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)e large-span spatial structure is a complex structural type with large number of elements, which makes health monitoring
difficult. A time domain global substructural identification method was proposed in this paper to identify the local damage for the
large-span spatial structure. )e proposed method was an improvement method based on the time domain substructural
identification method, which can identify the damage with a reduced structural model, and explicit force identification method,
which can give convergent force identification result with incomplete response measurements, and it can assess one or more target
substructures without knowing the conditions of the other parts of the structure.)e application of the newmethod to large-span
spatial structure was presented, and then an improved global method was proposed to further reduce the computation time and
promote it in practice. Two orthogonal spatial square pyramid grid structure models are constructed to validate the time domain
global substructural method and the improved global method.)e results show that the time domain global substructural damage
identification method identifies the small local damage in multiple members with satisfactory accuracy and the improved global
method effectively shortens identification time.

1. Introduction

A great quantity of large-span spatial structures, such as
stadiums, train stations, airport terminals, and exhibition
centers, have been constructed around the world in the past
several decades. )e large-span spatial structure usually has
important functions to undertake activities or transfer
passengers, thereby always gathering large numbers of
people in it. Once failure or even collapse occurs, it will cause
terrible casualties, huge property loss [1], and extremely bad
social impact, which makes the structural health monitoring
of large-span spatial structure a crucial issue. )e small local
damage may lead to disastrous damage under strong
earthquake, so the small local damage detection becomes a
key issue for the structural health monitoring of the large-
span spatial structure. )e damage detection method based

on vibration information [2–5] has been proposed and
developed in the past three decades, and it has been applied
in various structures (e.g., bridges [6], frame structures, and
plane trusses [7, 8]).

Several structural health monitoring methods based on
vibration information have been proposed to estimate the
local damage of space truss structure in recent years. )e
square ratio of frequency variation and variation rate of axial
strain were adopted to identify local damage of space truss
structure [9, 10], and the numerical simulation results
show that the single damage location can be detected
accurately while the damage quantification needs to be
further discussed. Song et al. [11] expanded incomplete
mode shape through a dynamic model expansion tech-
nique, identified the possible damage members by model
strain energy, and then used Least Squares Support Vector
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Machine to detect the location and extent of the local
damage of a space truss. However, the measurement noise
level is a challenge. Another method based on residual
modal force and modal strain energy was proposed to
detect the local damage of space truss [12], and a space
truss was numerically simulated to verify the proposed
method. )e damage location and quantification can be
detected accurately, but the sensitive mode shape is needed
in the simulation cases.

)e neural networks have been adopted in structural
health monitoring widely since last decades. Wu and Zhang
[13] presented the damage identification method of grid
structures based on BP neural networks, and it has been
verified with numerical model of space truss and experi-
mental model of a double-layer cylindrical reticulated shell
structure.)e erroneous judgment is always unavoidable for
some damage locations, and this method cannot give good
identification results with missed damaged members. To
solve the data explosion problem, Liu et al. [14] introduced
the method of substructure, while using probabilistic neural
networks (PNN) to improve identification accuracy. )e
numerical simulation results show that this method is ef-
fective, but there are still erroneous judgments. If the
damaged members are located in different substructures, the
condition assessment will become more complicated, and
excessive substructure partitioning will produce some new
problems in global detection. He and Yan [15] adopted the
method combining wavelet packet with support vector
machine to identify the damage of single-layer lattice shell,
but the comprehensive correct rate of damage identification
was 80%.

Data fusion technique has also been adopted for the
damage detection of large-span spatial structure to improve
the accuracy of the damage identification. )e information
of acceleration measurements and strain measurements is
used to identify the damage of reticulated shell based on
Dempster–Shafer evidence theory [16, 17]. Teng and Yao
[18] added wavelet packet analysis on the basis of infor-
mation fusion. Although both methods improve the accu-
racy of damage identification, for avoiding data explosion,
global structure still needs to be divided into too many parts.
Moreover, the damaged members are all located in the same
substructure; the scenarios with damaged members located
in different substructures are not considered. )erefore,
these methods can be used to assess a small amount of
concentrated damage.

A probabilistic substructure identification and health
monitoring methodology was proposed [19], which does not
require any interface measurements or excitation mea-
surements. )is method can be applied widely, because only
the stochastic model of the input is required. )en, the
boundary force in the substructure is modulated as filtered
white noise [20], which can be viewed as a continuity
condition. )is proposed method does not require statio-
narity of the response. An identifiability-enhanced Bayesian
frequency-domain substructure identification approach is
proposed without the requirement of input or boundary
force measurements [21], in which extra constraints are
imposed to enhance the identifiability of the inverse

problem. Substructural identification approaches provide
effective methodologies for the identification of large-span
spatial structures, because they offer the flexibility to isolate
some critical substructures for identification. However, for
large-span spatial structure, the common substructural
damage identification methods based on vibration infor-
mation still suffer difficulties because of the characteristics of
large-span spatial structure including complex structural
composition, intensive frequency distribution, and nu-
merous dynamic degrees of freedom.

