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-e electrostatic force nonlinearity caused by fringe effects of the microscale comb will affect the dynamic performance of the
micromechanical vibrating gyroscopes (MVGs). In order to reveal the influence mechanism, a class of four-degree-of-freedom (4-
DOF) electrostatically driven MVG is considered. -e influence of DC bias voltage and comb spacing on the nonlinearity of
electrostatic force and the dynamic response of the MVG by using multiple time scales method and numerical simulation are
discussed. -e results indicate that the electrostatic force nonlinearity causes the system to show stiffness softening. -e softening
characteristics of the electrostatic force cause the offset of the resonance frequency and a decrease in sensitivity. Although the
electrostatic nonlinearity has a great influence on the dynamic behaviour, its influence can be avoided by the reasonable design of
the comb spacing and DC bias voltage. -ere exists a critical value for comb spacing and DC bias voltage. In this paper, de-
termining the critical values is demonstrated by nonlinear dynamics analysis. -e results can be supported by the finite element
analysis and numerical simulation.

1. Introduction

Micromechanical gyroscopes are a kind of inertial sensors
used to measure the angular velocity or angular displace-
ment. -e first micromechanical gyroscope with double-
frame structure was designed by American Draper Labs in
1988 [1], and then the different kinds of micromechanical
gyroscopes emerged gradually. Compared with the tradi-
tional gyroscopes, micromechanical gyroscopes have many
advantages such as low cost, light weight, small size, mass
production, digitization, and intelligence. For all classes of
micromechanical gyroscopes, the micromechanical vibrat-
ing gyroscopes (MVGs) are most widely applied in many

fields, including consumer electronics, automotive stabili-
zation, navigation and guidance, robotics applications, and
virtual reality [2].

-e working principle of MVGs is based on energy
transfer among the drive mode and the sense mode via
Coriolis effect. -e drive mode is usually employed by the
electrostatic actuation mechanism [3]. Numerous studies
have shown that there are many nonlinear factors in the
MVG system, involving the most common stiffness non-
linearity for the large deformation of the supporting mi-
crobeam and electrostatic force nonlinearity for fringe effect
of the microcomb. -ese factors will cause frequency offset,
multistable solution, softening-hardening characteristics,
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and transition of stiffness in the MVGs [4, 5]. In fact, both
the softening and hardening characteristics would be ac-
companied by the jump phenomenon. It means that the
routes of vibration amplitude are different with the sweep-
up and sweep-down of the excitation frequency. A more
detailed discussion can be found in [6, 7].

-e hardening characteristics of stiffness nonlinearity
become significant when the driven vibration amplitude
increases. It also extremely affects the dynamic performance
of MVGs. Many studies focused on the nonlinear dynamics
of MVGs with considering the stiffness nonlinearity. Tsai
and Sue [8] researched the nonlinear dynamics of a kind of
wheel micro gyroscope. Chaotic behaviours were analysed
by using bifurcation diagrams. It was verified that the
transition behaviours of different motion modes of drive
mode and sense mode had a similar orbit. Kenig et al. [9]
studied a pair of parametrically driven gyroscopes with
coupling nonlinearity, the existence of homoclinic orbit was
confirmed by analytical methods, and the existence of chaos
was proved by the generated Silnikov orbit. Tatar et al. [10]
successfully linearized the electrostatic nonlinearity at the
driving comb using a formed comb with a tuned cubic
hardening compensation in a triple symmetric silicon-on-
insulator (SOI) MEMS micro gyroscope. -is tuning
method not only achieves high driving displacement but also
keeps the phase frequency response under linear condition
and has better bias instability. Lajimi et al. [11] studied the
influence of DC bias voltage, AC drive voltage, driving
frequency, and quality factors on the response of rigid beam
micro gyroscope system. -e study showed that the micro
gyroscope has larger bandwidth and higher sensitivity when
it works in the nonlinear region. Hao et al. [12, 13] analysed
the influence of driving stiffness and detection stiffness with
cubic nonlinearity on the dynamic performance of single
drive mode and double sense mode micro gyroscope, re-
spectively. -e studies showed that, with the increase of
stiffness nonlinearity, the driving and sensing of micro
gyroscope had complex nonlinear behaviours and lead to
serious instability of the micro gyroscope system.

-e above research is mainly focused on the stiffness
nonlinearity of MVGs. It is worth mentioning that stiffness
nonlinearity is usually caused by the large deformation of the
straight beam in the MVGs. However, the traditional
straight beam has been replaced with the folded beam in the
design of the new MVGs recently. -us, the influence of the
stiffness nonlinearity on the MVGs can be reduced
gradually.

