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Due to the relatively weak early fault characteristics of rolling bearings, the difficulty of early fault detection increases. For
unsolving this problem, an incipient fault detection method based on deep empirical mode decomposition and principal
component analysis (Deep EMD-PCA) is proposed. In this method, multiple data processing layers are created to extract weak
incipient fault features, and EMD is used to decompose the vibration signal.+is method establishes an accurate data mode, which
can improve the incipient fault detection capability. It overcomes the difficulties of incipient fault detection, in which weak fault
features can be extracted from the background of strong noise. From a theoretical point of view, this paper proves that the Deep
EMD-PCA method can retain more variance information and has a good early fault detection ability. +e experiment results
indicate that the detection rate of Deep EMD-PCA is about 85%, and the failure detection delay time is almost zero. +e incipient
faults of rolling element bearings can be detected accurately and timely by Deep EMD-PCA. +e method effectively improves the
accuracy and timeliness of fault detection under actual working conditions and has good practical application value.

1. Introduction

Rolling element bearings are one of the commonmechanical
components in rotating machinery, and their operating
conditions often directly affect the performance of the entire
machine [1–3]. It is vital to detect the incipient faults of
rolling element bearings accurately and timely, which can
prevent them from developing into a more serious fault,
resulting in huge losses [4]. Vibration signal analysis is the
main technique to diagnose a rolling bearing fault [5, 6]. +e
main challenges of incipient fault detection for rolling el-
ement bearings are as follows [7, 8]:

(1) +e incipient features of the device are weak and
insignificant, and the fault signal is often buried in a
strong noise background. During the running pro-
cess of the rolling element bearings, there is a large
amount of amplitude interference noise in the signal

(2) Due to the harsh operating environment and limited
field measurement conditions, the obtained signal
has an impact interference signal

+ere are many incipient fault detection methods for
rolling element bearings, which can be roughly divided into
two methods based on model-driven and data-driven methods
[9]. An incipient fault detection method based on analytical
models requires modeling the system to analyze system faults
[10, 11]. Due to the inaccuracy of the modeling, the detection
performance of the system failure is reduced. Data-driven
methods can effectively overcome these problems. +e data
collected by the system is analyzed by data-driven methods, to
achieve the effect of incipient fault detection [12–14].

Signal decomposition methods are commonly used for
vibration signals [15], including wavelet transform methods
[16, 17] and empirical mode decomposition (EMD)methods
[18–20]. +e wavelet transform method cannot achieve
adaptive decomposition because it is limited by the basis
function. +e EMD method is a common method for an-
alyzing nonstationary, nonlinear vibration signals. However,
due to the inclusion of some redundant information in the
feature extraction process, the data dimension is high and
the calculation efficiency is low.
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Deep learning is one of the popular incipient detection
methods [21, 22]. +e commonly used deep learning in-
cipient fault detection methods include Support Vector
Machine (SVM) [23] and Convolutional Neural Networks
(CNN) [24]. +ese methods can compress the signal to
achieve dimensionality reduction. However, the computa-
tional strength of the model becomes larger, and the training
speed of the system decreases in a large network structure.

A common fault detection method for removing data
redundancy and reducing the data dimension is the prin-
cipal component analysis (PCA) method [25–27]. +e main
idea is to project the high-dimensional data space into the
low-dimensional principal component space [28]. However,
due to the PCA method in the process of extracting the
feature values, only a small number of principal elements are
selected, resulting in the loss of information, and it is im-
possible to diagnose some weak fault features.+e study [29]
proposed a new data-driven method based on Deep PCA for
incipient fault diagnosis. +e method can decompose the
fault information in a more detailed manner, obtain weak
fault features, and achieve the effect of incipient fault di-
agnosis. But the PCA fault detection method cannot detect
the vibration signal.