)e response sensitivity-based method was derived by
Jahn [22] in 1940s; usually, its application involves model
updating iteration and optimization algorithm [23–25] to
enhance the identifiability. Liu et al. [26] proposed a
substructural condition assessment method based on re-
sponse sensitivity, and the accuracy and effectiveness are
then validated with simulation studies of a plane truss
when damage only exists in one of the substructures. )is
method, with comparatively lesser substructure parti-
tioning, may be suitable for large complex structures. Since
this method shows potential for damage identification of
large-span spatial structure, in this paper, the global
damage identification method based on this substructural
method is presented to detect the location and extent of
local damage in different substructures with uncompleted
acceleration measurements. An improved global substruc-
tural damage identification method is further proposed to
reduce calculation duration. )e global substructural damage
identification method and the improved global substruc-
tural damage identification method are numerically veri-
fied with simulation studies of two double-layer lattice
space structures.

2. The Global Substructural Damage
Identification Method

)e target substructure can be assessed based on the time
domain response sensitivity matrix of the substructural
system as is described in Appendix B, and the detailed
process has been written in previous paper [26]. However,
this original substructural method is effective only when the
condition of the rest substructure is known. )e interface
force depends on the local damage extent of the target
substructure and the rest substructure, so the interface force
sensitivity is related to the local damaged parameters of both
substructures. When the local damaged parameter of the rest
substructure is unknown, the substructural response sen-
sitivity considering the interface force effect cannot be ob-
tained. To overcome this problem, this paper will propose a
global substructural method based on the interrelation be-
tween each substructural dynamic equation.

If the whole structure is divided into n substructures,
similar to (B.6), the motion equation of ith substructure
among the n substructures can be written as

Mi €xi + Ci _xi + Kixi � LiPi, (1)

where the subscripts i denote the number of substructures;
obviously 1≤ i≤ n. )e interface force Pi is related to all the
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substructural stiffness matrices from K1 to Kn. Due to the
interconnection between substructural motion equations,

the global substructural dynamic equation set can be written
as

M1 €x1 + C1 _x1 + K1x1 � L1P1,

⋮

Mi €xi + Ci _xi + Kixi � LiPi,

⋮

Mn €xn + Cn _xn + Knxn � LnPn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

In (2) the DOFs of the interface are repeated once
compared with the equation of motion of the full
structure.

2.1. -e Global Substructural Damage Identification
Algorithm. Assume that the local damage extent of the jth
substructure is damage index vector αj, which includes the
local damaged parameter of every element in the jth sub-
structure. A change in the global substructural stiffness
matrix can be described as

ΔK � 
j

αjKj. (3)

Performing differentiation of both sides of (1), the
motion equation of ith substructure, with respect to the
damage index vector αj, we have

Mi

z €xi

zαj

+ Ci

z _xi

zαj

+ Ki

zxi

zαj

� −
zKi

zαj

xi − a1
zKi

zαj

_xi + Li

zPi

zαj

,

(4)

where z €xi/zαj, z _xi/zαj, and zxi/zαj are the substructural
response sensitivity matrices which can be obtained by
solving (4). )e substructural response sensitivity algorithm
is presented in (B.9)–(B.16).

Let the ith substructural response sensitivity matrix with
respect to the jth substructural damage index vector be
represented as Si,j. All the substructural sensitivity matrices
can be calculated, and then the global substructural sensi-
tivity matrix is assembled as

S �

S1,1 · · · S1,j · · · S1,n

⋮ ⋱ ⋮ ⋱ ⋮

Si,1 · · · Si,j · · · Si,n

⋮ ⋱ ⋮ ⋱ ⋮

Sn,1 · · · Sn,j · · · Sn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

)e identification equation for the local damage of all the
substructures with the global substructural sensitivity matrix
can be represented as

Sα + o α2  � €X
cs

− €X
ms

, (6)

where

α � αT
1 · · · αT

i · · · αT
n

 ,

€X
cs

− €X
ms

� X
T
1 · · · X

T
i · · · X

T
n

 .
(7)

)emeasured acceleration response €X
ms, the corresponding

calculated acceleration response €X
cs, and the global substruc-

tural sensitivity matrix S in (6) are knownwhile the higher order
term o(α2) can be omitted.)e unknown damage index vector
α can be determined from (6) with an iterative approach based
on Gauss elimination method. )e substructural sensitivity
matrix Si,j and the difference values of the response vectorXi are
the basic computing unit in the process of solving.)e fractional
change increment of the stiffness vector Δαi is the result of each
iteration, and the final damage index vector αi is obtained by
summarizing all the iterative results.