Generally, the electrostatic driving force of MVGs is
designed by the requirements of the sensitivity according to
the linear system. It is not usually considered that nonlinear
characteristics of electrostatic force influence the MVG.
However, electrostatic force nonlinearity can cause the
softening characteristics of the output response of MVG,
leading to a reduction of natural frequencies, jumping
phenomena, and instability of sensitivity [14]. Chouvion
et al. [15] investigated the influence of nonlinear electrostatic
force on the dynamic characteristics of a capacitive vibrating
ring gyroscope under strong impact. -e results showed that
the nonlinear electrostatic force could induce mode

coupling, amplitude jump, and performance degradation of
the sensor in the case of resonance. Liang et al. [16] studied
the dynamic response of a ring vibrating gyroscope by using
the method of linear and nonlinear numerical analysis.
-ese results showed that the sensitivity of ring gyroscope is
affected by the geometrical nonlinearity and the electrostatic
force nonlinearity. Sieberer et al. [17] considered a ring
resonator with 8 uniformly spaced support legs. When a
severe in-plane shock is applied, the rigid body response of
the ring reduces the electrode gap significantly and causes
the electrostatic force nonlinearity.

-e comb spacing and DC bias voltage have great in-
fluence on the nonlinearity of electrostatic force and the
output performance of the MVG. Nonlinear electrostatic
forces may cause the failure of the MVG based on the linear
structural designs. Considering the determination of the
minimum comb spacing and the maximum DC bias voltage,
referred to herein as the critical value, become very im-
portant. However, there are few reports on the related
research.

In the present work, a kind of four-degree-of-freedom
(4-DOF) MVG with double drive mode and double sense
mode was considered. Nonlinear dynamic equation of the
MVG was solved by using the multiple time scales method.
-e influence of the electrostatic force nonlinearity on the
dynamic performance was studied by the approximate an-
alytical solution. -e critical value of the driving comb
spacing and DC bias voltage can be determined by the
analysis of nonlinear dynamic characteristics. -e reliability
of analysis method and results was supported by the finite
element method and numerical simulation.

2. Working Principle of MVG with Double
Drive Mode and Double Sense Mode

A 4-DOF MVG with double drive mode and double sense
mode [18] is considered in this paper, as illustrated in
Figure 1. -is kind of MVG is mainly composed of driving
mass, decoupled mass, conversion mass, sensing mass,
elastic microbeams, and comb electrodes.

-e drive direction is along the x-axis and the sense
direction is along the y-axis. Ωz is the input angular velocity
and is perpendicular to the (x − y) plane. -e decoupled
mass mf and conversion mass m2 compose a two-stage
decoupled structure, which plays the role of isolation drive
mode and sense mode. -e driving mass m1 oscillates in the
x direction under the action of the driving comb electrode.
-e decoupling mass mf begins to oscillate in x direction
due to the action of k2. Meanwhile, the conversion mass m2
oscillates along the x direction with the decoupled mass mf

under the action of k4. Because of the Coriolis effect, the
vibration in x direction causes the resonance in y direction
when the system has angular velocityΩz input in the vertical
direction of the (x − y) plane.-en, the conversion mass m2
and the detection mass m3 oscillate in y direction under the
constraints of k4, k5, and k6.

-e displacement of m3 in y direction is the output
displacement in the sense direction, which increases with the
increase of Ωz. Because the output amplitude is directly
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proportional to the input angular velocity Ωz, Ωz of carrier
can be obtained by measuring the output amplitude.

-e dynamic model of a 4-DOF MVG is shown in
Figure 2. Driving mass m1 is defined as Drive-I, conversion
mass m2 and decoupled mass mf are combined to Drive-II,
conversion mass m2 is defined as Sense-I, and sense mass m3
is defined as Sense-II.

Considering that MVG usually works in a vacuum en-
vironment, the air damping is relatively small. So the
nonlinear factors of the damping are neglected. -erefore, it
can be assumed that dampings in the drive direction and
sense direction are both linear ones. -e dynamic equations
of the 4-DOF MVG are established, as shown in (1) and (2).

Drive direction is as follows:

m1 €x1 + c1 + c2( 􏼁 _x1 − c2 _x2 + k1 + k2( 􏼁x1 − k2x2 � Fd,

m2 + mf􏼐 􏼑 €x2 − c2 _x1 + c2 + c3( 􏼁 _x2 − k2x1 + k2 + k3( 􏼁x2 � 0.

⎧⎨

⎩

(1)

Sense direction is as follows:

m2 €y1 + c4 + c5( 􏼁 _y1 − c5 _y2 + k4 + k5( 􏼁y1 − k5y2 � Fc,

m3 €y2 − c5 _y1 + c5 + c6( 􏼁 _y2 − k5y1 + k5 + k6( 􏼁y2 � 0,
􏼨

(2)

where xi(i � 1, 2) is the displacement of the i-th DOF in the
drive direction, yi(i � 1, 2) is the displacement of the i-th
DOF in the sense direction, mi(i � 1, 2, 3, 4, f) are the
driving mass, proof mass, sensing mass, and decoupled
mass, respectively, ci(i � 1, 2, 3, 4, 5, 6) is damping coeffi-
cient, ki(i � 1, 2, 3, 4, 5, 6) is the equivalent stiffness coeffi-
cient of each elastic microbeam, and Fd and Fc are
electrostatic driving force and Coriolis force, respectively.
-e sense mode is coupled to the drive mode by Coriolis
force (Fc � −2m2Ωz _x2) into a 4-DOF system.