In order to solve the above problems, this paper proposes
an incipient fault diagnosis method based on Deep EMD-
PCA. Firstly, the EMD-PCA fault detection method is used
to extract the effective information in the vibration signal
and remove the noise information in the vibration signal.
Secondly, the data is decomposed to obtain multiple sub-
datasets. Finally, each subdataset is analyzed, redundant
information is removed, and weaker fault features will be
mined to detect incipient faults in rolling element bearings.
Deep EMD-PCA can mine the small fault information in the
vibration signal and better detect the incipient fault problem
compared with the traditional EMD-PCA fault diagnosis
method. In the third part and the fourth part, the fault
detection capability of the method is proved from both
theoretical and experimental aspects.

+emain structure of this paper is as follows.+e second
part introduces the basic theoretical knowledge of EMD and
PCA. +e third part presents the fault detection method
based on Deep EMD-PCA and proves its feasibility. +e
fourth part verifies the accuracy and feasibility of the method
through five experiments.+e fifth part summarizes the fault
detection method of Deep EMD-PCA.

2. Fundamental Theory

2.1. EMD Method. EMD is a method to analyze the de-
composition of nonlinear and nonstationary signals. It
defines the time delay between the adjacent peak points of
the signal to be decomposed as a time scale and decomposes
the nonstationary signals into several Intrinsic Mode
Function (IMF) and residual terms according to the fluc-
tuation or trend of different scales [30]. Each basic pattern
component reflects the local characteristic information of
the signal. +e remainder indicates the central trend of the
signal.+e flowchart of EMD signal decomposition is shown
in Figure 1.

For a group of signals X(t), the steps of EMD are as
follows.

Step 1. Find all maximum and minimum points of signal
X(t), respectively, and synthesize the upper and lower
envelopes of the original data sequence by a cubic spline
function.

Step 2. Calculate the mean value between upper and lower
envelopes, denoted as m1(t). Subtract the mean value from
the original data sequence to get a new data sequence h1 with
the low frequency being removed:

h1 � X(t) − m1(t). (1)

If h1 satisfies the following two conditions: (a) the
number of crossing zero and extreme points must be equal
or at most one difference in the whole dataset; (b) at any
time, the average value of the local maximum and minimum
envelopes should be zero, then, h1 is the first IMF
component.

If the conditions of IMF are not met, h1 is taken as the
original data, and the screening process (1) is repeated to
obtain the difference h11 between the average value of the
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Figure 1: +e structure of EMD.
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upper and lower envelopes and h1 and to determine whether
the criteria of IMF are satisfied, until h1k meets the above
criteria of IMF, then h1k is the first IMF component. Let us
call the first IMF component IMF1.

Step 3. Separate IMF1 from X(t) to obtain residual term r1:

r1 � X(t) − IMF1, (2)

r1 is taken as the original data. +en, repeat steps (1) and (2)
to obtain the second IMF component of X(t)−IMF2. Repeat
such screening process for n times to obtain n IMF com-
ponents and residual term rn of signal X(t). When the
residual term rn is less than the preset value or becomes a
monotone function, the components that meet the IMF
conditions can no longer be extracted from it, and the whole
screening process is finished.

After the above steps, signal X(t) is decomposed into the
sum of n IMF components and residual terms rn:

X(t) � 

n

i�1
IMFi(t) + rn(t). (3)

+eoretically, IMF components divide a series of locally
high-order and low-order narrow-band stationary se-
quences strictly according to different characteristic scales of
the sequence.

2.2. PCA Method. PCA method is a multivariate statistical
method. It can achieve dimensionality reduction of complex
samples; that is, it can generate reduced variables through
feature extraction without losing important information
carried in samples. Since the low-dimensional principal
component space can retain most of the variance infor-
mation of the original data space, and the orthogonality of
the principal component variables can remove the redun-
dant information of the original data space, principal
component analysis has gradually become an effective
method of data compression and information extraction.
+e basic theory of PCA is as follows.