)e substructural stiffness matrix is only related to its
own damage parameter, so (4) can be also written as

Mi

z €xi

zαj

+ Ci

z _xi

zαj

+ Ki

zxi

zαj

�

−
zKi

zαj

xi − a1
zKi

zαj

_xi + Li

zPi

zαj

, i � j,

Li

zPi

zαj

, i≠ j.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

In (8), if i≠ j, only one term is considered on the right-
hand side. Obviously, the substructural sensitivity matrix
obtained from (8) or (4), Si,j (i≠ j), has less contribution

than Si,i to the global substructural sensitivity matrix. A part
of the global substructural sensitivity matrix far from the
diagonal can be ignored as zero, and then the global
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substructural sensitivity matrix becomes sparse, and the
computational processes of Gauss elimination can be
simplified.

When the full structure is divided into two substructures,
after ignoring low contribution sensitivity matrices, the
global substructural sensitivity matrix can be written as

SII �
S1,1 0

0 S2,2
 . (9)

According to the solution by Gauss elimination method,
the kth iterative algorithm can be written as

Δαk
1 � S

+
1,1X1,

Δαk
2 � S

+
2,2X2.

(10)

Similarly, when the full structure is divided into three
substructures, the simplified global substructural sensitivity
matrix and the kth iterative algorithm can be written, re-
spectively, as

SIII �

S1,1 S1,2 0

S2,1 S2,2 S2,3

0 S3,2 S3,3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

Δαk
1 � S

+
2,1 + S

+
1,1S1,2S

+
3,2S3,3S

+
2,3 − S

+
1,1S1,2S

+
2,2  S2,3S

+
3,3S3,2S

+
1,2 − S2,2S

+
1,2 X1 + X2 − S2,3S

+
3,3X3 ,

Δαk
2 � S

+
1,2X1 − S

+
1,2S1,1Δα

k
1,

Δαk
3 � S

+
3,3X3 − S

+
3,3S3,2Δα

k
2.

(12)

)e substructural method by dividing the full structure
into several substructures can effectively reduce structural
model, and then the size of response sensitivity matrix is
reduced significantly. When there is local damage in dif-
ferent substructures, the following procedure based on the
global substructural damage identification method can be
performed to assess all the substructures’ conditions.

Step 1: Conduct the dynamic measurement in the
structure, and assemble the measured responses. )en,
set k � 0.
Step 2: )e relationship between the interface forces
and the measured responses is constructed, and the
interface forces are then identified.
Step 3: Compute the response of the structure ( €X

cs) and
the substructural sensitivity matrices of response (Si,j)
with respect to the local damaged parameters of dif-
ferent substructure.
Step 4: Let k � k + 1, and identify the kth local change
increment of the stiffness with the global substructural
sensitivity matrix S in (6).
Step 5: Update the finite element model and repeat
Steps 2 to 4 until convergence in (13) is met. )e final
damage index vector α which is used to represent the
change of stiffness can be obtained as
αk+1 � k+1Δαk+1.

αk+1
− αk

�����

�����

αk+1
�����

�����
<Tol1

Tol1� 10− 5 for the noise free case,

Tol1� 10− 3 for 5%noise level case.

⎧⎪⎨

⎪⎩

(13)

)e flowchart of the global substructural method is
shown in Figure 1.

2.2.-e ImprovedGlobal SubstructuralDamage Identification
Algorithm. )e application of global substructural
method to large-span spatial structure can reduce the
structural model and the size of sensitivity matrix through
dividing the full structure into several substructures, but
all the elements need to be considered repeatedly in each
iterative computation. When the structural model is too
large and complex, it will consume a lot of computation
time for damage identification with the global substruc-
tural method due to the huge number of elements. To
enhance the computational efficiency of damage identi-
fication, an improved global substructural method can be
proposed by shrinking the scope of assessment in the
iterative process.

In this method the damage index is calculated at first
identification round, and then a critical value is defined for
determining the damaged location, in which those elements
with the local damage extent larger than the defined critical
value are set as the probable damaged elements. After fil-
tering the probable damaged elements, these elements are
independently identified, while regarding the others as in-
tact. )en, all the elements are reviewed to avoid missing the
damaged element. Based on the global substructural damage
identification method, the improved global substructural
damage identification method can be performed as in the
following steps:

Step 1: Conduct the dynamic measurement in the
structure, and assemble the measured responses. )en,
set k � 0 and k1 � 0.
Step 2: )e relationship between the interface forces
and the measured responses is constructed, and the
interface forces are then identified. Compute the re-
sponse of the structure and the substructural sensitivity
matrices of responses with respect to the local damaged
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parameters of different substructures based on the
identified interface forces.
Step 3: Let k � k + 1, and identify the kth local change
increment of the stiffness with the analytical responses
and the corresponding substructural sensitivity ma-
trices in Step 2.
Step 4: Update the finite element model and repeat
Steps 2 to 3 until convergence in (14) is met. Define a
critical value for determining the damaged location.
)e elements with the obvious stiffness reduction are
selected to be updated in the following update pro-
cedures (referred to as “damaged elements”), and the
stiffness change of the other elements regarded as intact
is set to zero. Set k1 � k+ 1; the first-round identification
is finished.

