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Based on the governing differential equation of out-of-plane curved beam, the wave propagation behavior, free vibration, and
transmission properties are presented theoretically in this paper. Firstly, harmonic wave solutions are given to investigate the
dispersion relation between frequency and wave number, cut-off frequency, displacement, amplitude ratio, and phase diagram.
+e frequency spectrum results are obtained to verify the work by Kang and Lee. Furthermore, natural frequencies of the single
and composite curved beam are calculated through solving the characteristic equation in the case of free-free, clamped-clamped,
and free-clamped boundaries. Finally, the transfer matrices of the out-of-plane curved beam are derived by combining the
continuity between the different interfaces. +e transmissibility curves of the single and composite curved beam are compared to
find the vibration attention band. +is work will be valuable to extend the study of the out-of-plane vibration of curved beams.

1. Introduction

Curved beams are widely used in many built-up structures
and arch structures because of their valuable engineering
applications. Compared with straight beams, plate, and
shafts, the curved beams are extremely complex, and the
vibration problems of these curved beam structures are still
serious, especially the out-of-plane vibration.

+e free vibration and transmission response of curved
members have been deeply investigated. Mace has made a
detail research on the vibration behavior of beam systems by
dividing waves into positive-going and negative-going waves
using wave approach. He also deduced the reflection matrix
in the case of simply supported, clamped, and free
boundaries. From the wave point, the characteristic equation
of the beam is obtained theoretically for the analysis of free
vibration [1]. Huang investigated the free vibration of ro-
tating thin rings using the wave approach. +e harmonic
wave solutions, frequency spectra, displacement amplitude

ratio, and cut-off frequencies are also analyzed theoretically
[2].

Using the governing equation, Kang analyzed the free
vibration of a planar circular curved beam system through
considering multiple point discontinuities such as elastic
support, attached mass, and curvature changes. +e dis-
persion equations and cut-off frequencies are determined
[3]. Based on Flugge’s theory, Lee considered the wave
motion of in-plane curved beams with constant curvature.
+e displacement propagation matrix reflection matrix is
derived numerically. +e free vibration and energy flow
associated with waves in the curved beam is also discussed in
detail [4, 5]. Howson presented the exact out-of-plane
natural frequencies of the composed curved Timoshenko
beams.+e natural frequencies of a continuous curved beam
are calculated when the effects of shear deflection and rotary
inertia are considered [6]. Liu presented the radial vibration
of the circular plate using the wave propagation approach
and the classical method containing Bessel solution and
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Hankel solution for calculating the natural frequency the-
oretically [7]. Based on the in-plane and out-of-plane
governing equation of the curved beam, Liu analyzed the
transmission response of periodic curved beams by using the
transfer matrix method and Bloch theorem.+eir theoretical
calculations are also simulated by FEM method [8]. Lee
decoupled the governing characteristic differential equations
for out-of-plane vibrations of curved nonuniform beams of
constant radius, and the influence of taper ratio, center
angle, and arc length on the natural frequencies of the curved
beams is illustrated [9]. Tufekci investigated the out-of-plane
free vibration of a circular arch with uniform cross-section
by taking into account the effects of transverse shear and
rotatory inertia. +e results showed that flexural and tor-
sional rotatory inertia and shear deformation have essential
effects on resonance frequency, even if slender shallow
arches are considered [10]. Wu proposed a new approach for
free vibration analysis of arches with the effects of shear
deformation and rotary inertia considered. He calculated the
natural frequencies for the clamped-clamped and free-free
boundaries [11]. To obtain the natural frequencies and mode
shapes of curved beams with hinged-hinged, hinged-clam-
ped, and clamped-clamped boundaries, Lee derived the
differential equations governing out-of-plane free vibrations
of the elastic curved beams with variable curvature. +eir
experimental measures show that the natural frequencies are
in good agreement with the theoretical results [12]. +rough
adopting the classical Kirchhoff thin plate theory, Zadeh
summarizes the effects of dispersion relation curves on the
out-of-plane wave propagation in planar elastic plates with
constant curvature [13]. Walsh studied the vibration power
transmission in curved beams, considering the moment of
inertia and shear deformation [14]. Chidambaram sum-
marized the extensive published literature on the vibrations
of curved bars, beams, rings, and arches of arbitrary shape.
He deduced the characteristic differential equations of the
in-plane, out-of-plane, and coupled vibrations theoretically.
His researches mainly focus on the natural frequencies for
the extensional modes and inextensional modes with dif-
ferent boundary conditions [15]. Wang investigated the in-
plane vibration of a curved beam by considering themoment
of inertia and shear effect. He obtained the dispersion re-
lation of wave number and frequency and analyzed the radial
and tangential coupled band gaps of a periodic curved beam
[16].