Let the observation matrix X ∈ Rm×n be obtained
through m times of independent sampling by n sensors. In
order to eliminate the influence of false principal compo-
nents caused by different dimensions, the sample xi(k)

collected at the k moment should be standardized:

x
∗
i (k) �

xi(k) − E xi( 

var xi( ( 
1/2 , (4)

where i � 1, 2, . . . , n, k � 1, 2, . . . , m.E(xi) is the sample
mean and var(xi) is the sample variance, as follows:

E xi  �
1
m



m

k−1
xi(k), (5)

var xi  �
1
m



m

k−1
xi(k) − E xi  

2
. (6)

+e normalized sample matrix is X∗ ∈ Rn∗m:

X
∗

�

x
∗
1(1) x

∗
2(1) · · · x

∗
n (1)

⋮ ⋮ ⋱ ⋮

x
∗
1(m) x

∗
2(m) · · · x

∗
n (m)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

+ematrix X∗ is decomposed into the cross product sum
of n vectors:

X
∗

� t1p
T
1 + t2p

T
2 + · · · + tnp

T
n , (8)

where pi ∈ Rn is the load vector; P � [p1, p2, . . . , pn] is the
load matrix. ti ∈ Rn is the goal vector and also is the
principal component of X∗; T � [t1, t2, . . . , tn] is the goal
matrix and represents the projection of the original data
matrix on the load direction.

+e load vector of X∗ can be obtained by Singular Value
Decomposition (SVD), as follows:

1
�����
n − 1

√ X � UΣVT
, (9)

where U ∈ Rm×n and V ∈ Rn×n is the unitary matrix.
Σ ∈ Rn×n is the diagonal matrix, and its diagonal elements
are decreasing nonnegative eigenvalues.

Formula (12) is equal to the covariance matrix of X∗:

S �
1

n − 1
X
∗

( 
T
X
∗
. (10)

Singular Value Decomposition is

S � PΣPT
, (11)

where the diagonal elements of Σ ∈ Rn×n are equal to the
variance of X∗ in the corresponding direction of the load
matrix P. +e projection of data X∗ on the following load
vector directions is often caused by noise, so in order to
effectively remove the correlation of the original data and
reduce the influence of interference, we retain the first load
vector corresponding to the first maximum eigenvalue to
compose the load matrix P ∈ Rn×a.

+e original space is divided into principal component
subspace X and residual subspace E:

X
∗

� X + E � TP
T

+ E. (12)

As for the selection method of principal components, we
adopted the Cumulative Percentage Variance (CPV)
method:

CPV �


t
i�1 λi


n
i�1 λi

  × 100%, (13)

where n is the number of variables in the data and λi is the ith

eigenvalue of the covariance matrix of X. +e threshold
percentage is usually set at 85%.

3. Deep EMD-PCA

+e commonly used EMD-PCA combined fault detection
method can analyze the vibration signal for fault detection.
However, due to the limitations of the PCA method, some
fault features are discarded during the process of extracting
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the principal elements, which may result in PCA not being
able to accurately detect weak incipient failure message.
+erefore, this paper proposes a fault detection method
based on Deep EMD-PCA.

3.1. !e Fundamental Deep EMD-PCA. Firstly, the EMD
method is used to decompose the vibration signal to obtain n
IMF components, then the n IMF components are formed
into a matrix, and the eigenvalue decomposition of the
matrix is obtained by the PCA method to obtain the
principal element space and the residual space. +en, the
principal space and the residual space are decomposed
multiple times to obtain the j-layer subspace, the statistics
and control limits of each subspace are calculated, and a
comparison is made to determine whether a fault has oc-
curred. +e data structure of Deep EMD-PCA is shown in
Figure 2.

We obtain the principal element space and the residual
space of dataset IMF by EMD-PCA method:

IMF � IMF11 + IMF12, (14)

where IMF11 is the first-order principal component subspace
of original data IMF and IMF12 is the first-order residual
subspace of original data IMF. +ey can be obtained by

IMF11 � P11P
T
11IMF,

IMF12 � I − P11P
T
11 IMF,

(15)

Where P11 is the is the extracted principal component
feature vector matrix of IMF.

