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A nonlinear train-track-bridge system (TTBS) considering the random track irregularity and mass of train is discussed. Based on
the Karhunen–Loéve theory, the track irregularity is expressed and input into the TTBS, and the result of random response is
calculated using the point estimation method. Two cases are used to compare and validate the applicability of the proposed
method, which show that the proposed method has a high precision and efficiency. *en, taking a 7-span bridge and a high-speed
train as an example, the calculation results of random response of the nonlinear and linear wheel-rail model are compared, and the
results show that for the bridge and rail response, the nonlinear and linear models are almost the same. Finally, comparing the
calculated probability distribution results with the test results, it shows that the method can be applied to the prediction of actual
response range.

1. Introduction

Bridge structure occupies a large proportion in high-speed
railway (HSR) lines [1, 2]. Because of inevitable errors in
processing, pavement technology, environment, and other
potential problems of track structure, random track ir-
regularity occurs in a train-track-bridge system (TTBS)
under excitation, affecting the stability and safety of train
operation [3, 4]. When a train passes over a bridge, the
bridge is affected by train vibration; simultaneously, the
bridge vibration affects the train vibration [5–7]. *e in-
teraction between train and bridge vibrations leads to a
coupling vibration effect; in this process, the effects on
system vibration due to track irregularity cannot be ig-
nored. Various rail irregularities are superimposed by
random irregularities of different wavelengths, phases, and
amplitudes [8]. *is is a complex random process related to
the railway line. *erefore, in dynamics analysis, a TTBS
should be regarded as a random system. *e track irreg-
ularity can be expressed by many methods including power

spectrum statistics, Karhunen–Loéve expansion (KLE) [9],
and others.

In recent years, the random dynamics of the TTBS has
attracted much attention. *e most common calculation
method for random dynamics is Monte Carlo simulation
(MCS) [10, 11]. MCS requires abundant samples to obtain a
convergence result in complex engineering problems, indi-
cating that MCS is subjected to many limitations in practical
applications. To obtain an efficient and accurate calculation
method for the random dynamics of the TTBS, many studies
have been conducted. For instance, the pseudo-excitation
method was used for the random dynamics analysis of the
train-track system and TTBS [12–16]. It is convenient to use
the pseudo-excitation method for response power spectrum
calculation in both nonstationary and stationary random
excitation structural analysis with a high application value.
*e probability density evolution method (PDEM) was
successfully applied in the analysis of train-track and train-
bridge coupling dynamics considering track irregularity of
randomness [17–21]. An efficient train-bridge random
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response method capable of global sensitivity analysis has
been proposed in reference [22]. Wu and Law [23] used the
stochastic finite element spectral method and regarded road
irregularity as a random process. Jiang [24] used the point
estimation method (PEM) to the stochastic TTBS and ana-
lyzed the sensitivity of random parameters. *e PEM is a
highly accurate and fast statistical moment calculation
method, first proposed by Rosenblueth [25]. *e core of the
PEM is the use of the Gaussian integral method to calculate
statistical moments.

*is paper is a further discussion of the previous
works [24, 26, 27]. Hertz contact theory has been used for
the calculation of normal contact force between a wheel
and rail; the relationship between force and wheel/rail
displacement is nonlinear. Under overloading and high-
speed operation, strong wheel-rail dynamic effect results
in the disruption of vertical dynamic load between the
wheel and rail, severely affecting the bridge safety and
passenger comfort as well as directly affecting the dy-
namic response of the bridge [28]. In the TTBS, the
treatment of wheel-rail contact force as a nonlinear in-
teraction can more truly reflect the dynamic situation; in
addition, in some extreme track irregularity situations
such as earthquake [29,30], settlement [31,32], creep, and
rail damage [33,34], the wheel may jump from the rail;
i.e., the always-close wheel/rail assumption is not suitable
for use. *ese pose a challenge to the application of
random vibration theory. *erefore, this paper proposes
a nonlinear random dynamics calculation method suit-
able for the TTBS with stochastic track irregularity. In
this method, the track irregularity is expressed by KLE,
and then the system response is calculated using the PEM
according to the characteristics of KLE. *e difference
between nonlinear and linear rail bridge systems is dis-
cussed as well.