-e structure of a pair of electrostatic driving comb is
shown in Figure 3, where w is the width of the comb, h is the
thickness of the comb, d is the clearance within comb space,
L is the length of the comb, and l0 is the initial overlap length.
g0 is the distance between the end face of the movable comb
and the bottom face of the fixed comb (g0 � L − l0).

Considering the fringe effects [19], the total electrostatic
force Fd of the variable area capacitor is expressed as follows:

Fd � V
2
d

P1

g0 − x( 􏼁
2 −

P1

g0 + x( 􏼁
2

⎡⎣ ⎤⎦ + 4P2VdVa cos ω0t( 􏼁.

(3)

Equation (3) is as follows through Taylor expansion at
x � 0.

Fd �
P1V

2
d

g
2
0

4
x

g0
+ 8

x

g0
􏼠 􏼡

3
⎡⎣ ⎤⎦ + 4P2VdVa cos ω0t( 􏼁 + O x

5
􏼐 􏼑,

(4)

where P1 � (nε0εrwh/2), P2 � (nε0εr/ π) 1 + ln[1 + (2πh/d){

+ ln(1 + (2πh/d))]}, n is the number of combs, ε0 is the
dielectric constant of the air, εr is the relative permittivity, Vd

is the DC bias voltage, Va is the AC excitation voltage, and
ω0 is the electrostatic drive frequency.

3. Nonlinear Perturbation Analysis

-e stiffness softening caused by the electrostatic force
nonlinearity will lead to the serious instability of the system.
It has a serious impact on the sensitivity and bandwidth. In
order to investigate the dynamic behaviour of the system, the
electrostatic force nonlinearity between the driving comb
teeth needs to be considered.

Substituting equation (4) into (1), the following can be
obtained:

m1 €x1 + c1 + c2( 􏼁 _x1 − c2 _x2 + k1 + k2( 􏼁x1 − k2x2 �
P1V

2
d

g
2
0

4
x1

g0
+ 8

x1

g0
􏼠 􏼡

3
⎡⎣ ⎤⎦ + 4P2VdVa cos ω0t( 􏼁,

m2 + mf􏼐 􏼑 €x2 − c2 _x1 + c2 + c3( 􏼁 _x2 − k2x1 + k2 + k3( 􏼁x2 � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)
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Figure 1: Schematic diagram of the MVG with double drive mode
and double sense mode.
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Simplify equation (5) and obtain the dynamic equation:

€x1 + α3 _x1 − α4 _x2 + α1 −
4c1V

2
d

g
3
0

􏼠 􏼡x1 − α2x2 −
8c1V

2
d

g
5
0

x
3
1

� 4c2VdVa cos ω0t( 􏼁,

€x2 − β3 _x1 + β4 _x2 − β1x1 + β2x2 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where α1 � (k1 + k2/m1), α2 � (k2α1/m1),
α3 � (c1 + c2/m1), α4 � (c2/m1), β1 � (k2/(m2 + mf)),

β2 � (k2 + k3/(m2 + mf)), β3 � (c2/(m2 + mf)), β4 � (c2 +

c3/(m2 + mf)) , and c1 � (P1/m1), c2 � (P2/m1).
Equation (6) can be regarded as the forced vibration of

Duffing system with damping under simple harmonic ex-
citation. -e perturbation solution is obtained by multiple
time scales method [20]. -e first primary resonances with
1 :1 internal resonance conditions (ω2

0 � ω2
1 + ε2σ1,

ω2
2 � ω2

1 + ε2σ2) are considered simultaneously, where ω1
and ω2 are the resonance frequencies of the first-order mode
and second-order mode in the drive direction, respectively. ε
is introduced as a small parameter. Two detuning param-
eters σ1 and σ2 were introduced. -e dynamic equation (7)
can be modified as

€x1 + ω2
0x1 � −ε2 􏽢α1 −

4􏽢c1V
2
d

g
3
0

􏼠 􏼡x1 + ε2􏽢α2x2 − ε2􏽢α3 _x1 + ε2􏽢α4 _x2 +
8􏽢c1V

2
d

g
5
0

x
3
1

+ ε34􏽢c2VdVa cos ω0t( 􏼁 + ε2 􏽢ω2
1 + σ1􏼐 􏼑x1,

€x2 + ω2
0x2 � ε2􏽢β1x1 − ε2􏽢β2x2 + ε2􏽢β3 _x1 − ε2􏽢β4 _x2 + ε2􏽢ω2

2x2 + ε2 σ1 − σ2( 􏼁x2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where αi � ε2􏽢αi(i � 1, 2, 3, 4), βi � ε2􏽢βi(i � 1, 2, 3, 4),
ω2

i � ε2􏽢ω2
i (i � 1, 2), and ci � ε2􏽢ci(i � 1, 2).