To obtain more information about the second-order
principal component space and residual space, we repeat the
above process and then obtain

IMF11 � IMF21 + IMF22,

IMF12 � IMFF23 + IMF24.
(16)

Suppose that P21 and P23 are the principal vector of
IMF11 and IMF12, respectively, and P22 and P24 are the
residual vector of IMF11 and IMF12, respectively. +en, the
original data IMF can be obtained by

IMF � IMF11 + IMF12,

� IMF21 + IMF22 + IMF23 + IMF24,
(17)

where

IMF21 � P21P
T
21IMF11,

IMF22 � I − P21P
T
21 IMF11,

IMF23 � P23P
T
23IMF12,

IMF24 � I − P23P
T
23 IMF12.

(18)

By parity of reasoning, the original data IMF can be
represented as the sum of 2j subspace, and j is the order. +e
structure of Deep EMD-PCA is shown in Figure 2. +e
subspace IMFjk can be expressed as

IMFjk �
PjkP

T
jkIMF(j−1)(k+1)/2, k is odd,

I − Pj(k−1)P
T
j(k−1) IMF(j−1)(k/2), k is even.

⎧⎪⎨

⎪⎩

(19)

Suppose that IMFjk is the k
th subspace of jth order; then,

IMF � 
2j

k�1 IMFjk, and Pjk is the extracted principal
component feature vector matrix of IMF(j−1(k+1)/2).

+rough the increase in the order of the Deep EMD-PCA
method, extremely weak fault information can be detected,
thereby achieving incipient fault detection.

3.2. Determination of Statistics and Control Limits. We ex-
tend the method of statistical control limit to Deep EMD-
PCA. Considering all subprincipal spaces, T2

jk of each
subdataset Xjk can be expressed as

T
2
jk � IMFT

P(j+1)(2k−1)Λ
−1
jk P

T
(j+1)(2k−1)IMF. (20)

Λjk is principal component space characteristic value of
matrix.

For the control limit of T2
jk, it can be calculated through

the preset significance level α and the probability density
function of T2

jk. +e probability density function of T2
jk

can be expressed as

f T
2
jk  �

1
N



N

b�1
K

1
h

T
2
jk − T

b
jk  , (21)

where Tb
jk represents T2

jk of column b. +en, the probability
density function is integrated to make it less than the sig-
nificance level alpha, namely,


TUCLjk

0
f T

2
jk dT

2
jk � α. (22)

SPE statistics reflect the deviation degree of data, which
can be expressed as

SPEjk � I − P(j+1)(2k−1)P
T
(j+1)(2k−1) IMF2

�����

�����. (23)

Similar to the control limit of Tb
jk, the probability density

function of SPEjk is expressed as

f SPEjk  �
1
N



N

b�1
K

1
h

SPEjk − SPEb
jk  , (24)

where SPEb
jk represents SPEjk of column b, according to the

probability density function and significance level a, namely,


QUCLjk

0
f SPEjk dSPEjk � α. (25)

If the statistics is larger than the control limit, a fault will
occur. Otherwise, the data are in a normal state.

3.3. !eoretical Proof. +is section demonstrates the in-
cipient fault detection capabilities of Deep EMD-PCA from a
theoretical perspective.

+e covariance of Deep EMD-PCA can be expressed as

4 Shock and Vibration



S �
1

N − 1
IMFTIMF. (26)

+e size of the covariance represents the amount of
information retained by the method, so the larger the co-
variance, the more information retained.

According to formula (14), we can obtain that

S �
1

N − 1
IMF11 + IMF22( 

T IMF11 + IMF22( . (27)

For the jth subspace, the covariance can be expressed as

S �
1

N − 1


2j

k�1
IMFjk

⎛⎝ ⎞⎠

T



2j

k�1
IMFjk

⎛⎝ ⎞⎠. (28)

We simplify formula (28):

S �
1

N − 1


2j

k�1
IMFjk 

T
IMFjk  ,

� 
2j

k�1

1
N − 1

IMFjk 
T
IMFjk  .

(29)

Suppose that Sjk � (1/(N − 1))IMFT
jk IMFjk; then, the

covariance matrix can be simplified as

S � S11 + S12,

� 
3

k�1

S2k + S24 � . . . ,

� 

2j−1

k�1
Sjk + Sj2j .

