, d: Constant coefficients of
the surface-volume
equation

Q(t): (e inflow to the
reservoir in the t-th
month

Re(t): (e release from the
reservoir in the t-th
month

Sp(t): (e reservoir overflow
in the t-th month

Loss(t): (e evaporation losses
in the t-th month

Smax and Smin: Maximum and
minimum volumes of
the reservoir

Remax and Remin: Maximum and
minimum releasable
volumes from the
reservoir

F1: Objective function of a
vulnerability index

F2: Objective function of
reliability index

Dt: Demand volume
throughout the t-th
period

DMax: Maximum water
demand in the operating
period

NT
t�1(Ret <Dt): Number of months of

water shortage
NT

t�1(Dt − Ret|Ret ≥Dt): Number of months of
water supply

[A′ · (Smin − St/Smax − Smin) + B′]: Penalty function
achieved from the
violation of equation (9)

[C′.(Ret/DMax) + D′]: Penalty function
resulted from the
violation of equation
(10)

A′ toD′: Coefficients imply the
positive constants of
penalty functions with
A′� 1, B′� 0.5, C′� 1,
and D′� 16 values

g1(Qbt + Sbt + Dbt): (e rule fromMOGWO
in the baseline operating
period for baseline
conditions

g2(Qft + Sft + Dft): (e rule fromMOGWO
in the climate change
operating period for
climate change
conditions

(e b index: For baseline conditions,
f index� for climate
change conditions

GWO: GreyWolf Optimization
Algorithm

Xp: Victim’s location vector
X: Grey wolf’s position

Shock and Vibration 9



C: Coefficient’s vector
D: Direction between the

wolf and the prey
(X(t)): Prey position
r
→

1 and r
→

2: Randomly selected value
of [0, 1]

a
→: Fixed quantity of

iterations reduced from
2 to 0

A: Proposed values given
in [−2, 2]

R2: Correlation coefficient.

Data Availability

(e manuscript data can be obtained from the Shock and
Vibration Journal.
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