+e above cited literatures mainly focus on in-plane
vibration analysis of curved beams, while the out-of-plane
vibration analysis of curved beams is rare. Additionally, to
the authors’ knowledge, lots of out-of-plane free vibration
and transmission response of curved members are investi-
gated in the case of not considering the inertia moment and
shear force. To accurately show the dynamic behavior, this
paper attempts to make a detailed investigation of curved
beams including two factors for analyzing the dispersion
relation, free vibration, and transmission response.

+e paper is organized into five sections. Section 1 is a
brief introduction. In Section 2, the characteristic equation
of the out-of-plane vibration for the curved beam is

calculated theoretically by considering themoment of inertia
and shear effect. In Section 3, the natural frequencies of
single and composite curved beam models with clamped-
clamped, free-free, and clamped-free boundaries are cal-
culated using the classical method. In Section 4, the
transmission response of the single and periodic curved
beam model is obtained. Section 5 is the conclusion.

2. Theoretical Analysis

2.1. Governing Equations. Consider a small segment of an
out-of-plane curved beam model, shown in Figure 1, where
w is the transverse displacement, ψ is the bending slope, ϕ is
the rotation angle, S is the torsional moment, M is the
bendingmoment about a radial axis, andQ is the shear force.
After considering the shear force and inertia moment, the
coupled governing equation of out-of-plane curved beam
can be written as follows [6]:
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where ρ denotes the density, A the cross-sectional area, I the
second moment of area, Ip the polar second moment, and R

the radius of the center.

2.2. HarmonicWave Solution. To solve equations (1)–(3), w,
ψ, and ϕ are given by a harmonic form:

w(θ, t) � W(θ)e
jωt

, (4)

ψ(θ, t) � Ψ(θ)e
jωt
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where ω denotes the circle frequency, j �
���
−1

√
is the

imaginary unit, W(θ), Ψ(θ), and Φ(θ) are the amplitude of
the transverse displacement, bending slope, and rotation
angle, respectively. Submitting equations (4)–(6) into
equations (1)–(3), one can have
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Equations (7)–(9) can be arranged as the following
matrix form:
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+rough making the determinant of the coefficient
matrix zero, it can be simplified to
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Here, the specific expression of parameters gives as
follows:
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According to the definition of harmonic motion, one can
obtain the following relationsW, Ψ, Φ, S, M, and Q:
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βi (i � 1, 2, 3, 4, 5, 6) then can be determined as the root
of the characteristic equations (2)–(19), and g � β2. +us, g

satisfies the following relation:
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Figure 1: Schematic of out-of-plane vibration of a curved beam.
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where g1, g2, and g3 are the roots of equation (20).
+erefore, β can be rewritten as follows:
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To simplify conveniently, here H3i � 1, the following
relations can be obtained:
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2.2.1. Cut-Off Frequency. Equation (11) describes the dis-
persion frequency spectrum relations for the wave propa-
gation in the curved beam.+e cut-off frequency, denoted by
fc � ωc/(2π), defines this additional frequency spectrum for
the curved beam.When the limit of β tends to zero, equation
(11) can be further simplified as
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+rough solving equation (27), the three roots for c are
given by
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From equation (13d), one can have
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Here, c gives the following three roots:

(i) Considering the first root c1 � 0, namely, ωc � 0,
from equations (29) and (30), obtain W(θ) � 0,
Ψ(θ) � 0, and Φ(θ)≠ 0. +e abovementioned char-
acteristics reveal that there is only rotationmotion, but
no bending motion and no torsional motion.

(ii) Considering the second root c2 � 1/ ��η√ , namely,
ωc � (1/R)

������
(E/ρη)

􏽰
, from equations (29) and (30),

obtain W(θ)≠ 0, Ψ(θ)≠ 0, and Φ(θ) � 0. It reveals
that the curved beam only has bending motion and
torsional motion, but no rotation motion.