(30)

So, we can obtain that 
2j−1
k�1 Sjk > . . . > 

3
k�1 S2k > S11.

Because the covariance matrix describes all the information
about the relationships among the dimensions, it can be

concluded that as the order increases, the information retained
by Deep EMD-PCA increases. +erefore, the Deep EMD-PCA
method can retain more sample information compared with
the traditional EMD-PCA method, so as to mine the hidden
fault information in the sample abandoned by EMD-PCA to
achieve the purpose of incipient fault detection.

We can project the dataset IMF in normal operation into
the third-order principal space and the residual space based
on equations (14)–(18), as shown in Figure 3. For the
conventional EMD-PCA method, the residual is IMF12. +e
residual of the second order of the Deep EMD-PCA method
is IMF24. +e residual of the third order of the Deep EMD-
PCA method is IMF38. According to Figure 3, it can be seen
that the residual amount IMF12 is significantly larger than
IMF24, and IMF24 is larger than IMF38. +erefore, we can
conclude that with the increase of the order, the residual of
the Deep EMD-PCA method is getting smaller and smaller,
that is, the more variance information saved, so that the
weak fault information can be diagnosed.

However, with the increase in order, the amount of
calculation increases gradually. Considering the complexity
of the calculation, it is usually calculated to the third order to
mine the weak fault information in the dataset.

As can be seen from Figure 3, all subspaces and sub-
datasets are orthogonal. So, the 2j subdatasets of original
data are nonoverlapping, there is no duplicate information,
and it can contain all information on the dataset.

3.4. !e Process of Deep EMD-PCA. +e fault detection
method based on Deep EMD-PCA is divided into two parts:
offline modeling and online monitoring. +e Deep EMD-
PCA approach is defined by Algorithm 1.

4. Experimental Results and Analysis

+is section uses the experimental data of Case Western
Reserve University and the self-built mechanical failure
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Figure 2: +e data structure of Deep EMD-PCA.
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comprehensive simulation testbed to collect the failure vi-
bration data of the inner and outer rings of the rolling
bearing. +e PCA-SVM fault diagnosis method first reduces
the dimensionality of the data through PCA and then puts
the later data into the SVM model for classification. +is
method has advantages in processing small samples and is
not sensitive to noise data and feature vectors. For many
scenarios, the model can be built quickly, and good results
can usually be achieved. Comparing the EMD-PCA method
and PCA-SVM method with the Deep EMD-PCA method
proposed in this paper, it proves the feasibility of the early
fault detection method proposed in this paper.

+e failure types are the inner ring failure and the outer
ring failure of the rolling bearing. +e failure mechanism of
the inner and outer ring failure of the rolling bearing is
analyzed, and the results are as follows:

(1) +e inner ring failure: since the inner ring rotates
with the rolling bearing during the operation of the
rolling bearing, when a certain failure occurs in the
inner ring of the rolling bearing, the failure point and
the magnitude of the pulse intensity have a certain
consistency, and the amplitude will also show pe-
riodic changes. In the process of collecting vibration
signals, the signal reflecting the fault information of
the inner ring will be affected by the impact vibra-
tion, resulting in the loss of high-frequency vibration
components, resulting in a certain energy loss, so the
detection of the inner ring fault of the rolling bearing
is more difficult

(2) +e outer ring failure: due to a certain failure in the
outer ring of the rolling bearing, the vibration signal
will show a periodic pulse force whenever the op-
eration passes the failure point. Different from the
inner ring failure, since the outer ring is generally
fixed, the pulse intensity of each cycle is constant.
+erefore, the detection of the outer ring failure is
relatively simple compared to the detection of the
inner ring failure of the rolling bearing

4.1. !e Experimental Data of Case Western Reserve
University. In this section, the experimental data of Case

Western Reserve University is used to verify the Deep EMD-
PCA method. In this experiment, three groups of experi-
mental data were collected, namely, vibration signal data
under normal condition, fault data of bearing inner ring with
fault diameter of 0.007 inches, and fault data of bearing outer
ring with fault diameter of 0.007 inches.+e fault diameter is
0.007 inches, which is very small. At this time, the fault
characteristics are relatively weak. +erefore, this fault is
considered to be an incipient fault. +e vibration acceler-
ation signal of the bearing is collected by the acceleration
sensor, and the motor speed is 1797 RPM.

