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Rolling element bearings are widely used in rotating machinery to support shafts, whose failures may affect the health of the whole
system. However, strong noise interferences often make the bearing fault features submerged and difficult to be identified. Peak-
based wavelet method is such a way to reduce certain noise and enhance the fault features by increasing the sparsity of monitored
signals. But peak-based wavelet parameters need to be optimized due to the determined basis function and constant resolution,
which will affect the efficiency of vibration signal analysis. To address these problems, a peak-based mode decomposition is
proposed for weak bearing fault feature enhancement and detection. Firstly, to enhance the differences between repetitive
transients and high-frequency noise, a peak-based piecewise recombination is used to convert the middle frequency parts into
low-frequency ones. ,en, the recombined signal is processed by empirical mode decomposition, combining with a criterion of
cross-correlation coefficients and kurtosis. Subsequently, a backward peak transformation is performed to obtain the enhanced
signal. Finally, the fault diagnosis is implemented by the squared envelope spectrum, whose normalized squaredmagnitude is used
as a bearing fault indicator. ,e analysis results of the simulated signals and the experimental signals show that the proposed
method can enhance and identify the weak repetitive transient features.,e superiority of the proposedmethod for faint repetitive
transient detection is also verified by comparing with the peak-based wavelet method.

1. Introduction

Rolling element bearing (REB) is one of the most widely
used elements in rotating machinery and sudden bearing
failures may cause system outage [1]. Statistics show that
faulty bearings contribute to about 30% of the failures in
rotating machinery [2, 3]. ,us the bearing fault diagnosis is
of great significance for ensuring a safe and stable operation
of rotating machinery.

In pursuit of an effective bearing fault diagnosis, a series
of methods have been developed in recent decades, e.g.,
vibration monitoring, acoustic emission monitoring, tem-
perature monitoring, and oil monitoring [4, 5]. Vibration-
based techniques are very attractive because of its nonin-
vasive way and high sensibility to weak faults. In general,

when a REB fails, the vibration amplitude intensity will
increase significantly. At this point, the abnormal state can
be alarmed by parameters in the time domain such as root
mean square, kurtosis, and skewness. However, time-do-
main processing methods are not always effective in fault
identification, especially when the fault features are very
weak submerged with strong noise interferences.

Frequency domain analysis is a commonly used alter-
native way, in which domain, the fault characteristic fre-
quencies are often more obviously relevant to the source of
bearing fault. But there often exists some slippage in REB
motions, which results in uncertainty in the interarrival
instant of the impacts [6, 7]. ,e randomness resulting from
jitter in the impact, despite the magnitude of a few percent of
the fault period, changes the entire statistical structure of the
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signal [8, 9]. ,erefore, spectrum analysis is not always
effective in all cases, especially for weak repetitive transients.

Envelope demodulation can help to solve the serious
slippage problem in the frequency domain, which is rec-
ognized as a powerful bearing diagnosis technique and
popularly used [10, 11]. However, the excited vibration
signal of a fault component is passed to the sensor through a
complex transmission path, in which the interference noise
will be introduced inevitably. ,en, the impact of the fault-
related signal will be suppressed, which weakens the effec-
tiveness of the envelope analysis [12, 13].

Wavelet transform is helpful to reduce the influence of
background noise due to its flexile time-frequency resolu-
tions [14, 15]. Kumar and Singh [16] proposed wavelet-based
methods for feature extraction, in which the fault-related
wavelet coefficients are selected with thresholding rules.
Mishra et al. [17] proposed a sigmoid function-based wavelet
thresholding for signal denoising. Du et al. [18] proposed a
hybrid method which combines theMorlet wavelet filter and
sparse code shrinkage for bearing fault diagnosis. ,ese
methods optimize the wavelet parameters and try to reduce
the influence of background noise, which can improve the
effectiveness of envelope analysis. Yet, these wavelet-based
methods essentially improve the sparsity differences be-
tween noise and fault signal through linear variations, and
there is still plenty of room for improvement. Wang et al.
[19] improves the signal sparsity by the nonlinear peak-
based wavelet transform, and fault features can be enhanced
obviously and detected easily. However, there are many
parameters that need to be optimized in the wavelet
transform, such as wavelet basis function and thresholding
values.