(iii) Consider the third root c3 � (
������
1 + μs2

􏽰
)/λrs, namely,

ωc � (1/λrsR)
������������
(E(1 + μs2))/ρ

􏽰
. According to equa-

tions (29) and (30), it indicates W(θ)≠ 0, Ψ(θ) � 0,
and Φ(θ)≠ 0, resulting in only bending motion and
rotation motion, but no torsional motion.

2.2.2. Frequency Spectrum. Waves can be divided into
positive-going waves and negative-going wave while the
wave propagates in the curved beam. +ese wave motion
behaviors are essential for the characteristics of the curved
beam. Here, the material parameter is given in Table 1, and
the structural parameter is selected as follows.

Structural parameter: radius R � 0.075m, length
b1 � 0.012m, width b2 � 0.012m, thickness h � 0.012m,
and shape factor κ � 6/5.

+rough calculating the roots of characteristic equation
(20), the dispersion relations of the curved beam can be
obtained theoretically. Shown in Figure 2 are the real
wavenumber and imaginary wavenumber motion behaviors
of the frequency spectrum for the curved beam model.

Figure 2 indicates that these waves divide the frequency
spectrum into four regions while the wave propagates in this
model, namely, region I, region II, region III, and region IV.+ere
are three bifurcation points fa, fb , and fc. It can then be ob-
served that these bifurcation points play an important role in
determining the wave motion behavior. Here, the value of cut-off
frequency can be calculated as fc � (c

���
E/ρ

􏽰
)/2πR � 2605Hz,

depicted in Figure 2. At this frequency, the circumference of the
curved beam happens to hold a radial wavelength, and it is called
the ring frequency [4].

Equation (20) can be considered as a cubic equation
containing a variable parameter g. Due to g � β2, equation
(20) has six roots, namely, three forward propagating waves
and three negative propagating waves. As is indicated in
Figure 2, the frequency spectra are symmetrical for the
extensional curved beam model [2]. In region I 0<f<fa,
the wave modes are all pure real so that the overall wave can
propagate along the curved beam without attenuation. In
region II fb >f>fa, due to the complex wave, there are real
and imagined coupled wavemodes, which indicate the waves
are positive-going and negative-going. In region III
fc >f>fb, it occurs in the similar cases that the waves are
both positive-going and negative-going. In region IV f>fc,
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only one wave mode is purely real, the corresponding prop-
agating wave, and the other wave will be dissipated gradually.

Based on Love’s theory, Kang derived the in-plane equation
of the curved beam and analyzed the dispersion relations of the
frequency spectrum, shown in Figure 3. Similarly, based on
Flugge’s theory, Lee also obtained the dispersion relations
shown in Figures 4 and 5, and the present results verify the
correctness of Kang’s work.+ese works are very significant for
the analysis of curved beam models, while it is a simplified
model with neglecting the effects of rotary inertia shear de-
formation. Actually, these factors are essential and cannot be
ignored. Now, the researches on out-of-plane are rare. Tomake
a further research, this paper not only emphasizes the dis-
persion relations but also further focuses on the free vibration
and forced response.

2.2.3. Amplitude Ratio of Displacement. +e transverse
displacement w, bending slope ψ, and rotation angle ϕ of
out-of-plane vibration of the curved beam are not inde-
pendent of each other. +at is to say, they are coupled with
each other. From equations (22) and (23), the amplitude
ratio and phase of the transverse displacement and bending
slope can be obtained theoretically for the three positive-
going waves through assuming H31 � H32 � H33 � 1.

Figure 6 shows the amplitude ratio and phase of the
transverse displacement to the rotation angle for the three
positive-going waves for the curved beam. Similarly, Figure 7
shows the amplitude ratio and phase of the bending slope to
the rotation angle for the three positive-going waves for the
curved beam. From Figures 6 and 7, it can be seen that the
four regions shown in Figure 2 are not marked apparently,
but the cut-off frequency fc is marked. Additionally, it can
be observed that the phases of the transverse displacement
and bending slope are between −π/2 and π/2.

3. Free Vibration of the Curved Beam

In this section, the free vibrations of out-of-plane vibrations
for the single curved beam are given theoretically by
adopting the classical method. According to the classical
boundary condition, the characteristic equation of the
curved beam can be obtained.

3.1. For a Single Model. +e natural frequencies of out-of-
plane vibration for the single curved beam shown in Figure 8
are given theoretically by adopting the classical method.
According to the classical boundary condition, the char-
acteristic equation of the curved beam can be obtained.

For a curved beam with clamped-clamped boundaries,
one can obtain
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Table 1: Material parameters.