Figures 4(a) and 4(b) illustrate the T2 and SPE fault
detection results based on the EMD-PCA fault detection
method for an outer ring fault with a fault diameter of 0.007
inches. +e abscissa is the number of samples, and the
ordinate is the statistics and the control limit. Among them,
the blue line indicates the statistics, and the red line indicates
the control limit. When the statistics exceeds the control
limit, it indicates that the data is detected as faulty. From
Figures 4(a) and 4(b), we obtain that T2

01 and SPE01 are less
affected by this fault.

Figure 5 shows the results of the PCA-SVM method of
detecting the failure of the inner ring of the rolling bearing.
Label 0 means normal data, and label 1 means inner ring
fault data.+e blue circle represents the predicted result, and
the red cross represents the actual diagnosis result. We can
see from the image that the detection rate is about 60%, and
the incipient fault detection results are not satisfactory.

Figures 6 illustrates theT2 and SPE fault detection results
based on the Deep EMD-PCA fault detection method for an
outer ring fault with a fault diameter of 0.007 inches.
Figures 6(a)–6(d) describe the result of the second-layer
datasets IMF11 and IMF12. Figures 6(e)–6(l) describe the
third-layer datasets IMF21–IMF24. In Figure 6(d), the impact
of SPE12 by this fault is more obvious, and other statistics are
less affected by this fault. In Figure 6(k), the influence of T2

24
is very large, and the rate of detection is about 85%.
+erefore, the fault detection of the third layer of Deep
EMD-PCA is better.

Figure 7 depicts the results of a fault detection based on
the EMD-PCA fault detection method for an outer ring fault
with a fault diameter of 0.007 inches. From Figures 7(a) and
7(b), we can obtain that the detection rate of the fault de-
tection result of the first layer of Deep EMD-PCA exceeds
50%.

Figure 8 shows the results of the PCA-SVM method of
detecting the failure of the inner ring. Label 0 means normal
data, and label 1 means inner ring fault data. +e blue circle
represents the predicted result, and the red cross represents
the actual diagnosis result. We can see from the image that
the detection rate is about 45%, and the incipient fault
detection results are not satisfactory.

Figure 9 depicts the results of a fault detection based on
the Deep EMD-PCA fault detection method for an outer
ring fault with a fault diameter of 0.007 inches. Figures 9(a)–
9(d) describe the result of the second-layer datasets IMF11
and IMF12. Figures 9(e)–9(l) describe the third-layer datasets
IMF21–IMF24. In Figure 9(d), the result of SPE12 is greatly
affected by the fault of the third layer of Deep EMD-PCA.

X

X12

X24

X38

Figure 3: +e geometry structure of Deep EMD-PCA.
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+e detection results show that T2
24 is most affected by this

fault, and the detection rate is about 85%. +erefore, the
third layer of Deep EMD-PCA has good fault detection
performance.

We compare the experimental results of the Deep EMD-
PCA proposed in this paper, EMD-PCA method, and PCA-
SVM method by analyzing the detection rate and detection
delay as shown in Table 1.

+e detection rate refers to the percentage of the number
of accurate sampling points in the detection process to the
total number of sampling points. +e detection delay time
refers to the interval from the start of the failure to the
detection of the failure. Table 1 describes the comparison
results of the detection rate and detection delay based on the
EMD-PCA, PCA-SVM, and Deep EMD-PCA methods.
From Table 1, for the inner ring fault, the detection rate of
EMD-PCA method and PCA-SVM method is 49.44% and
58.71%, respectively, and the detection rate of Deep EMD-
PCA method is 86.92%; for outer ring fault, the detection
rate of EMD-PCA and PCA-SVM is about 50%, and the
detection rate of Deep EMD-PCA method is 86.77%, so we

can obtain that the detection rate of Deep EMD-PCA
method is significantly increased. On the other hand, from
the comparison of detection delay, Deep EMD-PCA can be
detected from the beginning of the fault. So, the Deep EMD-
PCA method has good fault detection performance.