2. Dynamic Model of Nonlinear TTBS

2.1. Wheel-Rail Contact. *is study focused on the vertical
movement of the TTBS; thus, only the vertical relationship
of wheel-rail contact is considered. *e normal force is the
vertical wheel-rail force in this system, which is determined
by compression and calculated using the famous Hertz
nonlinear elastic contact theory, as follows:

Fci �

1
G

zwi − zri − zRoui( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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(1)

where zwi is the vertical displacement of the ith wheel set; zri is
the vertical displacement of rail at the position of ith wheel
set; zRoui is the track irregularity at the position of ith
wheelset; andG is the contact constant. For the abrasion type
tread, G� 3.86R− 0.115 ×10− 8(m/N2/3), and R is the radius of
wheel rolling circle.

Sometimes, the Hertz spring stiffness can be linearized as
follows [35]:

Fci �
− kHL zwi − zri − zRoui( 􏼁

􏼌􏼌􏼌􏼌
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(2)

where kHL is the linearized contact stiffness of wheel-rail and
can be calculated as follows:

kHL �
2
3G

p
(1/3)
0 , (3)

where p0 is the static load of the wheel.

2.2. Dynamic Model of Train-Track-Bridge. As shown in
Figure 1, one carriage consists of one carbody, two bogies,
and four wheelsets, which is a multifreedom mass-spring-
dashpot system. In the model,mc,mt, and mw are the mass of
carbody, bogie, and wheelset, respectively; Jc, Jt, and Jw are
the moment of inertia of carbody, bogie, and wheelset,
respectively; k1 and k2 are the stiffness of primary and second
suspension spring, respectively; and c1 and c2 are the
damping coefficient of primary and second suspension
spring, respectively. Each carbody has two degrees of
freedom (DOF) (zc, φc), each bogie has two DOFs (zt, φt) as
well, and each wheel only has one DOF (zw). *us, each
carriage has 10 DOFs. A dynamic equation of the train can
be derived from the energy principle, as follows [36]:

MvXv

..

+ CvXv

.

+ KvXv � Fv. (4)

Elastic Bernoulli–Euler beams are utilized for rail, track
slab, and bridge. Two steel rails are equivalent to one. *e
fasteners between the rail and rail plate are modeled as
spring-dashpot systems, and the mortar layer between the
track slab and girder is modeled as a continuous spring-
damping system. *e mass of fastener and CA mortar layer
is neglected, and the structural damping of the rail and track
slab is not considered. *e damping of girders is assumed as
Rayleigh damping. *e entire track-bridge system can be
modeled as a three-layer beam, the model can be established
by FEM, and the dynamic equation can be written as follows:

MbXb

..

+ CbXb

.

+ KbXb � Fb, (5)

where Xb , _Xb, and €Xb are the displacement, velocity, and
acceleration of the bridge and Fb is the force vector of the
bridge. *e gravity of structure is neglected in Fb.

*e train and track-bridge system can be coupled using
the wheel-rail relationship, and the system dynamic equa-
tion can be derived from equations (4) and (5), which can be
written as follows:
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(6)

*e numerical time step-by-step integral method can be
used to solve the system dynamic equation. Equation (1) or
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(2) shows that the calculation of force of wheel-rail is related
to the structural response of the wheel; therefore, iteration is
needed in the implicit algorithm or using the explicit al-
gorithm [37].

3. Karhunen–Loéve Expansion

3.1. 3eory. It is assumed that u(x, θ) is a real-valued sto-
chastic process, and u(x) is the mean value of u(x, θ), and
C(x1, x2)is a covariance function. According to Mercer’s
theorem, C(x1, x2) is bounded, symmetric, and positive and
can be expanded as follows:

C x1, x2( 􏼁 � 􏽘

∞

n�1
λnφn x1( 􏼁φn x2( 􏼁, (7)

where λn and φn(x) are the eigenvalues and eigenfunctions
of C(x1, x2), respectively. Equation (7) can be solved using
the following equation:

􏽚
D

C x1, x2( 􏼁φn x1( 􏼁dx � λnφn x2( 􏼁. (8)

*e eigenfunctions φn(x) satisfy orthogonal property,
and it can be written as follows:

􏽚
D
φn x1( 􏼁φm x2( 􏼁dx � δnm, (9)

where δnm is the Kronecker delta. *e stochastic process
u(x, θ) can be expressed as follows:

u(x, θ) � u(x, θ) + 􏽘
∞

n�1
ξn(θ)

��

λn

􏽱

φn(x). (10)

*is is the KLE, where ξn(θ) is a set of uncorrelated
random variables, which can also be written as follows:

ξn(θ) �
1
��
λn

􏽰 􏽚

D

􏽥u(x, θ)φn(x)dx. (11)

When u(x, θ) belongs to the Gaussian stochastic process,
ξn(θ)will be a group of uncorrelated variables, obeying the
standard normal distribution.