In order to compensate for the insufficient adaptability
of the peak-based wavelet transform, a new mode decom-
position method, based on empirical mode decomposition
(EMD), is proposed for enhancing and detecting the bearing
fault feature in this paper. EMD is an adaptive signal de-
composition method that transforms a signal into several
intrinsic mode functions (IMFs) [20]. In the proposed
method, a peak-based piecewise recombination (PPR) is
firstly used to enhance the differences between repetitive
transients and high-frequency noise. Subsequently, the
correlation coefficients and kurtosis criteria are used to select
the IMFs, which is decomposed by EMD from the recom-
bined signal. ,en, the enhanced signal is obtained by a
backward peak transform. Finally, the normalized squared-
magnitude of the squared envelope spectrum is used as a
bearing fault indicator. ,e peak-based mode decomposi-
tion overcomes the difficulties of parameter selections, and it
is adaptive to the analysed signal, thus can be easily
implemented in practice. Case studies with simulation and
experiments show that the proposed method can enhance
the weak bearing fault signals more effectively.

,e remainder of this paper is organized as follows. In
Section 2, the basic theory of the PPR and EMD is intro-
duced. ,en, the proposed method is presented. Numerical
simulation is performed in Section 3. Experiments and
comparisons are presented in Section 4. Finally, conclusions
are presented in Section 5.

2. Methods

2.1. Peak-Based Piecewise Recombination. Peak-based
piecewise recombination (PPR), or so-called peak trans-
formation (PT), is a nonlinear geometric transformation
method which enhances the differences between repetitive
transients and high-frequency noise [21]. A brief description
of PT is given as follows.

Definition 1.

(a) Cascade of Curve Segments. Given two curve seg-
ments f1(x) and f2(x) defined over finite intervals
[a1, b1] and [a2, b2] with b1 ≤ a2—the cascade of
these two curve segments yields a new curve segment
f(x), defined as

f(x) �
f1(x), x ∈ a1, b1 ,

f2(x) − f2 a2(  + f1 b1( , x ∈ b1, b1 + b2 − a2(


(1)

We denote this cascading operation by

f(x) � f1(x)⊕f2(x). (2)

(b) n-Point Forward Peak Transform. A continuous
function f(x) is defined over [a, b]. ,is interval is
partitioned into n + 1 subintervals by n points
a< x1 <x2 < · · · xn < b, with x0 � a and xn+1 � b. ,e
forward transformation of n points based on
piecewise recombination of peaks can be defined as

PT[f(x)] � go(x)⊕ge(x), (3)

where

go(x) � f1(x)⊕f3(x)⊕ · · · ⊕f2⌊(n−1)/2⌋+1(x),

ge(x) � f2(x)⊕f4(x)⊕ · · · ⊕f2⌊n/2⌋(x),
(4)

which denotes the cascades of all odd- and even-
numbered curve segments, respectively. Here, 2(n −

1)/2 + 1 and 2n/2 are, respectively, the largest odd
and even integers that are less than or equal to n. In
forward PT, we first cascade all odd-numbered curve
segments then all even-numbered curve segments
and recompose a new curve. Figure 1 shows an
example of five-point PT. It can be seen that the
reversible recombination only changes the order of
the piecewise curves. A detailed algorithm of the PT
can be found in [21].

2.2. Empirical Mode Decomposition. Empirical mode de-
composition (EMD) is an adaptive signal decomposition
method that transforms a signal into several intrinsic mode
functions (IMFs) [20, 22], and IMFsmust meet the following
requirements:

(1) ,e maximum difference between the number of
extremum points and the number of zeros is one.

(2) ,e upper and lower envelopes are locally
symmetric.
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For a given signal f(x), the effective algorithm of EMD
can be described as follows:

(1) Identify all extrema of f(x).
(2) Interpolate between minima (resp. maxima), ending

up with some “envelope” l(x) (resp., u(x)).
(3) Compute the average m(x) � (l(x) + u(x))/2.
(4) Extract the detail d(x) � f(x) − m(x).
(5) Iterate on the residual d(x).

From the above steps, the signal can be decomposed into
a sum of several “mode” and residual components:

f(x) � mK(x) + 
K

k�1
dk(x), (5)

where mK(x) stands for a residual “trend” and


K
k�1dk(x), k � 1, . . . , K stands for a series of IMFs.

2.3. Enhancement Frame with Peak-Based Mode
Decomposition. Due to the problems of interpolation error,
boundary effect, and overdecomposition, pseudocomponents
are often existing in IMFs. In other words, there may exist
some components which are unrelated to the original signal.
,e frequency components contained in these pseudo-
components may overlap with the bearing fault characteristic
frequency bands. ,erefore, these pseudocomponents should
be removed for bearing fault features detection.