-e approximate solution of equation (7) can be written
in the following form:

x1 � εx11 T0, T2( 􏼁 + ε3x13 T0, T2( 􏼁 + · · · ,

x2 � εx21 T0, T2( 􏼁 + ε3x23 T0, T2( 􏼁 + · · · ,
(8)

where Tn � εnt, (n � 1, 2, 3, . . .).
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Figure 2: Dynamic model of the 4-DOF MVG.
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Figure 3: Schematic diagram of the comb structure.
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Substituting equation (8) into (7) and comparing the
coefficients of the same order at both ends of the equation,
the following partial differential equations can be obtained:

O ε1􏼐 􏼑: D
2
0x11 + ω2

0x11 � 0,

D
2
0x21 + ω2

0x21 � 0,

(9)

O ε3􏼐 􏼑: D
2
0x13 + ω2

0x13 � −D0 2D2x11 + 􏽢α3x11( 􏼁 − 􏽢α1 −
4􏽢c1V

2
d

g
3
0

􏼠 􏼡x11 + 􏽢α2x21 + 􏽢α4D0x21

+
8􏽢c1V

2
d

g
5
0

x
3
11 + 4􏽢c2VdVa cos ω0t( 􏼁 + 􏽢ω2

1 + σ1􏼐 􏼑x11,

D
2
0x23 + ω2

0x23 � −D0 2D2x21 + 􏽢β4x21􏼐 􏼑 + 􏽢β1x11 − 􏽢β2x21 + 􏽢β3D0x11 + 􏽢ω2
2x21 + σ1 − σ2( 􏼁x21.

(10)

-e general solution form of equation (9) can be
expressed as follows:

x11 T0, T2( 􏼁 � A11 T2( 􏼁exp iω0T0( 􏼁 + A11 T2( 􏼁exp −iω0T0( 􏼁,

x21 T0, T2( 􏼁 � A21 T2( 􏼁exp iω0T0( 􏼁 + A21 T2( 􏼁exp −iω0T0( 􏼁,

(11)

where it is convenient to express A11 and A21 in the polar
form:

A11 T2( 􏼁 �
1
2

a1 T2( 􏼁exp iθ1 T2( 􏼁􏼂 􏼃,

A21 T2( 􏼁 �
1
2

a2 T2( 􏼁exp iθ2 T2( 􏼁􏼂 􏼃,

(12)

where a1 and a2 are the amplitudes of Drive-I and Drive-II
in the drive mode, respectively. θ1 and θ2 are the initial
phases of Drive-I and Drive-II in the drive mode, respec-
tively. Next, substituting equations (11) and (12) into (10),
the averaging equations of amplitude and phase can be
obtained from the solvability condition that does not pro-
duce a secular term.

_a1 � −
􏽢α3a1

2
+

􏽢α2a2

2ω0
sinϕ +

􏽢α4a2

2
cos ϕ −

2􏽢c2VdVa

ω0
sin θ1,

_θ1 �
􏽢α1 − 􏽢ω2

1 − σ1 − 4􏽢c1V
2
d/g

3
0􏼐 􏼑

2ω0
−

􏽢α2a2

2ω0a1
cosϕ +

􏽢α4a2

2a1
sinϕ −

3􏽢c1V
3
da

2
1

g
5
0ω0

−
2􏽢c2VdVa

ω0a1
cos θ1,

_a2 � −
􏽢β4a2

2
−

􏽢β1a1

2ω0
sinϕ +

􏽢β3a1

2
cosϕ,

_ϕ � −
􏽢β1a1

2ω0a2
cos ϕ +

􏽢β2 − 􏽢ω2
2 + σ2 − σ1
2ω0

−
􏽢β3a1

2a2
sinϕ −

􏽢α1 − 􏽢ω2
1 − σ1 − 4􏽢c1V

2
d/g

3
0􏼐 􏼑

2ω0

+
􏽢α2a2

2ω0a1
cos ϕ −

􏽢α4a2

2a1
sinϕ +

3􏽢c1V
3
da

2
1

g
5
0ω0

+
2􏽢c2VdVa

ω0a1
cos θ1,

(13)
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where ϕ � θ2 − θ1. In equation (13), let ( _a1 � 0, _θ1 � 0, _a2 � 0, _ϕ � 0). -en,
two bifurcation equations of driving direction amplitude can
be obtained by eliminating θ1 and ϕ.

a
2
2 4􏽢β1􏽢β2 − 4􏽢β1 σ1 − σ2( 􏼁 + 4􏽢β3􏽢β4ω

2
0 − 4􏽢β1􏽢ω2

2􏽨 􏽩
2

+ a
2
2ω

2
0 4􏽢β2􏽢β3 − 4􏽢β1􏽢β4 − 4􏽢β3 σ1 − σ2( 􏼁 − 4􏽢β3􏽢ω2

2􏽨 􏽩
2

� 16a
2
1

􏽢β
2
1 + 􏽢β

2
3ω

2
0􏼒 􏼓

2
, (14)