In application, the first M terms in equation (10) should
be truncated, which can be expressed as follows:

u(x, θ) � u(x, θ) + 􏽘
M

n�1
ξn(θ)

��

λn

􏽱

φn(x). (12)

*e accuracy of representation of stochastic field de-
pends on M.

3.2. Numerical Expression. It is assumed that r(x, θ) is a
spatial one-dimensional stochastic process; its length is L.
Isometric discretization of stochastic processes is Δx, and
the number of discrete points is n � L/Δx + 1. After enough
stochastic samples were obtained, the stochastic process
r(x, θ) can be represented as follows.

*ere is a sample set of stochastic R(x, θ) � r1(x, θ);􏼈

r2(x, θ), . . . , rm(x, θ)}, where m is the number of samples
and ri(x, θ) is one of the samples with order 1×n. *e co-
variance matrix ΓR,R with order n×n can be obtained. *en,
the corresponding eigenvalues and eigenfunctions of sto-
chastic process can be calculated using the following
equation:

ΓR,RΔx􏼐 􏼑φi − λiφi � 0, (13)

where λn and φn(x) are the eigenvalues and eigenfunctions
of KLE, respectively, and φn(x) should be normalized.

After the truncation at the Mth order, the stochastic
process can be represented by the KLE, which is denoted as
follows:

r(x, θ) � r(x, θ) + 􏽘
M

n�1
ξn(θ)

��

λn

􏽱

φn(x), (14)

where r(x, θ) is the expectation of R(x, θ).
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Figure 1: Train-track-bridge model.
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4. Point Estimation Method

It is assumed that p(x) is a probability density function
(PDF) of a continued random variable Y, and Y� g(X). *e
expectation of random variable can be calculated using the
following equation:

μ � E[g(X)] � 􏽚
∞

− ∞
G(X)p(X)dX. (15)

*e variance of Y can be calculated using the following
formula:

σ2 � 􏽚
∞

− ∞
[g(X) − μ]

2
p(X)dX. (16)

When the function contains multiple random variables,
it may be difficult to calculate the moments such as the
central moments of Y�G(X). According to the dimension
reduction method for multiple variables function proposed
in [38], a n-dimensional variable function g(X) can be
approximated using several s-dimensional variable function
gs(X), which can be written as follows:

g(X) � g
s
(X) � 􏽘

s

i�0
(− 1)

i
C

i
n− s+i− 1 􏽘

k1<···<ks− i

ys− i, (17)

with ys− i � g(c1, . . . , ck1− 1, xk1
, ck4+ 1, . . . , ckc− 1− 1, xkc− i

, ckc− 1+1,

. . . , cn), where s< n and c � [c1, c2, . . . , cn] is the reference
point.

When s� 1, the function is a one-variable dimensional
reduction. Equation (17) can be converted into the following
equation:

g(X) � g
1
(X) � 􏽘

n

i�1
gi Xi( 􏼁 − (n − 1)g(c), (18)

with gi(Xi) � g(c1, . . . , ci− 1, Xi, ci+1, . . . , cn).
By substituting equation (18) into equations (15) and

(16), the expectation and variance of Y can be approximately
expressed as follows:

μ � E 􏽘
n

i�1
gi Xi( 􏼁 − (n − 1)g(c)⎡⎣ ⎤⎦ � 􏽘

n

i�1
E gi Xi( 􏼁􏼂 􏼃 − (n − 1)g(c),

(19)

σ2 � E 􏽘
n

i�1
gi − μ( 􏼁

2
− (n − 1)[g(c) − μ]

2⎡⎣ ⎤⎦

� 􏽘
n

i�1
E gi Xi( 􏼁 − μ􏼂 􏼃

2
􏽮 􏽯 − (n − 1)[g(c) − μ]

2
.