Kurtosis and correlation coefficient are commonly used
to estimate these pseudocomponents.

Kurtosis is a dimensionless parameter to represent a
signal, which is defined as

Ku �
E(x − μ)4

σ4
. (6)

In the formula, μ and σ are the mean and standard
deviation of signal x, respectively, and E(t) represents the
expected value of variable t.

Correlation coefficient represents the correlation
between each IMF and the original signal, which is de-
fined as

ρx,IMFk
�
max Rx,IMFk

(τ) 

max Rx(τ)( 
. (7)

,e present paper proposed an enhancement frame for
vibration signals combining peak-based mode decomposi-
tion and envelope demodulation. ,e steps are summarized
as follows:

(1) Peak-based piecewise recombination of a vibration
signal: the vibration signal f(x), according to
equation (3), is transformed into a recombined signal
R(x) by piecewise recombination.

(2) EMD decomposition of the recombined signal R(x):
the recombined signal R(x) is decomposed into
several IMFs through EMD:

R(x) � rK(x) + 
K

k�1
IMFk(x). (8)

(3) Pseudocomponent removal: the pseudocomponents
are determined by kurtosis and correlation coeffi-
cient. ,e effective signal e(x) is obtained by
superimposing the IMF after removing the
pseudocomponents.

(4) Backward peak transform: put the effective signal
segments e(x) to their original positions, and a
denoised signal f′(x) is generated.

(5) Standardized squared envelope spectrum (SSES):
conventionally, the squared envelope spectrum
(SES) is defined as

SES f′(x)(  � DT DT E(x)
2

 


, (9)

where

E(x) �

��������������������

f′(x) 
2

+ H f′(x)(  
2



,

H f′(x)(  �
1
π


+∞

−∞

f′(τ)

x − τ
dτ.

(10)

Processing the signal by different methods will result
in different magnitude of squared envelope spec-
trum. But a bearing fault is often detected by a rel-
ative value of the characteristic frequency of the fault,
so the signals are standardized that the results of
different methods can be compared. ,erefore, the
standardized squared envelope spectrum (SSES) is
defined as

ASSES f′(x)(  �
ASES f′(x)(  − μ ASES f′(x)( ( 

σ ASES f′(x)( ( 
, (11)

where ASES(f′(x)) is the amplitude of SES(f′(x)).
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Figure 1: Example of a five-point PT.
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(6) Fault characteristic frequency extraction: the enve-
lope spectrum is obtained by Fourier analysis, and
different types of rolling bearings are distinguished.

In brief, these steps are shown in Figure 2.

3. Numerical Simulation

In order to verify the reliability of the proposed method in
this paper, a fault model [23] was used to simulate the impact
signal generated by an inner ring fault and a strong noise was
added to simulate the early bearing fault signal of the inner
ring mixed with noise interferences.

x(t) � s(t) + n(t) � 
i

Aih t − iT − τi(  + n(t),

h(t) � exp(−Ct)sin 2πfnt( ,

Ai � A0 sin 2πfrt( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

In the simulation, s(t) denotes the periodic impact
component, the amplitude A0 is 0.5, the rotation frequency
fr is 20Hz, the attenuation coefficient C is 800, the reso-
nance frequency fn is 4000Hz, and the ball pass frequency
of inner race (fi � 1/T) is 110Hz.,e small fluctuation τi of
the i-th shock relative to the period T obeys the normal
distribution of zero-mean, and the standard deviation is
0.5% of the frequency of rotation. n(t) is the Gaussian white
noise component, and the signal-to-noise ratio of the noise
signal is −12 dB.,e sampling frequency fs is 12000Hz, and
the points of signal are 8192.

Waveform and spectrum of the simulated signal are
shown in Figure 3. Comparing Figures 3(a) and 3(b), it can
be found that the periodic pulse in the simulation signal is
completely submerged by noise and there is no regularity.
Figure 3(d) is the envelope spectrum of the simulation
signal, and there is no prominent frequency.

Analysis results of the simulated signal by the proposed
method are shown in Figure 4(a). Compared with
Figure 3(b), the impact component in the signal is signifi-
cantly increased. Envelope analysis is performed as shown in
Figure 4(b). ,e amplitude of the spectrum at the ball pass
frequency of the inner race and its multiple harmonics
become obvious and the characteristic frequency informa-
tion is accurately extracted.