Material Density, ρ (kg/m3) Young’s modulus, E (Pa) Shear modulus, G (Pa)
A(PMMA) 1062 0.32×1010 0.12×1010
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Figure 2: Dispersion relations of out-of-plane vibration of a curved beam. (a) Real wavenumber values. (b) Imaginary wavenumber values.
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For the free-free boundaries, one has the following
relations:
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In this case, equation (26) can be further reduced to

C(ω) �

􏽘

6

j�1
H1ie

βi∗0

􏽘

6

j�1
H2ie

βi∗0

􏽘

6

j�1
H3ie

βi∗0

􏽘

6

j�1
H4ie

βi∗π

􏽘

6

j�1
H5ie

βi∗π

􏽘

6

j�1
H6ie

βi∗π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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� 0. (33)

Equation (33) is the characteristic equation of out-of-
plane vibration for the curved beam with clamped-free
boundaries. Similarly, the characteristic equation with
clamped-clamped and free-free boundaries also can be
obtained theoretically. Figure 9 depicts the characteristic
curve of natural frequency for the curved beam in the case
of clamped-clamped, free-free, and clamped-free
boundaries. By solving the characteristic equation, the
natural frequency of the curved beam can be obtained. It
can be found that the intersection point of the charac-
teristic curve in X-axis is the natural frequency. Table 2
shows the natural frequencies calculated at clamped-
clamped and free-free boundaries. Figure 10 describes the
transmission response of out-of-plane vibration for the
curved beam model. It can be found that the values of
natural frequency in Figure 10 are equal to the values of
clamped-free case in Table 2, which illustrates the cor-
rectness of the numerical results.

3.2. For a Composite Model. Similarly, the natural fre-
quencies of out-of-plane vibration for the composite curved
beam are also calculated numerically by adopting the
classical method. According to the classical boundary
condition, the characteristic equation of the curved beam
can be obtained.

+e solving process of clamped-clamped and free-free
boundaries for the composite curved beam model shown in
Figure 11 are similar to the clamped-free case. Here, the
clamped-free case is presented to calculate the natural fre-
quencies. For the clamped-free boundaries, one has

W(0) � 􏽘
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H4iCie

βi∗0 � 0,

Ψ(0) � 􏽘
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j�1
H5iCie
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H6iCie
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6

j�1
H4iCie

βi∗πT1 � 0,

M(π) � 􏽘

6

j�1
H5iCie

βi∗πT1 � 0,

Q(π) � 􏽘
6

j�1
H6iCie

βi∗πT1 � 0.
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(34)

In this case, by combining equations (32) and (33), the
following set of relations can be established:

C(ω) �

􏽘
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 0. (35)

+rough solving the root in equation (35), the natural
frequencies of out-of-plane vibration for the composite curved
beam can be obtained. Figure 12 gives the characteristic curves
of natural frequency of out-of-plane vibration for the com-
posite curved beam in the case of three classical boundaries. It
can be found that the intersection point of the characteristic
curve in X-axis is the natural frequency. +e values of natural
frequency obtained for these three cases are given in Table 3.
Figure 13 gives the transmission response of out-of-plane vi-
bration for the composite curved beam, and the natural fre-
quencies described in Figure 13 are the same in Table 3.+at is
to say, the resonance points in the transmission curves obtained
by impulse response are the natural frequencies.

8 Shock and Vibration



4. Transmission Response for Periodic
Curved Beam

4.1. Base Model. In this section, to further study the
transmission response, the periodic curved beam models for
the out-of-plane vibration are taken as a numerical example
for the analysis of the transmissibility through adopting the
transfer matrix method. Herein, Figure 14 is the base model
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Figure 9: Characteristic curves of natural frequency of out-of-plane vibration for the curved beam, (a) clamped-clamped boundary, (b) free-
free boundary, and (c) clamped-free boundary.

Table 2: Natural frequencies (Hz) with clamped-clamped and free-
free boundaries for the single model.

Boundary 1st mode 2nd mode 3rd mode
Clamped-clamped 47 305 859
Free-free 47 645 929
Clamped-free 64 218 726
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Figure 10: Transmission response of out-of-plane vibration for the
single curved beam.