(20)

When the random variable in function gi(Xi) obeys the
standard Gaussian distribution, E[gi(Xi)] and
E[(gi(Xi) − μ)2] can be calculated approximately using the
Gaussian–Hermite integration function, which can be
expressed as follows:

E gi Xi( 􏼁􏼂 􏼃 � 􏽘
r

l�1

wGH,l��
π

√ gi

�
2

√
xGH,l􏼐 􏼑,

E g Xi( 􏼁 − μ( 􏼁
2

􏽨 􏽩 � 􏽘

r

l�1

wGH,l��
π

√ gi

�
2

√
xGH,l􏼐 􏼑 − μ􏽨 􏽩

2
,

(21)

where r is the number of estimating points of Gaus-
sian–Hermite integration and xGH,l and wGH,l are the
abscissas and weights for Gaussian–Hermite integration,
respectively; their detailed values with r� 3 are shown in
Table 1.

5. Stochastic Dynamic Method for TTBS

Samples of track irregularity can be obtained from the actual
railway line measurement or converted into spatial samples
using power spectral density (PSD). After obtaining multiple
spatial samples for irregularity, the eigenvalues and eigen-
functions expressed by the KLE of track irregularity can be
derived. Assuming track irregularity 􏽥zR(x, θ) as a Gaussian
random process, its KLE can be expressed as follows:

z(x) � z(x) + 􏽘

m

k�1

��
λk

􏽰
ξkφk(x), (22)

where z(x, θ) is the mean value of track irregularity and ξk is
a set of distributed random variables independent of each
other. Track irregularity is a stochastic process with zero
mean value; thus, z(x, θ) � 0. Equation (22) can be sim-
plified as follows:

z(x) � z(x) + 􏽘
m

k�1

��
λk

􏽰
ξkφk(x). (23)

After obtaining an irregularity sample, it can be calcu-
lated as the irregularity amplitude in the model, i.e., the
irregularity acts on the wheel-rail force of the train-bridge
system as an external random excitation, and the corre-
sponding response of the TTBS can be obtained. *erefore,
the entire TTBS is a stochastic system with m random
variables. According to the characteristics of equation (23),
when the PEM is used for stochastic response calculation,
zero can be selected as the reference point. In the calculation
of stochastic system response through point estimation, the
track irregularity sample corresponding to the lth Gaussian
point of kth random variable can be expressed as follows:

􏽥zk,l(x) �
�
2

√
xGH,l

��

λk

􏽱

φk(x). (24)

Taking the displacement response of time t at some point
of the bridge for instance, the corresponding response of the
system R(k, l, t) can be obtained after calculating the track
irregularity samples corresponding to each Gaussian point
of each stochastic variable as the track irregularity samples of
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the system. *e corresponding response of zero-irregularity
sample is R0(t).*e expectation and variance of response can
be obtained by substituting all R(k, l, t) and R0 into equations
(19) and (20):

Mean · (t) ≈ 􏽘
m

k�1
􏽘

r

l�1

wGH,l��
π

√ R(k, l, t) − (m − 1)R0(t),

Var · (t) � 􏽘
m

n�1
􏽘

r

l�1

wGH,l��
π

√ [R(k, l, t) − Mean · (t)]
2

− (m − 1)

· R0(t) − Mean · (t)􏼂 􏼃
2
.

(25)

Except the nonzero Gaussian point of kth stochastic
variable, other track irregularity samples are zero-amplitude
irregularity, which is R(k, (r+ 1)/2, t)�R0(t). *erefore,
there is no need to repeat the calculation in the program.*e
standard deviation value of response can be calculated using
the following equation:

Std.D(t) �
�������
Var · (t)

􏽰
. (26)

6. Numerical Simulation

Track irregularity can be measured using the railway line [9]
and can also be obtained by converting the existing PSD
function into spatial samples. Power spectrum simulation is
used to obtain irregularity samples, where German low-
interference PSD is used [12]. 10,000 irregularity samples
with 1,000meters are obtained using the trigonometric se-
ries method [8] and utilized as the initial sample. *e results
indicate that KLE truncation number 138 can obtain more
than 98% of the probability information; therefore, the
number of random variables is considered as 138.