g
10
0 ω2

0 4􏽢α3􏽢β
2
1a

2
1 − 4􏽢α4􏽢β1􏽢β2a

2
2 − 4􏽢α2􏽢β2􏽢β3a

2
2 + 4􏽢α2􏽢β1􏽢β4a

2
2 − 4􏽢α4􏽢β1a

2
2σ2 − 4􏽢α2􏽢β3a

2
2σ2 + 4􏽢α4􏽢β1ω

2
0a

2
2􏼔

+ 4􏽢α2􏽢β3ω
2
0a

2
2 + 4􏽢α3􏽢β

2
3ω

2
0a

2
1 − 4􏽢α4􏽢β3􏽢β4􏽢ω2

0a
2
2 − 4􏽢α4􏽢β1􏽢ω2

1a
2
2 − 4􏽢α2􏽢β3􏽢ω2

1a
2
2 + 4􏽢α4􏽢β1􏽢ω2

2a
2
2 + 4􏽢α2􏽢β3􏽢ω2

2a
2
2􏼕

2

+ −4g
5
0􏽢α1􏽢β

2
1a

2
1 + 4g

5
0􏽢α2􏽢β1􏽢β2a

2
2 + 24V

2
d
􏽢β
2
1􏽢c1a

4
1 + 16g

2
0V

2
d
􏽢β
2
1􏽢c1a

2
1 + 4g

5
0􏽢α2􏽢β1σ2a

2
2 − 4g

5
0􏽢α2􏽢β1ω

2
0a

2
2 + 4g

5
0
􏽢β
2
1ω

2
0a

2
1􏼔

− 4g
5
0􏽢α4􏽢β2􏽢β3ω

2
0a

2
2 − 4g

5
0􏽢α1􏽢β

2
3ω

2
0a

2
1 + 4g

5
0􏽢α4􏽢β1􏽢β4ω

2
0a

2
2 + 4g

5
0􏽢α2􏽢β3􏽢β4ω

2
0a

2
2 + 24V

2
d
􏽢β
2
3􏽢c1ω

2
0a

4
1 + 16g

2
0V

2
d
􏽢β
2
3􏽢c1ω

2
0a

2
1

− 4g
5
0􏽢α4􏽢β3σ2ω

2
0a

2
2 + 4g

5
0􏽢α4􏽢β3ω

4
0a

2
2 + 4g

5
0
􏽢β
2
3ω

4
0a

2
1 + 4g

5
0􏽢α2􏽢β1ω

2
1a

2
2

− 4g
5
0􏽢α4􏽢β3ω

2
0ω

2
1a

2
2 − 4g

5
0􏽢α2􏽢β1ω

2
2a

2
2 + 4g

5
0􏽢α4􏽢β3ω

2
0ω

2
2a

2
2􏽩

2
� 256g

10
0 V

2
aV

2
d

􏽢β
2
1 + 􏽢β3ω

2
0􏼒 􏼓

2
􏽢c
2
2a

2
1.

(15)

-e nonlinear coupling equations (14) and (15) are
solved iteratively by Newton-Raphson method and pseudo-
arc-length continuation. Finally, the response of the am-
plitudes a1 and a2 can be obtained.

In order to obtain the sense response under the elec-
trostatic force nonlinearity in the drive direction, the
complex exponential method is used to solve the dynamic
equations of sense direction. -e approximate solution of

Drive-II (x2) is a2 cos(ω0t − θ2), and the Coriolis force can
be expressed as 2m2Ωza2ω0 sin(ω0t − θ2). Let fc be the
amplitude of Coriolis force; then fc � 2m2Ωza2ω0. Obvi-
ously, fc is related to the excitation frequency and the
amplitude of a2 in the driving direction. In equation (16), b1
and b2 are the steady-state response amplitudes of the sense
direction, respectively.

b1 �
fc c5 + c6( 􏼁

2ω2
0 + k5 + k6 − m3ω

2
0􏼐 􏼑

2
􏼔 􏼕

(1/2)
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2

+ −k2
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2

⎧⎪⎨
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⎫⎪⎬
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2
5ω
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(16)

4. Influence of Electrostatic Nonlinearity on
Dynamic Behaviours of MVG

In this section, the influence of driving comb spacing g0 and
DC bias voltage Vd on the dynamic behaviour of the MVG is
analysed. -e values of physical parameters of MVG are
shown in Table 1 [18].

4.1. Effect of Comb Spacing on Dynamic Response. -e in-
fluence of comb spacing on the dynamic performance is
considered. -e calculation parameters are set to Vd � 40V,

Va � 20V, and ε � 1, which are DC bias voltage, AC voltage,
and small parameter, respectively. According to the pa-
rameters in Table 1, the first- and second-order natural
frequencies in the driving direction are
ω1 � 30940.11(rad/s) and ω2 � 31880.86(rad/s),
respectively.

Figures 4 and 5 show the amplitude frequency responses
of Drive-I (x1) and Drive-II (x2) under different comb
spacing values. In order to verify the analytical solution
obtained by the multiple time scales method, the Runge-
Kutta method is used to solve equation (5). A series of
numerical results are obtained. Compared with the
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analytical solution, it can be seen that there is a good
agreement. -e other analytical results are also verified by
numerical simulation in the following parts.