4.2. Mechanical Failure Comprehensive Simulation
Experiment. +e mechanical failure comprehensive simu-
lation experimental device includes a mechanical fault
comprehensive simulation test bench, AIC9916FS equip-
ment fault comprehensive simulation diagnostic analysis
system software, FL6816L16 channel sensor, BSZ800D-16
vibration signal acquisition instrument, and storage device
computer. +e mechanical failure comprehensive simula-
tion test bench is shown in Figure 10. +rough this test
bench, the fault data of the outer ring, inner ring, and rolling
element of the bearing are collected and analyzed.

Figure 11 depicts the results of a fault detection based on
the EMD-PCA fault detectionmethod for an outer ring fault.
From Figures 9(a) and 9(b), we can obtain that the false
detection rate of the detection result of the first layer of Deep
EMD-PCA is more than 80%.

Figure 12 depicts the mechanical failure comprehensive
simulation experiment bearing outer ring failure results
based on PCA-SVM. Label 0 means normal data, and label 1
means outer ring fault data. +e blue circle represents the
predicted result, and the red cross represents the actual
diagnosis result. We can see from the image that the de-
tection rate is about 80%, and the incipient fault detection
results are not satisfactory.

Figure 13 depicts the results of a fault detection based on
the Deep EMD-PCA fault detection method for an outer
ring fault. Figures 13(a)–13(d) describe the result of the
second-layer datasets dataset IMF11 and IMF12.
Figures 13(e)–13(l) describe the third-layer datasets
IMF21–IMF24. In Figure 13(b), the result of SPE11 is greatly
affected by this fault. In Figures 13(e) and 13(j)–13(l), T2

21,
SPE23, T2

24, and SPE24 are more affected by this fault.
+erefore, the fault detection effect of the third-layer Deep
EMD-PCA is better, which proves that themethod has better
incipient fault detection capability.

Figure 14 depicts the results of a fault detection based on
the Deep EMD-PCA fault detection method for an inner
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Figure 4: Case Western Reserve University bearing inner ring failure results based on EMD-PCA.
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Figure 5: Case Western Reserve University bearing inner ring
failure results based on PCA-SVM.
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ring fault. From Figures 14(a) and 14(b), we can obtain that
the detection rate of the fault detection result of the first layer
of Deep EMD-PCA is more than 60%.

Figure 15 depicts the mechanical failure comprehensive
simulation experiment bearing inner ring failure results
based on PCA-SVM. Label 0 means normal data, and label 1
means inner ring fault data. +e blue circle represents the
predicted result, and the red cross represents the actual
diagnosis result. We can see from the image that the de-
tection rate is about 85%.
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Figure 6: Case Western Reserve University bearing inner ring failure results based on Deep EMD-PCA.
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Figure 7: Case Western Reserve University bearing outer ring
failure results based on EMD-PCA.
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Figure 8: Case Western Reserve University bearing outer ring
failure results based on PCA-SVM.
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Figures 16(a)–16(d) describe the result of the second-
layer datasets dataset IMF11 and IMF11. Figures 16(e)–16(l)
describe the third-layer datasets IMF21–IMF24. In

Figures 16(b) and 16(d), the results of SPE11 and SPE12 are
greatly affected by this fault. In Figures 16(h) and 16(j)–16(l),
SPE22, SPE23, T2

24, and SPE24 are more affected by this fault.
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Figure 9: Case Western Reserve University bearing outer ring failure results based on Deep EMD-PCA.