6.1. Comparison and Validation

Case 1 (a simple model). *e nonlinear wheel-rail contact
model may cause some trouble for the calculation of the
stochastic TTBS; for example, the Hertz spring should be
linearized in stochastic analysis [40]; besides, in the case of
extreme track irregularity condition, the wheelset may jump,
i.e., then there is no contact between the wheel and rail. To
evaluate the applicability of the proposed method in the
random TTBS with random track irregularity, a simple
model is established, as shown in Figure 2. *is model
contains three DOFs, carbody-bogie system, wheel, and
track. Besides gravity, the simple system is also excited by a
random irregularity. When running to the third second, a
5mm additional irregularity is suddenly added to force the

wheel to jump to analyze the calculation accuracy of the
proposed method after the wheel jump. *e MCS method is
used to compare and verify the accuracy of KLE-PEM. *e
mean and standard deviation values of displacement re-
sponse of the wheel calculated using two methods are shown
in Figure 3; it is observed that the dynamic response of the
system enters the stable stage in two seconds. After being
subjected to a sudden track irregularity excitation at the 3rd
second, the wheel jumps from the track and then falls back to
the track and returns to stability in about 0.2 s. In the entire
process, the mean and standard deviation values of response
calculated using the KLE-PEM are very close to those ob-
tained by MCS, i.e., the proposed method can accurately
calculate random responses with nonlinear wheel-rail
contact even in the case of a jump, and it can be used to study
extreme irregularities such as earthquake, settlement, creep,
and rail damage in the future.

Case 2 (comparison with MCS). *e comparison results
obtained withMCS are used to validate the accuracy of KLE-
PEM in the nonlinear stochastic TTBS. In this case, only one
carriage and one-span bridge are evaluated to save time, and
the subgrade section is rigid. *e calculation load of the
TTBS for MCS is 5000. *e number of KLE items after
truncation is 138, and when using three nodes of Gaussian
quadrature, the calculation load of the TTBS using KLE-
PEM is 138× 2 + 1� 277. Wheel-rail contact force is cal-
culated according to a nonlinear Hertz spring. *e train
parameters [41] are shown in Table 2, and the parameters of
the bridge and rail system are shown in Table 3.

Figure 4 shows the comparison of mean and standard
deviation values and vertical displacement of rail fastener in
the middle span calculated using KLE-PEM and MCS. It can
be concluded that for the stochastic dynamic response of the
track-bridge system, the results of KLE-PEM are almost
consistent with the results of MCS. Figure 5 shows a
comparison of the time-histories response of mean and
standard deviation of the first wheel-rail force passing

Table 1: Abscissas and weights for Gaussian–Hermite integration
with r� 3 [39].

Point 1 2 3
xGH,l − 1.22474 0 1.22474
wGH,l 0.29541 1.18164 0.29541

kH Track

Irregularity

mc = 1.36 × 104 kg

mw = 2.4 × 103 kg

mr = 36 kg

kw = 2.0 × 106 N/m
cw = 6.0 × 104 N·s/m

kw = 4.8 × 107 N/m
cw = 7.5 × 104 N·s/m

Figure 2: Simple model of the train-track system.
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through the bridge. It can also be concluded that the results
calculated using KLE-PEM are almost consistent with the
results obtained using MCS.

6.2. Comparison between Linear and Nonlinear Simulation.
A standard simply supported 7-span box girder with 32m
length per span is modeled to evaluate the effect of random
track irregularity on the TTBS, and the difference between
linear and nonlinear Hertz contacts is evaluated. A rigid
subgrade is used for the simulation out of the bridge part.
*e treatment of boundary conditions between adjacent
spans is shown in Figure 1.*e train uses four carriages ICE-
3 train, and there are two motor cars at the head and tail of
the train. To ensure the dynamic response stability before the
train entering the bridge, the train starts running from 300m
away from the left side of the first span bridge.*e operation
speed of the train is 250 km/h. *e TTBS considering linear
Hertz and nonlinear Hertz is established.

Figure 6 shows the mean and standard deviation of
midspan displacement response of fourth bridge span under
the nonlinear and linear wheel-rail relationship, where the
horizontal ordinate represents the time for the first wheelset
entering the fourth bridge span. It can be concluded that the

bridge dynamic responses under the two wheel-rail force
models are similar. In addition, in the perspective of time-
histories response trend, the mean value of time-histories
response of the bridge has two peaks and three troughs.
However, the standard deviation has only two peaks before
and after, and the time of the first peak is inconsistent with
the time of the first trough of the mean value.