αk+1
− αk

�����

�����

αk+1
�����

�����
<Tol2

Tol2 � 10− 2 for the noise free case,

Tol2 � 10− 1 for 5%noise level case.

⎧⎪⎨

⎪⎩

(14)

Step 5: Let k � k + 1, calculate the responses based on
the previous updated model of structure and sensi-
tivities of the “damaged elements” in every substruc-
ture, and then identify the kth fractional increment of
the damaged parameters of the “damaged elements”
Δαk

d.
Step 6: Update the finite element model and repeat
Steps 5 until “damaged elements” convergence in (15) is
met.

αd
k+1

− αd
k

�����

�����

αd
k+1

�����

�����
<Tol3

Tol3� 10− 5 for the noise free case,

Tol3� 10− 3 for 5%noise level case.

⎧⎪⎨

⎪⎩

(15)

Step 7: To review the damage identification results,
update the finite element model and repeat Steps 2 to 3
until convergence in (14) is met.

)e flowchart of the improved global substructural
method is shown in Figure 2.

3. Numerical Simulations

3.1. Numerical Simulation of Global Substructural Method.
)e orthogonal spatial square pyramid grid structure as
shown in Figure 3 serves for the following study. )is
structure is modeled using 240 spatial truss finite elements
without internal nodes and 72 hinge nodes giving 150 DOFs.
)e structure is divided into two substructures as shown in
Figure 4. )e node number and element number are shown
in Figures 3 and 4. Substructure I contains Nodes 1 to 44 and
Substructure II contains Nodes 34 to 72. Nodes 34 to 44 are
the interface nodes. )e structure is hinge-supported at
peripheral nodes, and the location of bearing is shown in
Figure 3 as solid blue squares. )e upper, lower, and web
members are all 3.0 meters long. )e cross-sectional area of
all members is 0.0028m2. )e plane dimensions of the
structure are 18m× 15m, and the height of the structure is
2.12m.)e first eight natural frequencies of the structure are
2.724Hz, 4.621Hz, 5.438Hz, 7.029Hz, 7.030Hz, 8.057Hz,
8.462Hz, and 8.560Hz, respectively. Rayleigh damping is
adopted for the system, and the two damping coefficients are
a1 � 0.1077 and a2 � 2.1669 × 10− 4. )e mass density and
elastic modulus of material are, respectively, 7.85 × 103 kg/
m3 and 2.06GPa.

Vertical external loads are applied to the structure at
Nodes 26 and 47, and they are, respectively, modeled as

F1(t) � 650 sin(20πt) + 600 sin(80πt) + 550 sin(160πt),

F2(t) � 500 sin(18πt) + 450 sin(70πt) + 450 sin(210πt),

(16)

to simulate excitation over a relatively wide range of
frequencies.

)e sampling rate is 1000Hz and the time duration of
study is 0.5 s after the load application. )e acceleration
responses of the structure are calculated using theNewmark-

Construct the model (Mi,Ci,Ki)
and measure the response of the damaged 

substructure and set k=0

Identify interface force Pi with Mi,Ci,Ki and 
the measured response, and compute the 
responses and the acceleration sensitivity 

matrices from Eq. (4)

Let k=k+1, identify the local change 
increment of the stiffness ∆αk with the global 

substructural sensitivity S in Eq. (6)

Is convergence in Eq. (13) met?

END

Yes

Update
Mi,Ci,Ki 

Figure 1: Flowchart of the global substructural method.
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β method as the “measured” responses. )e sensor location
is shown in Figure 3 as red hollow circles.

)e initial global substructural sensitivity matrix is
obtained with the substructural response sensitivity

algorithm. )e former 120 columns of matrix are related to
the local damaged parameters of Substructure I, and the last
120 columns of matrix are related to the local damaged
parameters of Substructure II. To compare the contribution

Is convergence in Eq. (14) met?

Yes

No

END

Is convergence in Eq. (15) met?
NoYes

Yes

Construct the model (Mi,Ci,Ki)
and measure the response of the damaged 

substructure and set k=0, k1 = 0.

Identify interface force Pi with Mi,Ci,Ki and 
the measured response, and compute the 
responses and the acceleration sensitivity 

matrices from Eq. (4)

Let k=k+1, identify the local change 
increment of the stiffness of the “being

damaged elements” Δαdk with the global 
substructural sensitivity S in Eq. (4)

Update
Mi,Ci,Ki 

Update
Mi,Ci,Ki 

Define a critical value, select the element
with the obvious stiffness reduction as

“being damaged elements’’. Set the stiffness
change of the other elements to be zeros. Set

k1= k+1.

k1 = 0

k1 ≠ 0

Let k=k+1, identify the local change 
increment of the stiffness Δαk with the global 

substructural sensitivity S in Eq. (6)

Figure 2: Flowchart of the improved global substructural method.
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between different substructural sensitivity matrices, every
sensitivity vector norm with respect to single local damaged
parameter at the different nodes is calculated. )e norm of
sensitivity vectors at the sensor locations is shown in

Figure 5.)emean of norm of sensitivity vectors is shown in
Table 1. It is noted that the norm of sensitivity vectors with
respect to the parameters of Substructure I is greater than
that of Substructure II at the nodes belonging to Sub-
structure I, but it is the opposite at the nodes belonging to
Substructure II. Accordingly, the substructural sensitivity Si,j

(i≠ j) has less contribution than Si,j (i � j) to the global
substructural sensitivity matrix.