As is shown in Figure 4, when comb spacing g0 is re-
duced from 15.0 μm to 9 μm, the amplitude of the first
resonance peak of Drive-I increases greatly and slightly
bends to the left. It is shown that nonlinear electrostatic force

has weak softening characteristics. Also, the sensitivity at the
original first resonance frequency is decreased by 22.7%, and
the sensitivity at the original second resonance frequency is
also greatly reduced.

When g0 decreases to 8 μm, the amplitude of the first
resonance peak increases further and bends to the left ob-
viously. -e typical nonlinear characteristics such as

Table 1: Physical parameters of the 4-DOF MVG.

Mass Value (kg) Damping Value (Ns/m) Stiffness coefficient Value (N/m)
m1 2.36 × 10− 7 c1 10− 4 k1 224.7
m2 2.74 × 10− 7 c2 5 × 10− 6 k2 8.2
mf 5.23 × 10− 8 c3 2 × 10− 4 k3 313.8
m3 1.35 × 10− 7 c4 10− 4 k4 260.9
— — c5 5 × 10− 6 k5 9.5
— — c6 2 × 10− 4 k6 123.7
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Figure 4: Amplitude frequency response of Drive-I. (a)g0 � 15.0 μm. (b) g0 � 9.0 μm. (c)g0 � 8.0 μm. (d)g0 � 7.0 μm.
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multistable solution, amplitude jump, and frequency offset
appear. Compared with g0 � 15.0 μm, the sensitivity of the
first resonance frequency decreased by 39.5%, the second
resonance frequency shifted slightly to the left, and the
sensitivity of the original second resonance frequency de-
creased by 44.2%.

If g0 subsequently decreases to 7 μm, the nonlinear
softening property is further enhanced and the instability
region is further expanded. As seen in Figure 4(d), there is
obviously jump phenomenon. Arrows 1 (blue) indicate that
the route of amplitude changes when the frequency ω0
increases. By contrast, when ω0 gradually decreases from
high frequency to low frequency, the change route of am-
plitude is indicated by arrows 2 (black). It is also the one of
the specific characteristics in the nonlinear dynamic systems.
Owing to the amplitude jump, multistable solution, and

frequency offset, the stability of sensitivity near the original
first resonance frequency is destroyed. -ere is another
steady-state solution far below the peak value of the first
natural frequency; it is due to the dependence of the non-
linear system on the initial conditions. When the working
frequency increases from low frequency to resonance fre-
quency, the system is periodic motion with small amplitude;
when the working frequency is reduced from high frequency
to resonance frequency, the system is periodic motion with
large amplitude.

It should be noted that the maximum amplitude of
Drive-I has exceeded the spacing value when the comb
spacing is less than 8 μm. It may lead to the phenomenon
of pull-in and even cause the damage of driving comb.
-at is, the large amplitude jump of the response not only
affects the stability of the dynamic performance of the
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Figure 5: Amplitude frequency response of Drive-II. (a)g0 � 15.0 μm. (b) g0 � 9.0 μm. (c)g0 � 8.0 μm. (d)g0 � 7.0 μm.
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MVG but also leads to the damage of the microbeam in
some cases.

As shown in Figure 5, the response of Drive-II is dif-
ferent from that of Drive-I. When g0 is equal to 9.0 μm, the
amplitude frequency response shows the weak softening
characteristics. -e response curve of the first and second
resonances slightly bends to the left, but the maximum
amplitude is reduced significantly. When g0 is reduced to
8 μm, the response curve shows the nonlinear softening
characteristics. -e nonlinear characteristics such as mul-
tistable solution, amplitude jump, and frequency offset
appear near the first peak. -e electrostatic nonlinearity
becomes very sensitive to the change of comb spacing, as
illustrated in Figures 5(c) and 5(d).

-e BW region in Figure 5 represents the 3 dB
bandwidth of the Drive-II response. As the comb spacing
decreases, the output response bandwidth gradually

increases. But the frequency corresponding to the
bandwidth slightly shifts to the left due to the nonlinear
frequency offset. In the bandwidth range, the sensitivity
of the response decreases greatly with the enhancement
of the nonlinearity. -e multistable solution caused by
the softening effect of the electrostatic nonlinearity also
appears in this range. It means that sensitivity is unstable
in the bandwidth range. If the excitation frequency of
MVG is changed from high to low, its amplitude will
jump greatly. -is jump of large amplitude may damage
the microbeam and then lead the MVG to not be able to
operate normally.

Combining equations (14)–(16), the relationship be-
tween the steady-state amplitude of the sense mode and the
driving frequency can be obtained. -e amplitude frequency
responses of the first and second primary resonances are
shown in Figures 6 and 7.
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Figure 6: Amplitude frequency response of Sense-I. (a)g0 � 15.0 μm. (b)g0 � 9.0 μm. (c)g0 � 8.0 μm. (d)g0 � 7.0 μm.
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It can be seen from Figures 6 and 7 that the amplitude
frequency responses of Sense-I and Sense-II are similar to
that of Drive-II. When g0 � 9.0 μm, as shown in Figure 7(b),
the amplitude frequency response shows the nonlinear
softening characteristics.-en, the slight change of g0 makes
the shape of the response curve change obviously.

