
Research Article
A Novel Balancing Method for Rotor Using Unsupervised
Deep Learning

Shun Zhong ,1 Liqing Li ,1 Huizheng Chen,2 and Zhenyong Lu2

1Department of Mechanics and Key Laboratory of Dynamics and Control, Tianjin University, Tianjin, China
2Institute of Dynamics and Control Science, Shandong Normal University, Ji’nan, China

Correspondence should be addressed to Liqing Li; li_qing_li@tju.edu.cn

Received 21 May 2021; Accepted 28 June 2021; Published 5 July 2021

Academic Editor: Yong-Feng Yang

Copyright © 2021 Shun Zhong et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel balancing method for rotor based on unsupervised deep learning is proposed in this paper. ,e architecture of the
proposed deep network is described. In the proposed network, compared to the supervised deep network, additional convolution
layers are applied not only for the learning of the inverse mapping but also for identifying the unbalanced force without labeled
data. ,e equivalent value and position of imbalances in two correction planes are obtained. A case study of a rotor with two discs
supported by sliding bearings is conducted. Preset imbalances are balanced well by the proposed method. And, using the state
values at different time intervals, no extra weight trails are needed. ,e results show that the proposed balancing method gives
consideration to both cost and accuracy.

1. Introduction

Rotor balancing is a type of analysis that compares the vi-
bration profile with the rotation of a mechanical element to
characterize inconsistent weight distribution around the
diameter while calculating the amount and position of the
weight necessary to offset the net imbalance. As rotor im-
balance may lead to malfunction, such as rotor rub-impact
and bearing wear, and even to catastrophic failure [1], the
rotor balancing is a traditional technology, but still im-
portant in nowadays rotor industry. Any mass that is not
rotating around its center of mass will produce vibration.
Asymmetry of the structure along the rotating axis and small
changes in density and thickness of the material cause
imbalances. And, imbalance distribution leads to additional
force and moment onto the rotor. Every single rotor needs
several times of balancing like factory balancing [2] and on-
site balancing [3] before implementation and online bal-
ancing [4] in working condition.

For decades, dynamic balancing methods are developed
on the basis of two mature ideas. One is the modal balancing
method (MBM) and the other is the influence coefficients
method (ICM). Bishop [5] proposed the MBM at first, and it

was optimized afterwards [6]. ,e ICM was proposed by
Goodman [7] firstly and perfected by Lund and Tonnesen
[8]. ,e central theory of the MBM is to balance the first N

modal unbalanced responses by adding trail weights to N

balance surfaces, and the speed of the system should be close
to the critical speed of each mode. While for the ICM, the
main technique is to identify the unbalanced parameters by
the linear relationship between the trail weights and vi-
bration responses of the rotor system.

Cost and accuracy are two main considering points in
rotor balancing. ,erefore, some dynamic balancing
methods based on advanced technologies are proposed by
researchers, and good performances with some specific cases
were observed. ICM-like method [9–13] is easy to operate.
However, more measuring data of the responses at different
measuring points with different rotating speeds are usually
necessary to achieve better performance. As for the ICM or
like approaches, inappropriate position of measurement
points may result in ill-conditioned coefficient matrix and
lead to the failure of this method. Meanwhile, due to the
limitation of the working conditions of the rotor system,
high speed measures for long time may lead to decreasing of
the system sensitivity at high modes. ,us, several times of
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weight trial processes are essential. MBM-like method
[14–18] uses prior knowledge of the system to identify
imbalance. But the change of the stiffness and damping, i.e.
the support properties of bearings and high damping sys-
tems would affect identification results of rotor imbalances
when balancing by the MBM. If we have enough prior
knowledge about the rotor, the weight trail times can be
reduced significantly by introducing the full set of modals.

Deep learning methods have attracted great attention in
recent years and been applied in many fields, such as fault
diagnosis of reciprocating compressor [19, 20]. For rotor
balancing problem, deep learning technologies are usually
used to address the input identification problem by learning
the inverse mapping from data, and the learning of the
mapping can be processed by same data used for balancing
process. ,at means, no extra data or prior knowledge are
needed for rotor balancing. Based on this truth, in this work,
we are going to propose a novel balancing method for rotor
with deep learning network. In the following, we provide an
overview about the related work in Section 2. In Section 3,
the proposed method is illustrated briefly. To prove the
validity of the proposed method, a case study is undertaken
in Section 4. Finally, the paper is concluded.