θ = π/2

Figure 11: A composite curved beam model.
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which is composited of eight periods, which consist of
material I resin and material II steel. +e angles of resin and
steel are θ1 and θ2, respectively. Table 4 gives the material
parameters. Shear modulus, density, and Poisson’s ratio of
resin are E1, ρ1, and δ1, respectively. Shear modulus, density,
and Poisson’s ratio of steel are E2, ρ2, and δ2.

4.2. TransferMatrix. To obtain the transmission response of
the curved beam model, the transfer matrix for the out-of-
plane vibration is derived theoretically. +e connection ways
between the two different materials are selected with glue.
Material and structural parameters have been given in
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Figure 12: Characteristic curves of natural frequency of out-of-plane vibration for the curved beam, (a) clamped-clamped boundary, (b)
free-free boundary, and (c) clamped-free boundary.

Table 3: Natural frequencies (Hz) with clamped-clamped and free-free boundaries for the composite model.

Boundary 1st mode 2nd mode 3rd mode 4th mode
Clamped-clamped 47 71 278 545
Free-free 56 98 248 568
Clamped-free 34 107 262 586
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Figure 13: Transmission response of out-of-plane vibration for the
curved beam.
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Table 1. According to equations (14)–(19), the expression of
six parameters W, Ψ, Φ, S, M, and Q in terms of the har-
monic motion can be rewritten as follows:

W(θ) � H11C
+
1ae

g1θ + H12C
+
1be

g2θ + H13C
+
1ce

g3θ + H14C
−
1ae

g4θ + H15C
−
1be

g5θ + H16C
−
1ce

g6θ,

Ψ(θ) � H21C
+
1ae

g1θ + H22C
+
1be

g2θ + H23C
+
1ce

g3θ + H24C
−
1ae

g4θ + H25C
−
1be

g5θ + H26C
−
1ce

g6θ,

Φ(θ) � H31C
+
1ae

g1θ + H32C
+
1be

g2θ + H33C
+
1ce

g3θ + H34C
−
1ae

g4θ + H35C
−
1be

g5θ + H36C
−
1ce

g6θ,

S(θ) � H41C
+
1ae

g1θ + H42C
+
1be

g2θ + H43C
+
1ce

g3θ + H44C
−
1ae

g4θ + H45C
−
1be

g5θ + H46C
−
1ce

g6θ,

M(θ) � H51C
+
1ae

g1θ + H52C
+
1be

g2θ + H53C
+
1ce

g3θ + H54C
−
1ae

g4θ + H55C
−
1be

g5θ + H56C
−
1ce

g6θ,

Q(θ) � H61C
+
1ae

g1θ + H62C
+
1be

g2θ + H63C
+
1ce

g3θ + H64C
−
1ae

g4θ + H65C
−
1be

g5θ + H66C
−
1ce

g6θ.

(36)

+e continuity condition on the rotation angle θ � π/8
between material I and material II is given by

W1
π
6

􏼒 􏼓 � W2
π
6

􏼒 􏼓,

Ψ1
π
6

􏼒 􏼓 � Ψ2
π
6

􏼒 􏼓,

Φ1
π
6

􏼒 􏼓 � Φ2
π
6

􏼒 􏼓,

S1
π
6

􏼒 􏼓 � S2
π
6

􏼒 􏼓,

M1
π
6

􏼒 􏼓 � M2
π
6

􏼒 􏼓,

Q1
π
6

􏼒 􏼓 � Q2
π
6

􏼒 􏼓.

(37)

+e following matrix equation can be established:

K1Ψn2 � H1Ψn1, (38)

where Ψn1 � P+
n1a P+

n1b P+
n1c P−

n1a P−
n1b P−

n1c􏼂 􏼃
T and

Ψn2 � P+
n2a P+

n2b P+
n2c P−

n2a P−
n2b P−

n2c􏼂 􏼃
T.

Similarly, imposing the continuity condition at θ1 � 0
and θ2 � π/4, one has

W1(0) � W2
π
3

􏼒 􏼓,

Ψ1(0) � Ψ2
π
3

􏼒 􏼓,

Φ1(0) � Φ2
π
3

􏼒 􏼓,

S1(0) � S2
π
3

􏼒 􏼓,

M1(0) � M2
π
3

􏼒 􏼓,

Q1(0) � Q2
π
3

􏼒 􏼓.

(39)

+en, these parameters at the continuity position lead to
the following matrix relations:

K2ψn2 � H2ψ(n+1)1, (40)

θ = π/2

Figure 14: Eight period composite curved beam model.

Table 4: Material parameters.