(1) Offline modeling:
(2) X(t) is the training dataset
(3) Perform EMD decomposition to obtain n IMF components and residual Rn

(4) Group n IMF components into a new matrix IMF
(5) Standardization processing for IMF
(6) Select the appropriate order j
(7) Calculate the corresponding IMFjk

(8) Calculate the number of principals of each IMFjk, the eigenvalue matrix Λjk, and the eigenvector matrix Pjk

(9) Calculate the statistics T2
jk and SPEjk

(10) Calculate the probability density function of T2
jk and SPEjk

(11) Calculate the control limits of T2
jk and SPEjk

(12) Online Monitoring:
(13) Xt(t) is the test dataset
(14) Perform EMD decomposition to obtain n IMF components and residual Rn

(15) Group n IMF components into a new matrix IMFt
(16) Standardization processing for IMFt
(17) Obtain the principal element space and the residual space of the subdataset IMFtjk

(18) Calculate the statistics T2
jk and SPEjk

(19) If the statistics> the control limits
(20) +en fault
(21) Else normal
(22) End if

ALGORITHM 1:Deep EMD-PCA.
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C rotor

B rolling bear

D principle axis

Figure 10: Mechanical fault comprehensive simulation test bench.
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Figure 11: Mechanical failure comprehensive simulation experiment bearing outer ring failure results based on EMD-PCA.
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Figure 12: Mechanical failure comprehensive simulation experiment bearing outer ring failure results based on PCA-SVM.
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Figure 13: Mechanical failure comprehensive simulation experiment bearing outer ring failure results based on Deep EMD-PCA.
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Figure 14: Mechanical failure comprehensive simulation experiment bearing inner ring failure results based on EMD-PCA.
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Figure 15: Mechanical failure comprehensive simulation experiment bearing inner ring failure results based on PCA-SVM.
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Figure 16: Mechanical failure comprehensive simulation experiment bearing inner ring failure results based on Deep EMD-PCA.
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+erefore, the fault detection effect of the third-layer Deep
EMD-PCA is better, which proves that themethod has better
incipient fault detection capability.

We compare the experimental results of the Deep EMD-
PCA proposed in this paper, the traditional EMD-PCA
method, and the PCA-SVM method by analyzing the de-
tection rate and detection delay as shown in Table 2.

Table 2 describes the comparison results of the detection
rate and detection delay based on the EMD-PCA, PCA-
SVM, and Deep EMD-PCA methods. For the outer ring
fault, the detection rate of EMD-PCA method and PCA-
SVM method is about 75%, and the detection rate of the
Deep EMD-PCA method is 90.87%; for outer ring fault, the
detection rate of EMD-PCA and PCA-SVM is 54.29% and
86.72%, respectively, and the detection rate of Deep EMD-
PCA method is 91.36%, so we can obtain that the detection
rate of Deep EMD-PCA method is significantly increased.
+is is because the method can retain more variance in-
formation and weak fault features can be extracted quickly.
+e false detection rate of the Deep EMD-PCA method is
significantly reduced. On the other hand, from the com-
parison of the detection delay, Deep EMD-PCA can be
detected from the beginning of the fault. So, the Deep EMD-
PCA method has good fault detection performance.

5. Conclusions

In this paper, a novel incipient fault detection method based
on Deep EMD-PCA is proposed. +e method uses EMD-
PCA to decompose the vibration signal and divide the signal
into components of different frequency segments from high
to low, reduce the data dimension, and realize fault detec-
tion. +en, we divide the dataset into multiple subdatasets
for analysis, so that the weak fault information in the system
is analyzed and incipient fault detection is realized. It is
proved by theoretical analysis that this method has good
performance in incipient fault detection.+emethod has the
following advantages:

(1) Deep EMD-PCA method can extract weak fault
features compared with EMD-PCA method and
PCA-SVM method through multi-data processing
layer, which is helpful for incipient fault detection

(2) It establishes accurate data models to improve in-
cipient fault detection capability

(3) According to the experimental results, we can in-
dicate that the detection rate of Deep EMD-PCA is
about 85%, and the failure detection delay time is
almost zero. Sensitive to weak fault features, we can
find incipient fault more accurately

+e incipient fault detection method based on Deep
EMD-PCA effectively improves the accuracy and timeliness
of fault detection under actual working conditions and has
good practical application value.
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