*e mean and standard deviation of time-histories re-
sponse of vertical acceleration at the center of gravity of the
first carbody are shown in Figure 7, where the horizontal
ordinate is the time taken for the first wheelset entering the
first bridge span. It shows that the standard deviations of
train acceleration obtained by the two wheel-rail force
models are inconsistent. *e standard deviation obtained by
linear wheel-rail relationship is less than that obtained by
nonlinear wheel-rail relationship in a relatively large time. In
the entire process, the values of standard deviation obtained
from the linear wheel-rail relationship are all around
6.7×10− 2m/s2, whereas the standard deviations obtained
from the nonlinear relationship are relatively large at the
initial stage of entering the bridge and then gradually de-
creases to 6.8×10− 2m/s2.

*e mean and standard deviation of the time-histories
response of vertical wheel-rail contact force of the first
wheelset are shown in Figure 8, where the horizontal or-
dinate is the time taken for the first wheelset entering the first
bridge span. Because the subgrade section adopts rigid
subgrade, there will be greater contact force at the moment
when the wheelsets drive into and out of the bridge.
*erefore, the wheel-rail force of the second span to the sixth
span of the wheel set is selected for analysis; it can be seen
that the mean values of contact force calculated by the
nonlinear and linear model both oscillate about 20 kN along
the axle load, and the magnitude of the contact force ob-
tained from the nonlinear model is larger than that of the
linear model. Regarding the standard deviations of wheel-
rail force, it shows a significant difference between the two
models at the initial stage when the train enters the bridge.
*en, the difference gradually decreases, both of which
oscillate between 2.5 kN and 4 kN. *e standard deviations
obtained from the linear wheel-rail relationship are less than
that obtained from the nonlinear wheel-rail relationship in a
relatively long time.

6.3. Applied for Response Prediction. When it is necessary to
obtain the response value of the bridge, the most accurate
method is to install sensors in the field for actual mea-
surement, but this method is very time-consuming and
inconvenient. *erefore, the numerical simulation method
is usually used to obtain the bridge response. However, if the
deterministic analysis is used, the result will be different
from the actual value because there are various randomness
in the TTBS, such as track irregularity, train load, and so on.
*e results of probability range can be obtained by using the
proposed stochastic analysis method. *e accuracy of the
probability distribution range obtained by KLE-PEM can be
verified by comparing the test results in Ref. [42]. In this
case, besides the stochastic track irregularity, there is also the
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Figure 3: Comparison of displacement of the wheel.

Table 2: Properties of train.

Notation Unit Trailer car/motor car
mc kg 4.40×104/4.80×104

mt kg 2.40×103/3.20×103

mw kg 2.40×103/2.40×103

Jc kg·m2 2.70×106/2.70×106

Jt kg·m2 2.20×103/7.20×103

K1z N/m 0.70×106/1.00×106

K2z N/m 3.00×105/4.00×105

C1z N·s/m 4.00×104/3.00×104

C2z N·s/m 5.00×104/4.00×104

Lc m 8.6875/8.6785
Lt m 1.25/1.25
Lww m 4.90/4.90
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Table 3: Properties of the track-bridge.

Notation Unit Item Value
Er N/m2 Young’s modulus of rail 2.06×1011

vr — Poisson’s ratio of rail 0.3
Ir m4 Mass moment of inertia of rail cross section 2× 3.217×10− 5

mr kg/m Mass per unit length of rail 2×60.64
Es N/m2 Young’s modulus of slab 3.6×1010

vs – Poisson’s ratio of slab 0.2
Is m4 Mass moment of inertia of slab cross section 1.6×10− 3

ms kg/m Mass per unit length of slab 1.2×103

krs N/m Spring stiffness of fastener 2× 5.0×107

crs N·s/m Damping coefficient of fastener 2× 3.625×104

ksb N/m2 Spring stiffness of CA layer per unit length 2×1.5×109

csb N·s/m2 Damping coefficient of CA layer per unit length 2× 8.3×104

Eb N/m2 Young’s modulus of girder 3.45×1010

vb — Poisson’s ratio of girder 0.2
Ib m4 Mass moment of inertia of girder cross section 12.744
mb kg/m Mass per unit length of bridge girder 2.972×104

ζb — Damping ratio of girder 0.05
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Figure 4: Comparison of displacement of fastener at midspan.
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random axle load, in which the train carbody mass is a
normal distribution random variable with a coefficient of
variation of 0.05. It was proved that the PEM can calculate
the response of the TTBS with uncertain parameter precisely
[24]; therefore, only one independent random variable needs
to be added in KLE-PEM. (Mean± 3 Std. D) are used to
guarantee the probability range of results; the calculation
results and the test data of maximum values of vertical
displacement at bridge midspan are shown in Figure 9. It can
be found that the test results are basically within the cal-
culated probability distribution range, which means that the
proposed method can be used to effectively predict the
distribution range of response results.