Furthermore, the amplitude frequency response has
typical nonlinear behaviours such as multistable solution,
amplitude jump, and frequency offset in Figures 6(c), 6(d),
7(c), and 7(d). It can be seen that the electrostatic force
nonlinearity has strong influence on its amplitude frequency
response.

-e area marked by BW is the sense bandwidth of the
MVG in Figure 7. -e bandwidth of output response is
basically unchanged. But the sensitivity is greatly reduced

with the enhancement of the nonlinear electrostatic force.
-e region of multistable solution is outside the sense
bandwidth and does not affect the stability of sensitivity.
-us, when the MVG works in the sense bandwidth range,
the instability behaviours such as amplitude jump will not
appear even if there is a strong electrostatic force. It is due to
the high robustness of the sense mode that the amplitude in
the bandwidth range changes a little. -e electrostatic force
nonlinearity has little effect on the bandwidth of output
response in the sense direction.

In order to reveal the influence of comb spacing on the
dynamic characteristics of MVG more intuitively, the re-
lation curve between comb spacing and Drive-I response
amplitude is shown in Figure 8. Drive-II, Sense-I, and Sense-
II are similar to Drive-I, so they are neglected. When the
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Figure 7: Amplitude frequency response of Sense-II. (a)g0 � 15.0 μm. (b)g0 � 9.0 μm. (c)g0 � 8.0 μm. (d)g0 � 7.0 μm.
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excitation frequency is equal to the natural frequency of
Drive-I, the amplitude of Drive-I increases rapidly with the
increase of g0. -en it decreases slightly after reaching the
peak value and gradually reaches a stable value. -at is, the
amplitude of the system is no longer affected by the comb
spacing.

-ere is a critical value for the comb spacing under a
given voltage according to Figures 4–8. Dynamic behaviours
of MVG are affected by electrostatic force nonlinearity when
g0 is less than the critical value. In this case, the softening
characteristics are shown in the MVG system, and the

response curve of the first resonance bends to the left, which
leads to a significant reduction in the response amplitude at
the original design natural frequency. -e influence of
softening characteristics produced by electrostatic force
nonlinearity increases with the decrease of g0. It results in a
significant reduction in the sensitivity of the system, but the
bandwidth is basically unaffected. When g0 is larger than the
critical value, the system is no longer affected by the comb
spacing. -e effectiveness of linear design is guaranteed in
this case.

Figure 9 shows the relationship between comb spacing
and electrostatic force under three different values of DC
bias voltage. It can be seen that when Vd � 40V and
g0 > 15 μm, the variation of electrostatic force Fd with in-
creasing of g0 is not obvious and tends to be a constant. -is
is corresponding to the fact that the amplitude of Drive-I
tends to be constant when g0 > 15 μm in Figure 8. It is also
further verified that the dynamic characteristics of the MVG
will be no longer affected by the comb spacing. When g0
decreases from 15 μm to 7 μm, the electrostatic force increases
rapidly and the increase rate reaches 91.3%. -ere is an
obvious fringe effect between comb teeth in this case, which
has a great impact on the electrostatic force [21]. Again, it can
be confirmed that the softening characteristics of electrostatic
force increase with the decrease of g0 in Figure 4.

As shown in Figure 10, the electric field distributions of
the comb structure under different comb spacing are cal-
culated by using the finite element software. When g0 is in
the range of 15 μm ∼ 20 μm, there is almost no change in the
electric field at the edge of the comb. In other words, the
fringe effect is not obvious, as shown in Figures 10(a) and
10(b). When g0 decreases from 13 μm to 12 μm, the electric
field on the edge of the comb changes obviously. -e
equipotential surface of the electric field intersects with the
fixed comb. -e fringe effect is enhanced, which leads to the
softening characteristics of the electrostatic force. When
g0 � 5 μm, the electric field on the edge of the comb deforms
greatly. It means that the strong fringe effect causes theMVG
to show the strong softening characteristics of electrostatic
force, which will lead to serious instability of the system.-e
simulation results are consistent with the previous theo-
retical analysis (as shown in Figures 4, 8, and 9), verifying the
reliability of the theoretical analysis results.

-erefore, in order to avoid the pull-in phenomenon and
ensure the high sensitivity and stability of Drive-I, the comb
spacing should be greater than the critical value when de-
signing comb spacing of MVG. It should be considered that
the value cannot be too large because of the compactness of
the structure.

According to the above analysis, the critical value of
driving comb spacing in the MVG can be determined by
nonlinear dynamic analysis. Based on this, the comb spacing
could be decreased as small as possible under the premise of
effectiveness of linear design. -is study provides a reliable
basis of determining comb spacing of MVG.

4.2. Effect of DC Bias Voltage on Dynamics Response. It can
be seen from the previous section that the response
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curves of the system begin to show softening charac-
teristics when Vd � 40V and g0 � 9.0 μm. -en the in-
fluence of DC bias voltage on the dynamics response of 4-
DOFMVG is studied when the comb spacing g0 is 9.0 μm.
Figures 11–14 show the amplitude frequency response of

drive mode and sense mode under different DC bias
voltage, respectively.