Material Density, ρ (kg/m3) Young’s modulus, E (Pa) Poisson’s ratio
I (PMMA) 1062 0.32×1010 0.333
II (Al) 2799 7.21× 1010 0.345
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where Ψ(n+1)1 � P+
(n+1)1a P+

(n+1)1b P+
(n+1)1c P−

(n+1)1a P−
(n+1)1b P−

(n+1)1c􏼂 􏼃
T.

Equations (38) and (40) can be combined to give

Ψ(n+1)1 � H
−1
2 K2K

−1
1 H1Ψn1 � TaΨn1, (41)

where Ta � H−1
2 K2K

−1
1 H1 is the transfer matrix [13] of the

periodic curved beam model.

To obtain the transmission response of this curved beam
model, then suppose that the left end is used to load dis-
placement and the right end is used to pick the displacement.
+us, the transverse displacement at the left end is considered as
one unit, and the other parameters seem to be zero. Based on
these definitions, the following relations can be established:

W(0) � H11C
+
1ae

g1 ∗ 0 + H12C
+
1be

g2 ∗ 0 + H13C
+
1ce

g3 ∗ 0 + H14C
−
1ae

g4 ∗ 0 + H15C
−
1be

g5 ∗ 0 + H16C
−
1ce

g6 ∗ 0 � 0, (42)

Ψ(0) � H21C
+
1ae

g1 ∗ 0 + H22C
+
1be

g2 ∗ 0 + H23C
+
1ce

g3 ∗ 0 + H24C
−
1ae

g4 ∗ 0 + H25C
−
1be

g5 ∗ 0 + H26C
−
1ce

g6 ∗ 0 � 0, (43)

Φ(0) � H31C
+
1ae

g1 ∗ 0 + H32C
+
1be

g2 ∗ 0 + H33C
+
1ce

g3 ∗ 0 + H34C
−
1ae

g4 ∗ 0 + H35C
−
1be

g5 ∗ 0 + H36C
−
1ce

g6 ∗ 0 � 0, (44)

S
π
4

􏼒 􏼓 � H41C
+
1ae

g1 ∗
π
4 + H42C

+
1be

g2 ∗
π
4 + H43C

+
1ce

g3 ∗
π
4 + H44C

−
1ae

g4 ∗
π
4 + H45C

−
1be

g5 ∗
π
4 + H46C

−
1ce

g6 ∗
π
4 � 0, (45)

M
π
4

􏼒 􏼓 � H51C
+
1ae

g1 ∗
π
4 + H52C

+
1be

g2 ∗
π
4 + H53C

+
1ce

g3 ∗
π
4 + H54C

−
1ae

g4 ∗
π
4 + H55C

−
1be

g5 ∗
π
4 + H56C

−
1ce

g6 ∗
π
4 � 0, (46)

Q
π
4

􏼒 􏼓 � H61C
+
1ae

g1 ∗
π
4 + H62C

+
1be

g2 ∗
π
4 + H63C

+
1ce

g3 ∗
π
4 + H64C

−
1ae

g4 ∗
π
4 + H65C

−
1be

g5 ∗
π
4 + H66C

−
1ce

g6 ∗
π
4 � 0. (47)

+e above equations can be rewritten into a matrix form:

C
+
1a

C
+
1b

C
+
1c

C
−
1a

C
−
1b

C
−
1c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

H11e
g1 ∗ 0 H12e

g2 ∗ 0 H13e
g3 ∗ 0 H14e

g40 H15e
g50 H16e

g60

H21e
g1 ∗ 0 H22e

g2 ∗ 0 H23e
g3 ∗ 0 H24e

g40 H25e
g50 H26e

g60

H31e
g1 ∗ 0 H32e

g2 ∗ 0 H33e
g3 ∗ 0 H34e

g40 H35e
g50 H36e

g60

H41e
g1 ∗

π
4 H42e

g2 ∗
π
4 H43e

g3 ∗
π
4 H44e

g4 ∗
π
4 H45e

g5 ∗
π
4 H46e

g6 ∗
π
4

H51e
g1 ∗

π
4 H52e

g2 ∗
π
4 H53e

g3 ∗
π
4 H54e

g4 ∗
π
4 H55e

g5 ∗
π
4 H56e

g6 ∗
π
4

H61e
g1 ∗

π
4 H62e

g2 ∗
π
4 H63e

g3 ∗
π
4 H64e

g4 ∗
π
4 H65e

g5 ∗
π
4 H66e

g6 ∗
π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

1

0

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Combining equations (46)–(48), the transverse dis-
placements are given by

WI
� H11C

+
1ae

g10 H12C
+
1be

g20 H13C
+
1ce

g30 H14C
−
1ae

g40 H15C
−
1be

g50 H16C
−
1ce

g60􏽨 􏽩Ta C+
1a C+

1b C+
1c C−

1a C−
1b C−

1c􏼂 􏼃
− 1

.