4. Experiments and Comparisons

4.1. Experiments. In order to verify the effectiveness of peak-
based mode decomposition, the vibration tests of the REB
are performed. ,e test bench is shown in Figure 5.

In the experiments, electron-discharge machining was
adopted to introduce single-point defects on the inner
raceway, outer raceway, and rolling element of different
bearings, with fault widths of 3mm, 7mm, and 7mm, re-
spectively, and depths of 5mm, 25mm, and 25mm. ,e
vibration signals are measured by an accelerometer, located
at the top of the bearing box (CH1, as shown in Figure 5).

REB components have their specific fault characteristic
frequencies, such as the ball pass frequency of the outer race
(BPFO), the ball pass frequency of the inner race (BPFI), the

ball spin frequency(BSF), and the cage frequency(CF). ,eir
respective calculation formulas are as follows:

BPFO �
Zω
2

1 −
d

D
cos α , (13)

BPFI �
Zω
2

1 +
d

D
cos α , (14)

BSF �
Dω
2d

1 −
d

D
cos α 

2
⎛⎝ ⎞⎠, (15)

CF �
1
2

1 −
d

D
cos α , (16)

where Z is the number of rolling elements in the REB, ω is
the shaft rotation frequency in rad/s, d is the diameter of
rolling element, D is the diameter of the REB, and α is the
contact angle.

According to equations (13)–(16), the theoretical fault
characteristic frequencies of different rolling bearing parts
are calculated, as listed in Table 1.

Four common conditions were studied, including a
perfectly healthy bearing, a bearing with point defect on the
outer race, a bearing with point defect on the inner race, and
a bearing with point defect on the rolling element. In all
experiments, the sampling frequency was 100 kHz and the
rotating speed was 1300 rpm. ,e time-domain waveforms
of REB vibration signals are shown in Figure 6.

In order to investigate the differences between vibration
signals of different fault types, envelope demodulation is
used for the signals of three typical bearing faults, such as the
outer race fault, inner race fault, and rolling element fault.
,e results are shown in Figure 7. In Figure 7(a), the shaft
rotation frequency (SRF) is higher than other frequencies,
which shows that the test bench is slightly unbalanced. In
Figure 7(b), the magnitude of BPFO is lower than the second

Original signal

Recombined signal Enhanced signal

Effective signal

Peak-based piecewise 
recombination

Empirical mode 
decomposition

Remove 
pseudo components

Peak-based piecewise 
recombination backward

Envelope demodulation

Spectrum analysis and 
detection

Figure 2: Flowchart of the proposed enhancement scheme for the
weak fault signal.
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harmonic frequency, which might affect fault detection due
to that BPFO is usually higher than its harmonics in most
cases. In Figure 7(c), the magnitude of BPFI is higher than
other frequencies except shaft rotation frequency, which is

perhaps affected by the delivery path. ,is result may be
identified as unbalanced rather than inner race fault. In
Figure 7(d), the BSF is covered by CF and its harmonics,
which may result in a wrong detection result.

4.2. Analysis and Comparison with Other Methods. ,e re-
sults of the proposed method are shown in blue lines of
Figure 8. It can be seen that the proposed method is capable
of reducing noise in the vibration signal.

In order to investigate the differences between the original
signal and results of the proposed method, envelope demod-
ulation is used to analyse the results. And the object of this paper
is to overcome the lack of adaptability of peak-based wavelet
decomposition methods. So next, we will make comparisons
with the peak-based wavelet decomposition method [19].

Case I. A Point Defect on Outer Race. ,e results of the
vibration signal induced by the outer race fault are shown in
Figure 9. Figure 9(a) shows the result of envelope analysis
that the magnitude of BPFO is not the remarkable one
among all frequency components. And it can be seen that
although the BPFO amplitude is somewhat increased in
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Figure 3: Waveform, spectrum, and envelope spectrum of the simulated signal. (a) Waveform of the impact signal. (b) Waveform of the
simulated signal. (c) Spectrum of the simulated signal. (d) Envelope spectrum of the simulated signal.
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Table 1: ,e theoretical fault characteristic frequencies of different
bearing parts.

BPFO BPFI BSF CF
86.32 145.84 51.13 8.06
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Figure 9(b), it is still not the most obvious. After parameter
optimization in Figure 9(c), the magnitude of BPFO is
enhanced to be the most prominent, but parameter opti-
mization greatly increases the amount of calculation.
However, it is clear that the magnitude of BPFO is enhanced
to be the most outstanding one in Figure 9(d). Moreover, the
proposed method is adaptive that does not require pa-
rameter optimization and the magnitude of BPFO is obvi-
ously higher than that obtained using peak-based wavelet
decomposition.