To evaluate the contribution extent of different sub-
structural sensitivity to the global substructural sensitivity
matrix, a ratio is defined as

Ratio �
Si,jΔαj

�����

�����

jSi,jΔαj

�����

�����
. (17)

Because all the fractional change increments Δαi keep
the same level under the small local damage, the defined
ratio in (17) can represent the influence of one substructural
sensitivity in the identification equation. Small stiffness
reduction of 0.1% is simulated in all structural elements, and
the initial substructural sensitivitymatrices are considered to
calculate the ratio. )e results of ratio are shown in Table 2,
demonstrating that the influence of substructural sensitivity
matrix S1,1 and S2,2 is much larger than the others. In the
following numerical simulation, (9) and (10) are applied to
assess the condition of structure setting S1,2 and S2,1 as zero.

Two damage scenarios as shown in Table 3 are studied in
this section. 10% stiffness reduction is assumed as local
damage of each selected element in each scenario. )e
damaged members are located in different substructures.

With the global substructural damage identification
method, the damage identification results of the two sce-
narios are shown in Figure 6. )e identified results without
noise are consistent with the real damaged scenarios, which

Figure 3: An orthogonal spatial square pyramid grid structure and element number system.

Figure 4: Substructure division.
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Figure 5: Sensitivity vector norm. (a) At node 9 belonging to Substructure I. (b) At node 15 belonging to Substructure I. (c) At node 21
belonging to Substructure I. (d) At node 25 belonging to Substructure I. (e) At node 37 belonging to Substructure I. (f ) At node 30 belonging
to Substructure I. (g) At node 43 belonging to Substructure II. (h) At node 46 belonging to Substructure II. (i) At node 48 belonging to
Substructure II. (j) At node 52 belonging to Substructure II. (k) At node 58 belonging to Substructure II. (l) At node 64 belonging to
Substructure II.
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indicate that the global substructural damage identification
algorithm is correct and accurate. )ere are some small false
positives and negatives in the results, because identification
of interface force and simplification of sensitivity matrix will
generate errors in iterative process. However, the identifi-
cation results with 5% noise in measurements have larger
errors than those in the scenario without noise. )e mean
values and standard deviations of error are shown in Table 4.
)e identified error of damaged element 46 in Scenario I
reaches about 3.8%, but the damage locations can be
identified with satisfactory accuracy in both scenarios.

)e size of sensitivity matrices is shown in Table 5,
and it is noted that the size of sensitivity matrix is reduced
significantly in the identification process. )is study
shows that the global substructural method can be applied
for assessing the double-layer lattice space structure with
small damage in multiple members distributed in dif-
ferent substructures by incomplete measured acceleration
responses (24% of responses data are measured in this
simulation study).

3.2. Numerical Simulation of Improved Global Substructural
Method. )e orthogonal spatial square pyramid grid

structure as shown in Figure 7 serves for the following
study. )is structure is modeled using 800 spatial truss
finite elements without internal nodes and 221 hinge
nodes giving 543 DOFs. )e structure is divided into three
substructures as shown in Figure 8, and the node number
and element number are shown in Figure 9. Nodes 64
to 84 and Nodes 138 to 158 are the interface nodes. )e
structure is hinge-supported at peripheral nodes, and the
location of bearing is shown in Figure 9 as solid blue
squares. )e upper, lower, and web members are all 3.0
meters long. )e cross-sectional area of all members is
0.0028m2. )e plane dimensions of the structure are
30m × 30m, and the height of the structure is 2.12 meters.
)e first eight natural frequencies of the structure are
0.864Hz, 1.826Hz, 2.564Hz, 3.659Hz, 3.682Hz, 3.985Hz,
4.144Hz, and 4.628Hz, respectively. Rayleigh damping is
adopted for the system, and the two damping coefficients are
a1 � 0.0368 and a2 � 5.9167 × 10− 4. )e mass density and
elastic modulus of material are, respectively, 7.85 × 103 kg/
m3 and 2.06GPa.

Vertical external loads are applied to the structure at
Nodes 67, 71, 141, and 145, and they are, respectively,
modeled as

F1(t) � 500 sin(18πt) + 450 sin(70πt) + 450 sin(210πt),

F2(t) � 650 sin(20πt)600 sin(80πt) + 550 sin(160πt),

F3(t) � 550 sin(18πt) + 500 sin(50πt) + 500 sin(160πt),

F4(t) � 600 sin(20πt) + 550 sin(30πt) + 500 sin(210πt),

(18)

to simulate excitation over a relatively wide range of
frequencies.