(49)
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+erefore, the vibration transmission response can be
defined as

dB � 20 logW
I
. (50)

4.3. Transmission Response. Considering the effects of in-
ertia and shear deformation, the transmission response of
the out-of-plane vibration for the curved beam model is
calculated numerically by using the transfer matrix and
boundary loads. +e transmission response curves are
plotted in Figure 14. To facilitate this investigation, the
transmission responses for the case of single model and
eight-periodic models are compared.

Regarding the single model, Figure 15 clearly shows that
the vibration attenuation region of the transmission re-
sponse is approximately 20 dB. Actually, there is no vibra-
tion attenuation when the elastic wave propagates in a single
model, such as rods, beams, and shaft. +us, this case reveals
that the vibration attenuation is significantly caused by the
curvature radius of the curved beam model, and the reso-
nance frequency is given in Table 2.

Regarding the eight-periodic model, Figure 15 clearly
indicates that there are three vibration attention regions,
marked as band A 113Hz–272Hz, band B 281Hz–553Hz,
and band C 559Hz–800Hz. +ese low frequency bands are
very significant for the vibration reduction of the engi-
neering field, such as bridges. +e resonance point in the
transmission curf obtained by impulse response is the
natural frequency. +us, in many practical engineering
fields, LMS Test.Lab or Pulse can be used to obtain the
transmission response curves easily by adopting the ham-
mering method for finding the natural frequency instead of
testing model.

By comparing the single model and eight-periodic
models, it can be observed that they have the similar vi-
bration attention amplitude. +is phenomenon indicates
that the periodic model is not very efficient for the vibration
attention, which is one point different from the previous
conclude.

As is known for us, the curvature radius is a key factor
for the curved beam and has an important influence on
the transmission response. Furthermore, Figure 16
clearly gives the transmission response of the curved
beam with different curvature radius. It can be seen that
the region of the vibration reduction moves towards the
low frequency with the curvature radius increasing, but
the amplitude of vibration attention almost has no
change. +us, we can conclude that one can select a big
curvature radius of the curved beam while one wants to
have a low frequency band. Moreover, it should be
mentioned that the attention region marked as band D is
57 Hz–140 Hz, which is very useful for avoiding
resonance.

5. Conclusion

+is paper concerns out-of-plane vibration of curved beams,
considering the shear force and inertia moment. Based on
the coupled governing equation of the curved beam, the
dispersion relations, cut-off frequency, and displacement
amplitude ratio are investigated in detail. Furthermore, the
free vibration and transmission properties for the single and
composite curved beam models are investigated, and the
following conclusions are drawn:

(1) From the dispersion relation of the out-of-plane
curved beam, it can be found that the elastic wave
can be divided into three forward propagating waves
and three negative propagating waves, and these
waves can be divided into four regions.

(2) Natural frequencies of the single and composite
curved beam model with three boundaries are
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Tr
an

sm
iss

io
n 

re
sp

on
se

 (d
B)

0 100 200 300 400 500 600 700 800
Frequency (Hz)

X: 277
Y: 22.13

X: 556
Y: 52.85 X: 726

Y: 37.83

60
40
20

0
–20
–40
–60
–80

–100
Band A Band B Band C

Single model
Periodic model

Figure 15: Transmission response for the curved beam with single
model and eight-periodic models.

Shock and Vibration 13



calculated through using the harmonic wave solu-
tions. It can be found that the resonance frequency
can be obtained from the impulse response.

(3) Curvature radius is a key factor for the curved beam
and has an important influence on the transmission
response. It can be seen that the region of the vi-
bration reduction moves towards the low frequency
with the curvature radius increasing, but the am-
plitude of vibration attention almost has no change.

Our research manifests that the natural frequencies of
composite TCP structures can be obtained easily using the
wave approach, which can be very meaningful for many
engineering fields. For example, rotating parts are often
coupled with transverse vibrations (such as the gear driving
systems). Apparently, analyzing the transmission properties
and parameter’s effect is very significant for transverse vi-
bration suppression.