7. Conclusions

In this study, a stochastic analysis method KLE-PEM is
introduced to analyze the random train-track-bridge dy-
namic model, and the difference between the nonlinear and
linear Hertz contact model is discussed, and the proposed

method compared with the actual measurement results
mainly concluded as the following results:

(1) *e proposed method can accurately calculate the
random response after the wheel jumps from the
extreme track irregularity.

(2) *e mean and standard deviation of the stochastic
dynamic system through KLE-PEM and MCS are
approximate. Meanwhile, under the same accuracy,
KLE-PEM is an order of magnitude higher than
MCS.

(3) In the TTBS, nonlinear and linear wheel-rail contact
models are compared. It can be concluded that there
is almost no difference in the effect of these two
models on the bridge response. *e effects on train
response are different at the initial stage when the
train enters a bridge, but with the train operation, the
difference decreases gradually.

(4) KLE-PEM can be used to effectively predict the
distribution range of response.

Data Availability

*e data used to support the findings of the study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*e work described in this paper was supported by grants
from the National Natural Science Foundation of China
(grant nos. U1934207, 51778630, and 11972379) and the
Fundamental Research Funds for the Central Universities of
Central South University (grant no. 2020zzts148).

References

[1] Y. Zhang, L. Jiang, W. Zhou, Y. Feng, Z. Tan, and X. Chai,
“Study of bridge-subgrade longitudinal constraint range for
high-speed railway simply-supported beam bridge with
CRTSII ballastless track under earthquake excitation,” Con-
struction and Building Materials, vol. 241, Article ID 118026,
2020.

[2] L. Jiang, Y. Zhang, Y. Feng, W. Zhou, and Z. Tan, “Simplified
calculation modeling method of multi-span bridges on high-
speed railways under earthquake condition,” Bulletin of
Earthquake Engineering, vol. 18, no. 5, pp. 2303–2328, 2020.

[3] A. Paixão, E. Fortunato, and R. Calçada, “*e effect of dif-
ferential settlements on the dynamic response of the train–
track system: a numerical study,” Engineering Structures,
vol. 9, 2015.

[4] Y.-S. Wu and Y.-B. Yang, “Steady-state response and riding
comfort of trains moving over a series of simply supported
bridges,” Engineering Structures, vol. 25, no. 2, pp. 251–265,
2003.

[5] J. Yu, L. Jiang, W. Zhou, X. Liu, Z. Lai, and Y. Feng, “Study on
the dynamic response correction factor of a coupled high-
speed train-track-bridge system under near-fault

50

100

150

200
M

ea
n 

(k
N

)

2

3

4

5

6

St
d.

 D
 (k

N
)

1 2 30
Time (s)

Mean: nonlinear
Mean: linear

Std.D: nonlinear
Std.D: linear

Figure 8: Vertical contact force of first wheelset (double side).

0.5

0.6

0.7

0.8

D
isp

. (
m

m
)

200 300 400100
Speed (km/h)

Test data
Mean + 3Std. D
Mean – 3Std. D

Figure 9: Calculation results and test data.

8 Shock and Vibration



earthquakes,” Mechanics Based Design of Structures and
Machines, pp. 1–19, 2020.

[6] L. Jiang, Y. Zhang, Y. Feng, W. Zhou, and Z. Tan, “Dynamic
response analysis of a simply supported double-beam system
under successive moving loads,” Applied Sciences, vol. 9,
no. 10, p. 2162, 2019.

[7] Z. Lai, L. Jiang, and W. Zhou, “An analytical study on dy-
namic response of multiple simply supported beam system
subjected to moving loads,” Shock and Vibration, vol. 2018,
pp. 1–14, 2018.

[8] Z. Lai, L. Jiang, X. Liu, Y. Zhang, and W. Zhou, “Analytical
investigation on the geometry of longitudinal continuous
track in high-speed rail corresponding to lateral bridge de-
formation,” Construction and Building Materials, Article ID
121064, 2020.

[9] M. Zhu, X. Cheng, L. Miao, and X. Sun, “Random field
modeling of track irregularity of Beijing-Guangzhou high-
speed railway with Karhunen-Loève expansion,” Interna-
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