)e sampling rate is 1000Hz and the time duration of
study is 0.5 s after the load application. )e acceleration
responses of the structure are calculated using theNewmark-
β method as the “measured” responses. )e sensor location
is shown in Figure 7 as red hollow circles. Two damaged
scenarios as shown in Table 6 are studied in this section. 10%
stiffness reduction is assumed as local damage of selected
element in each scenario. Equations (11) and (12) are applied

Table 1: Mean value of sensitivity vector norm.

Node number
Mean of sensitivity vector norm

Related to parameters of Sub I Related to parameters of Sub II
9 3.68 1.95
15 4.27 2.44
21 4.18 2.68
25 4.32 2.57
27 4.16 2.11
30 4.84 2.76
All nodes of Sub I 4.24 2.42
43 2.45 6.34
46 2.01 6.24
48 2.22 5.37
52 2.11 5.20
58 1.86 6.09
64 1.43 4.51
All nodes of Sub II 2.02 5.62

Table 2: Contribution extent of substructural sensitivity.

Index of sensitivity matrix Ratio
S1,1 0.88
S1,2 0.33
S2,1 0.25
S2,2 0.92

Table 3: Damage scenarios.

Damage scenario
Damaged element

Upper member Lower member Web
member

Scenario I 12,46 163 206,238
Scenario II 40 84,130 192,240
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to assess the condition of structure setting S1,3 and S3,1 as
zero.

With the improved global substructural method, the
damage identification results of the two scenarios without
noise in measurements are shown in Figure 8. )e
identified results are consistent with the real damage
scenarios, and there is almost no error, which indicates
that the improved global substructural methodology is

correct and accurate. )e required computation time on a
PC with 3.6 GHz Intel Core i7-4790 CPU and 4 GB
memory is shown in Table 7. Compared with that of the
global substructural method, the calculation duration of
the improved global substructural method is reduced
significantly.

In the first-round identification, the number of ele-
ments regarded as “damaged elements” is decided by the
defined critical value, being related to the efficiency of
next step identification. However, if the defined critical
value is too large, some damaged elements may be
missing. In order to verify that the improved sub-
structural method is still effective even when there are
erroneous judgments in the process of filtering, the
critical value is defined as 0.09 in this numerical study.
After filtering, the damaged element 500 is to be left out
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Figure 6: Identified results of global substructural method. (a) Scenario I with (i) part I, (ii) part II, and (iii) part III. (b) Scenario II with (i)
part I, (ii) part II, and (iii) part III.

Table 4: Calculated error of the identified results.

Damage scenario
With 5% noise in measurements Without noise in measurements

Mean value (%) Standard deviation Mean value (%) Standard deviation
Scenario I 1.24 1.50 0.18 0.26
Scenario II 1.16 1.34 0.22 0.23

Table 5: Size of sensitivity matrix.

Index of sensitivity matrix Size of sensitivity matrix
SII 18000× 240
S11 9000×120
S22 9000×120
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in Scenario I and the damaged element 736 is to be left
out in Scenario II. )e identified results of the selected
elements of the two scenarios with 5% noise in mea-
surements are shown in Figure 10, and the locations of
erroneous judgment are marked by red circles. )e final
damage identification results after review of the two
scenarios are shown in Figure 11. )e correct identified
results of damaged location indicate that the accuracy of
damage identification is not affected.

)e mean value and standard deviation of error are
shown in Table 8. It is noted that the error between two
methods is extremely close, which indicate that the im-
proved global substructural method is stable for error with
5% noise while improving the identification speed. 25% of
responses data are obtained for measurement, which is
reasonable extent in the practical application. )is study
shows that the improved global substructural method can be
applied for assessing the bigger double-layer lattice space

Figure 7: An orthogonal spatial square pyramid grid structure.
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Figure 8: Identified results of improved substructural method. (a) Scenario I. (b) Scenario II.
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Figure 9: Substructure division and element number system.

Table 6: Damage scenario.

Damage scenario
Damaged element

Upper member Lower member Web member
Scenario I 27, 64, 98, 135, 195 258, 322, 410, 500, 550 632, 690, 724, 760, 790
Scenario II 12, 85, 125, 170, 218 263, 341, 405, 492, 566 622, 650, 700, 736, 800

Table 7: Required computation time (s) for damage identification.

Damage scenario
Improved global substructural method

Global substructural method
Filtering Identifying Review Total time

Scenario I 502 16 407 925 1108
Scenario II 526 21 390 937 1276
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Figure 10: Identified results of selected elements. (a) Scenario I. (b) Scenario II.
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Figure 11: Final identified results after review. (a) Scenario I. (b) Scenario II.

Table 8: Calculated error of the identified result with 5% noise in measurements.

Damage scenario
Improved substructural method Global substructural method

Mean value Standard deviation Mean value Standard deviation
Scenario I 0.61 0.67 0.71 0.79
Scenario II 0.44 0.42 0.50 0.51

Interface

Target Substructure

Rest Substructure

Figure 12: Substructure division.
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structure rapidly with dividing substructure to avoid data
explosion.