Data Availability

+e raw/processed data required to reproduce these findings
cannot be shared at this time as the data also form part of an
ongoing study.

Conflicts of Interest

+e authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Acknowledgments

+e authors wish to thank the Key Laboratory of Advanced
Manufacturing and Intelligent Technology, Ministry of
Education, Harbin University of Science and Technology
and School of Mechatronics Engineering, Harbin Institute of
Technology, for providing technical support. +e research
was funded by National Key Research and Development
Project of China (Grant no. 2019YFB2006400) and the
Major Science and Technology Projects of Heilongjiang
Province (Grant no. 2019ZX03A02).

References

[1] B. R. Mace, “Wave reflection and transmission in beams,”
Journal of Sound and Vibration, vol. 97, no. 2, pp. 237–246,
1984.

[2] D. Huang, L. Tang, and R. Cao, “Free vibration analysis of
planar rotating rings by wave propagation,” Journal of Sound
and Vibration, vol. 332, no. 20, pp. 4979–4997, 2013.

[3] B. Kang, C. H. Riedel, and C. A. Tan, “Free vibration analysis
of planar curved beams by wave propagation,” Journal of
Sound and Vibration, vol. 260, no. 1, pp. 19–44, 2003.

[4] S. K. Lee, R. B. Mace, and M. J. Brennan, “Wave propagation,
reflection and transmission in curved beams,” Journal of
Sound and Vibration, vol. 306, no. 3–5, pp. 636–656, 2007.

[5] S. K. Lee, Wave Reflection, Transmission and Propagation in
Structural Waveguides, Ph.D. thesis, Southampton University,
Southampton, England, UK, 2006.

[6] W. P. Howson and A. K. Jemah, “Exact out-of-plane natural
frequency of curved timoshenko beams,” Journal of Engi-
neering Mechanics, vol. 125, no. 1, pp. 19–25, 2007.

[7] W. Liu, D. H. Wang, H. F. Lu, Y. M. Cao, and P. R. Zhang,
“Research on radial vibration of a circular plate,” Shock and
Vibration, vol. 2016, Article ID 6758291, 8 pages, 2016.

[8] Y. Li, T. Chen, X. Wang, and S. Li, “Lamb wave band gaps in
one-dimensional radial phononic crystal plates with periodic
double-sided corrugations,” Physica B: Condensed Matter,
vol. 476, pp. 82–87, 2015.

[9] S. Y. Lee and J. C. Chao, “Out-of-plane vibration of curved
non-uniform beams of constant radius,” Journal of Sound and
Vibration, vol. 238, no. 1, pp. 443–458, 2000.

[10] E. Tufekci andO. Y. Dogruer, “Out-of-plane free vibration of a
circular arch with uniform cross-section: exact solution,”
Journal of Sound and Vibration, vol. 291, no. 3-5, pp. 525–538,
2006.

[11] J. S. Wu and L. K. Chiang, “A new approach for free vibration
analysis of arches with effects of shear deformation and rotary
inertia considered,” Journal of Sound and Vibration, vol. 277,
no. 1-2, pp. 49–71, 2004.

[12] B. K. Lee, S. J. Oh, and J. M. Mo, “Out-of-plane free vibrations
of curved beams with variable curvature,” Journal of Sound
and Vibration, vol. 318, no. 1-2, pp. 227–246, 2008.

[13] M. N. Zadeh and S. V. Sorokin, “Simplified description of out-
of-plane waves in thin annular elastic plates,” Journal of Sound
and Vibration, vol. 332, no. 4, pp. 894–906, 2013.

[14] S. J. Walsh and R. G. White, “Vibrational power transmission
in curved beams,” Journal of Sound and Vibration, vol. 233,
no. 3, pp. 455–488, 2000.

[15] P. Chidambaram and A. W. Leissa, “Vibration of planar
curved beams, rings, and arches,” Applied Mechanics Review,
vol. 46, no. 9, pp. 467–483, 1993.

[16] D. Wang, S. Zhijun, L. Wei, C. Meilong, L. Siyuan, and
L. Shidan, “In-plane vibration analysis of phononic crystal
curved beams,” Noise Control Engineering Journal, vol. 64,
no. 5, pp. 658–667, 2016.

14 Shock and Vibration