2. Related Work

Rotor balancing methods have been developed from various
perspectives including algorithm modification and intro-
duction of advanced technology, for example, Bin et al.
[21, 22] investigated and balanced a kind of multirotor
turbomachinery shaft system with N+ 1 supports analyti-
cally and experimentally. Zhao et al. [23] proposed a
transient characteristic-based balancing method (TCBM)
combined with dynamic load identification (DLI) technique
to identify the unbalance parameters of the general rotor
system. Li et al. [24] proposed a novel modal balancing
technique without trial weights by combining the modal
balancing method with finite elements method. Zhang et al.
[25, 26] identified an unbalance response of a dual-rotor
system with a slight rotating speed difference by the whole-
beat correlation method and nonwhole-beat correlation
method, respectively. Yue et al. [27] presented an innovative
modal balancing process for estimating the residual un-
balance from different equilibrium planes of complex
flexible rotor system. Yu et al. [28] proposed a new adaptive
proportional-integral control strategy for rotor active bal-
ancing systems during acceleration. Li et al. [29] proposed a
novel disturbance-observer-based field dynamic balancing
strategy for active magnetic bearings (AMB) equipped
machinery.,e imbalance distribution of the rotor may lead
to vibrations and bifurcations in rotor-active magnetic
bearing systems [30, 31]. Zheng and Wang [32] presented a
novel high-precision field balancing method based on the
regular control mode without trial weight. Ait Ben Ahmed
et al. [33] presented and validated a hybrid method through
a series of experiments for balancing of rigid and flexible
rotors at a constant rotational speed.

Learning the model from data has been addressed in the
references by either system identification or supervised

black-box function approximation. Ting et al. [34] devel-
oped a Bayesian parameter identification method that can
automatically detect noise in both input and output data for
the regression algorithm that performs system identification.
Atkeson et al. [35] presented a procedure that estimates load
and link inertial parameters as a result of general movement;
the loads and links are considered to be rigid bodies. Haruno
et al. [36] proposed a newmodular architecture, the modular
selection and identification for control (MOSAIC) model,
for motor learning and control based on multiple pairs of
forward (predictor) and inverse (controller) models. Cal-
inon et al. [37] presented and evaluated an approach based
on the hidden Markov model (HMM), Gaussian mixture
regression (GMR), and dynamical systems to allow robots to
acquire new skills by imitation. Ledezma and Haddadin [38]
introduced a conceptual framework for the construction and
training of first-order principle (FOP) networks and de-
scribed the proposed estimation method in detail. In con-
trast to these existing methods, the proposed method is
going to learn the mapping from system state to bearing
force directly, while the unbalanced forces are to be learned
unsupervised.

3. Proposal of the Method

3.1. Problem Formulation. Describing the equations of
motion for mechanical systems has been extensively studied,
and various formalism to derive these equations exists. ,e
most prominent are Newtonian-, Hamiltonian-, and La-
grangian-mechanics [39]. Within this work, Newtonian-
mechanics is used, and based on which, a mapping model f

can be used either to predict the change of system state in
forward way or identify the input τ in its inverse form f− 1,
i.e.,

f(q, q
.
, τ) � €q ,

f
− 1

(q, q
.
, q

..
) � τ,

(1)

where q refers to the generalized coordinate vector, and q
.

and q
..
are corresponding generalized velocity and acceler-

ation vectors. Approximating f and f− 1 with deep net-
works, i.e.,

f � f(q, q
.
, τ; α),

f
− 1

� f
− 1

(q, q
.
, q; β

..

),
(2)

where .̂ means an approximation and α and β are network
parameter tensors’ the forward model and inverse model
could be learned from data. For an identification problem,
the inverse model learns the mapping from joint config-
uration (q, q

.
, q

..
) to input force τ. In detail, the network

parameters can be learned by minimizing the error between
the real value of sample and the predict value, using the
samples (q, q

.
, q

..
, τ) obtained from the mechanical system.