4. Conclusions and Discussions

)e proposed global substructural damage identification
method can assess all the substructures without knowing the
conditions of the other parts of the entire structure, so it is a
practical method for the health monitoring of large-span
spatial structure. )e numerical simulation of a double-layer
lattice space structure with local damage distributed in dif-
ferent substructures verifies that the new method is effective
in identifying the damage of large-span spatial structure by
the incomplete dynamic response information. )e small
damage in multiple members can be accurately assessed
without noise, and the damaged location can be correctly
identified with 5% noise in measurements. )e divided
substructure has less model and smaller sensitivity matrix
than the full structure to avoid data explosion, and the ap-
propriate number of sensors ensures the practical feasibility.

)e improved global substructural method is proposed
to shorten the required computation time, and a larger
orthogonal spatial square pyramid grid structure illustrates
and verifies this improved global method. )e iterative al-
gorithm based on the Gauss elimination of identification is
simplified by ignoring a few substructural sensitivities in-
cluded in the global sensitivity matrix. However, the cal-
culated error will increase with the number of ignored
sensitivity matrices growing. )e relation between the error
and the number of the ignored sensitivity matrices should be
further studied. If the number of divided substructures is
excessive and the Gauss elimination method suffers diffi-
culty, the Jacobi iteration can be adopted.

Appendix

A. Explicit Interface Force IdentificationMethod

)e displacement, velocity and acceleration of the sub-
structure at time ti+1 can be obtained from Equations (A.1)
to (A.3) similar to a full structure [27] as

xsub( i+1 � A0Lsub Psub( i+1 + Ad xsub( i + Av _xsub( i + Aa €xsub( i, (A.1)

_xsub( i+1 � B0Lsub Psub( i+1 + Bd xsub( i + Bv _xsub( i + Ba €xsub( i, (A.2)

€xsub( i+1 � C0Lsub Psub( i+1 + Cd xsub( i + Cv _xsub( i + Ca €xsub( i, (A.3)

where

Ksub � Ksub +
1
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Combining (A.1) to (A.3), we have the displacement,
velocity, and acceleration at (i + 1)th time instant as function
of the responses at the ith time instant as
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Equation (A.5) is formulated from the standard New-
mark-β method for the forward dynamic analysis of a
substructure. It can be further rewritten into a general re-
cursive relation as
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and the response at time ti can be written as
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where both indices i and j denote a power of the corre-
sponding matrices.

)e measurement matrix ysub represents the output of
the structural system and it can be assembled from the
measurements with

ysub � Ra €xsub + Rv _xsub + Rdxsub, (A.8)

where Ra, Rv and Rd ∈ Rns×N are the output influence
matrices for the measured acceleration, velocity and dis-
placement respectively, ns is the number of the measured

responses and N is the number of DOFs of the selected
substructure.

Vector ysub can be rewritten as

ysub � Rd Rv Ra 
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Let R � Rd Rv Ra  and substituting Equations (A.7)
and (A.9) can be rewritten into the following discrete
equation as

ysub ti(  � 
i−1

j�0
R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Lsub Psub( i−j + R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i
xsub( 0

_xsub( 0

€xsub( 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.10)

Assuming zero initial response of the structure and let,
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Equation (A.10) can be rewritten into a matrix convo-
lution relation from t1 to tnt time instants as

Ysub � Hsub( LPsub, (A.12)

where

Ysub �

ysub t1( 

ysub t2( 

⋮

ysub tnt( 

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

Hsub( L �

H0Lsub 0 · · · 0

H1Lsub H0Lsub · · · 0

⋮ ⋮ ⋱ ⋮

Hnt−1Lsub Hnt−2Lsub · · · H0Lsub

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Psub �

Psub t1( 

Psub t2( 

⋮

Psub tnt( 

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(A.13)

)e inverse problem in Equation (A.12) is ill-posed, and
the interface forces are therefore identified through the

Tikhonov regularization technique by minimizing the fol-
lowing objective function.

J Psub, λ(  � Hsub( LPsub − Ysub
����

����
2

+ λ Psub
����

����
2
, (A.14)

where λ is the regularization parameter obtained using the L-
curve method.

B. SubstructuralDamage IdentificationMethod

)e equation of motion of a damped linear structure with
multiple DOFs can be written as

M €x + C _x + Kx � LP(t), (B.1)

where M, C and K are the mass, damping and stiffness
matrices of the structural system, respectively. P(t) is the
vector of external forces on the structure and L is the
mapping matrix for the external forces. €x, _x and x are the
vectors of acceleration, velocity and displacement responses,
respectively. )e structure is assumed to exhibit Rayleigh
damping for discussion as

C � a1M + a2K, (B.2)

where a1 and a2 are the damping coefficients.
A structure can be divided into several substructures and

a target substructure can be selected for the assessment.
Based on the sub-division of a structure as shown in Fig-
ure 12, Equation (B.1) can be rewritten as

Mrr Mri 0

Mir Mii Mis

0 Msi Mss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ €xr €xi €xs  +

Crr Cri 0

Cir Cii Cis

0 Csi Css

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_xr

_xi

_xs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
+

Krr Kri 0

Kir Kii Kis

0 Ksi Kss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xr

xi

xs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

LrPr

LiPi

LsPs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (B.3)

where the subscripts r, i and s denote the DOFs of the target
substructure, the interface DOFs between the substructures
and the DOFs of the rest substructure.