Case II. A Point Defect on Inner Race. Figure 10 shows the
results of the vibration signal induced by the inner race fault.
It can be seen that the magnitude of SRF is the remarkable
one among all frequency components in Figure 10(a) which

perhaps lead to an incorrect detection result. Although BPFI
has been enhanced to be the most obvious in Figure 10(b),
the amplitude of SRF is close to BPFI and the result may still
be interfered by SRF. In Figure 10(c), the magnitude of BPFI
is the remarkable one and significantly higher than that of
SRF. But the parameter optimization calculation is less ef-
ficient. Meanwhile, Figure 10(d) shows that the magnitude
of BPFI is enhanced to be the most prominent and not easily
interfered by SRF.

,e proposed method is an adaptive method, and thus
the influence of parameter optimization on the computa-
tional efficiency can be avoided. And the magnitude of BPFI
with the proposed method is obviously higher than that of
peak-based wavelet decomposition.
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Figure 6: Vibration signals of REBs. (a) A normal REB and bearings with a point defect on (b) outer race; (c) inner race; (d) rolling element.
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Figure 7: Envelope spectra of the vibration signal in Figure 4. (a) A normal REB and bearings with a point defect on (b) outer race; (c) inner
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Case III. A Point Defect on Rolling Element. ,e results of
the vibration signal induced by the rolling element fault are
shown in Figure 11, with the envelope analysis results shown
in Figure 11(a). ,e magnitude of BSF is covered by CF and
its harmonics, so it is difficult to detect BSF through en-
velope analysis. Although the magnitude of BSF has in-
creased slightly by peak-based wavelet decomposition in
Figure 11(b), it is still covered by CF and its harmonics.
Meanwhile, the magnitude of BSF is enhanced to be the most
outstanding in Figure 11(c) which exceeds the magnitude of
CF clearly. However, the parameter optimization has prob-
lems in computational efficiency. And the result of peak-

based mode decomposition is shown in Figure 11(d). ,e
magnitude of BSF is also enhanced to be themost remarkable.
And the magnitude of BPFI with the proposed method is
obviously higher than peak-based wavelet decomposition. In
addition, the proposed method is an adaptive method which
improves the efficiency of the operation.

Comparisons of some major indictors for bearing fault
features are listed in Table 2. It can be seen that both peak-
based wavelet decomposition and the proposed method can
enhance fault frequencies. Meanwhile, the magnitude of
fault frequencies with the proposed method is obviously
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higher than the other methods. Because the amplitude of the
squared envelope spectrum is normalized, the larger the
amplitude of the characteristic frequency of the fault, the
more it deviates from the normal state and the more likely it

is abnormal. In other words, signals processed by the
proposed method become easier to be detected. Moreover,
the proposed method is an adaptive method, which does not
need to optimize parameters.
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Figure 10: Processing result of the vibration signal induced by the inner race fault. (a) Envelope demodulation; (b) peak-based wavelet
decomposition; (c) parameter-optimized peak-based wavelet decomposition; (d) proposed peak-based mode decomposition.
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Figure 11: Processing result of the vibration signal induced by rolling element fault. (a) Envelope demodulation; (b) peak-based wavelet
decomposition; (c) parameter-optimized peak-based wavelet decomposition; (d) proposed peak-based mode decomposition.

Table 2: Comparisons of some major indictors for bearing fault features.

Defect frequency magnitude of Envelope demodulation Peak-based wavelet
decomposition

Parameter-optimized peak-based
wavelet decomposition

,e proposed
method

Outer race 88.45 90.95 147.50 294.80
Inner race 88.40 93.34 104.20 139.50
Roller element 34.56 48.96 97.08 223.30
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5. Conclusions

In order to overcome the lack of adaptability of peak-based
wavelet decomposition, the present paper proposed peak-
based mode decomposition for bearing fault diagnosis. ,e
proposed method can eliminate noise adaptively in a vi-
bration signal and enhance and well-detect the weak re-
petitive transients. Simulation and experiments verify the
effectiveness of the proposed method. Compared with the
peak-based wavelet decomposition, the proposed method
not only can enhance the fault characteristics more signif-
icantly, but also is an adaptive algorithm, which does not
need to optimize parameters such as the base functions and
thresholds.
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