When the comb spacing g0 � 9.0 μm and the DC bias
voltage Vd increases from 40V to 60V, the maximum
amplitude of Drive-I increases greatly. -e response curves

(a) (b) (c)

(d) (e)

Figure 10: Electric field distribution of comb structure when Vd � 40V. (a)g0 � 20.0 μm. (b)g0 � 15.0 μm. (c)g0 � 13.0 μm.
(d)g0 � 12.0 μm. (e)g0 � 5.0 μm.
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Figure 11: Amplitude frequency response of Drive-I. (a)Vd � 40V. (b)Vd � 50V. (c)Vd � 60V.
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of the first resonance frequency bend to the left gradually.
Nonlinear characteristics such as multistable solution, am-
plitude jump, and frequency offset appear near the first peak.
Compared with the original linear design, the sensitivity at
the original first and second resonance frequencies is re-
duced, as shown in Figure 11.

As is shown in Figures 12–14, the influences of DC bias
voltage on Drive-II, Sense-I, and Sense-II are similar. -e
influence of electrostatic force nonlinearity is strengthened
with the increase of DC bias voltage. -e bandwidth range
corresponding to the unstable region is increased. However,
the unstable region is more and more away the working
bandwidth of the MVG. -e amplitude jump is also

significantly reduced, which does not have enough influence
on the stability of the dynamic performance. Because the
output response of Sense-II is the sensitivity of the MVG, an
important conclusion is that the sensitivity of the MVG
decreases greatly with the increase of DC bias voltage.

In order to analyse deeply the influence of DC bias
voltage and comb spacing on the MVG, the influence of DC
bias voltage on amplitude of Drive-I under different comb
spacing is obtained when the excitation frequency is equal to
the natural frequency of Drive-I, as shown in Figure 15.

In Figure 15, when g0 is fixed, the amplitude of Drive-I
increases until reaching the peak value with the increase of
DC bias voltage and then decreases gradually. At the left of
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Figure 12: Amplitude frequency response of Drive-II. (a)Vd � 40V. (b)Vd � 50V. (c)Vd � 60V.
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Figure 13: Amplitude frequency response of Sense-I. (a)Vd � 40V. (b)Vd � 50V. (c)Vd � 60V.
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peak point, the electrostatic force is almost linear. -e
amplitude of response of Drive-I increases with the increase
of bias DC voltage. At the right of the peak point, the
nonlinear electrostatic force increases with the increase of
the DC bias voltage. -e softening characteristics caused by
the electrostatic force nonlinearity result in the decrease of
the natural frequency. -e resonance point is shifted to the
left. -e amplitude of the response at the natural frequency
decreases greatly. Obviously, the voltage corresponding to
the peak point is the critical value where the electrostatic
force nonlinearity produces effects.-e voltage of the critical
value increases with the increase of comb spacing. -is
phenomenon is also reflected in Figure 9.

Designing a higher DC bias voltage of driving comb is an
important way to improve the sensitivity of MVG. However,
when the voltage exceeds a critical value, the sensitivity of
the MVG system is not increased but decreased because of
the softening characteristics of electrostatic force. -erefore,
it is necessary to consider the influence of DC bias voltage on
electrostatic force nonlinearity in the parameters design of
MVG. -e above study provides a feasible idea for the
determination of critical value of DC bias voltage in the
MVG.

5. Conclusions

In this paper, a 4-DOF MVG with double drive mode and
double sense mode was investigated by using multiple
time scales method of nonlinear dynamics. -e calcula-
tion results are also verified by finite element method and
numerical simulation. -e influence of DC bias voltage
and comb spacing on the nonlinearity of electrostatic
force was studied.

-e DC bias voltage and the comb spacing have sig-
nificant influence on the nonlinearity of electrostatic force
and the dynamic behaviours of the MVG. -e strength of
electrostatic force nonlinearity increases with the decrease of
nonoverlapping size and the increase of DC bias voltage. It
will cause the MVG system to show stiffness softening. Due
to the good robustness of the bandwidth, the influence of the
electrostatic force nonlinearity on the bandwidth can be
neglected. However, the offset of the resonance frequency
and amplitude jump caused by the softening characteristics
of electrostatic force lead to a decrease in sensitivity and
affect stability of sensitivity.

Although the electrostatic nonlinearity has a great
influence on the dynamic behaviour, its influence can be
avoided by the reasonable design of the comb spacing and
DC bias voltage. -e effectiveness of linear design of the
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Figure 15: -e influence of DC bias voltage on the amplitude of
Drive-II under different comb spacing.
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Figure 14: Amplitude frequency response of Sense-II. (a)Vd � 40V. (b)Vd � 50V. (c)Vd � 60V.
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MVG can be guaranteed. -ere exists a critical value for
comb spacing and DC bias voltage. -en, detecting the
critical value is particularly important. In this paper,
determining the critical values is demonstrated by
nonlinear dynamics analysis. -e results can be sup-
ported by the finite element analysis and numerical
simulation.
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