)e following equation on DOFs r and i of the structure
can be extracted from (B.3) as

Mrr Mri

Mir Mii

  €xr €xi  +
Crr Cri

Cir Cii

 
_xr

_xi

  +
Krr Kri

Kir Kii

 
xr

xi

  �
LrPr

LiPi + Ps
′

 , (B.4)

where Ps
′ � −Mis €xs − Cis _xs − Kisxs is the set of interface

forces. )e presence of other parts of the structure is rep-
resented by the interfacing forces acting on the target
substructure. Accurate knowledge of these forces is therefore
a requirement for a successful assessment.

)e target substructure is selected for study as an in-
dividual structure, and the interface forces can be considered
as a set of external forces acting on the target substructure.
)e subscript ‘sub’ is adopted to represent the substructure.
Let,
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Msub �
Mrr Mri

Mir Mii

 ,

Csub �
Crr Cri

Cir Cii

 ,

Ksub �
Krr Kri

Kir Kii

 ,

€xsub � €xr €xi ,

_xsub �
_xr

_xi

 ,

xsub �
xr

xi

 ,

Lsub �
Lr 0

0 I
 ,

Psub �
Pr

Ps
′

 ,

(B.5)

then the equation of motion of the substructure in Equation
(B.4) can be written as

Msub €xsub + Csub _xsub + Ksubxsub � LsubPsub. (B.6)

Since matrices Msub, Csub and Ksub are positive semi-
definite similar to the mass, damping and stiffness matrices
of the whole structure, the substructural force identification
can also be performed similar to that for a full structure, and
the external forces identification method is listed in
AppendixA.

Assuming the local damage extent of themth element in
the target substructure as αm, the change of the stiffness
matrix can be described as

ΔKsub � 
m

αm Ksub( m, (B.7)

where (Ksub)m is the stiffness matrix of the mth element in
the target substructure. Performing differentiation to both
sides of Equation (B.6) with respect to the parameter αm, we
have

Msub
z €xsub

zαm

+ Csub

z _xsub

zαm

+ Ksub
zxsub

zαm

� −
zKsub

zαm

xsub − a1
zKsub

zαm

_xsub + Lsub
zPsub

zαm

. (B.8)

Equation (B.8) is of the same form as similar equations
for the response sensitivity of a full structure [8] except one
extra term (the third term) on the right-hand side. When
only the first two terms on the right are included, the ob-
tained response sensitivity is for the substructure with an
non-varying interface force. Equation (B.8) is solved again
by keeping the third term on the right to get the response
sensitivity derived from the interface force sensitivity alone.
)e response sensitivity derived from the interface force
sensitivity is noted to be significant [26] and it cannot be
ignored in the calculation of the response sensitivity of the
substructure.

Vector yαm
sub represents the response sensitivity vector of

the substructural system and similar to Equation (A.8) it can
be assembled as

y
αm
sub � Ra

z €xsub

zαm

+ Rv

z _xsub

zαm

+ Rd

zxsub

zαm

. (B.9)

Let,

L
αm
sub � −

zKsub

zαm

−a1
zKsub

zαm

0 . (B.10)

Combining Equations (B.8) and (B.9) and assuming zero
initial conditions, similar to Equations (A.1) to (A.10) the
following solution of the sensitivity can be obtained.

y
αm
sub ti(  � 

i− 1

j�0
R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L
αm
sub

xsub

_xsub

€xsub
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⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
i−j

+ Lsub
zPsub

zαm

 
i−j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.11)

Based on Equation (A.12), the sensitivity of the interface
force can be defined as

zPsub

zαm

� Hsub( L 
− 1z Hsub( L

zαm

Hsub( L 
− 1

Ysub, (B.12)

and identified based on the explicit Newmark- β method [27],

xsub

_xsub

€xsub

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
i

� 
i−1

j�0

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Lsub Psub( i−j.

(B.13)

Similar to Equations (A.12) and (A.13), let
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w
k �

Ad Av Aa

Bd Bv Ba

Cd Cv Ca
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.

(B.14)

)e response sensitivity considering the interface force
effect can be obtained as,

Y
αm
sub � H

αm
sub( L H

w
sub( L +

z Hsub( L

zαm

  Hsub( L 
− 1

Ysub,

(B.15)

and the sensitivity matrix Ssub for the substructure with NE
elements can be defined as

Ssub � Y
α1
sub Y

α2
sub · · · Y

αNE
sub . (B.16)
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