For the rotor balancing problem, the input force can be
obtained from state variables and their derivatives in dif-
ferent time intervals or at different time points. So,
abundant training data can be obtained by just one run of
the rotor system. Weight trail processes are not essential in
the proposed method.
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3.2. Unsupervised Deep Network for Unbalanced Force.
Starting from (1), supervised learning approaches would
train the parameters by minimizing the ℓi norm between the
prediction of (1) andmeasured input force τ, i.e., by solving a
optimization problem described as follows:

β∗ � argmin
β

ℓi
f

− 1
(q, q

.
, q

..
; β), τ . (3)

In rotor balancing problem, as the unbalanced force
cannot be measured directly, if one would like to learn the
unbalanced force supervised, many runs with preset unbal-
anced mass have to be done. ,is obeys our aim.,us, in this
section, an unsupervised deep network to predict unbalanced
forces is established. ,e proposed network is shown in
Figure 1.

In the rotor system, vibration displacements of the disk
and shaft can be easily measured by eddy current sensors,
while the velocity and acceleration cannot. ,us, a pre-
processing module is introduced to derive the measured
displacement. Meanwhile, the unbalanced force cannot be
obtained. But the bearing force can be obtained indirectly
through the bearing support as

τsm � ma − F, (4)

where m is the mass matrix of the bearing support, a is the
acceleration vector of the bearing support, and F is the force
vectors measured by dynamic force sensors.

In this situation, the optimization problem can be de-
scribed by slight modification of (3) to

β∗ � argmin
β

L f
− 1

(q, q
.
, q

..
; β) 

s
, τsm , (5)

where L can be arbitrary loss function.
In Figure 1, the neutral network module can be arbitrary

type, changing the 2-dimensional input data into 1-di-
mensional output data.,e dimension of output data should
be the same with the state-dimensional dimension of the
input data. ,is module is going to convert the shape of the
input data and increase the complexity of the proposed
network. After the neutral network module, three 1-di-
mensional convolutional layers are applied. ,e first one has
128 filters with a size of 1 by 3.,e convolutional calculation
is applied to the output from the network module. After the
feature extraction process, the low order representations of
the data are obtained. ,e Relu activation function is ap-
plied, so that the low order representations are activated.,e
second convolutional layer has 64 filters with a size of 1 by 3.
,en, the high order representations are extracted and ac-
tivated. ,e third convolutional layer has just one filter with
the size determined by the dimension of the expected input
force, i.e., the concatenation of dimension of the indirectly
measured bearing force vector τsm and dimension of the
unknown unbalanced force vector τs. ,us, the final output
can be expected as input data, in which τs is used to solve the
optimization problem described by (5) and τu is used as the
prediction of the unbalanced force. It is noting that the
parameter sharing mechanism of convolutional networks

ensure that all the trainable variables in proposed network
would be updated during the back propagation process.
,erefore, the proposed network learns the inverse mapping
from labeled τsm and learns τu unsupervisedly.

3.3. Procedure Description. ,e overview of the proposed
method is shown in Figure 2. As Figure 2 illustrated, there
are three steps for the whole balancing method. Firstly, the
data obtained from the system should be preprocessed, i.e.,
the displacements should be derived to get the velocities and
accelerations and bearing forces are obtained from the
measured support forces by equation (4). Second, the
proposed network is set up. ,e architecture and the
untrainable parameters should be determined. Based on the
loss function chosen, the training process is done by back
propagation. ,e trainable variables are updated until the
standard of the optimization is met. ,ird, the predicted
unbalanced force should be fit to get the amplitude and
phase of the harmonic type of force. Based on the identi-
fication results, the weight adding and weight reducing
processes should be conducted on the rotor. An additional
test to verify the performance of the balancing is necessary
obviously.

4. Case Study

4.1. Numerical Model Description. In this section, a general
double disc rotor with preset imbalances is used to test the
method as a case study. Figure 3 illustrates the dynamical
model of the rotor consisting of two mass discs and two
sliding bearings.

Considering the gravity, unbalanced force, gyroscopic
effect, and bearing force, the dynamic model of the rotor
support structure shown in Figure 3 can be established into
form:

M€q +(C +ΩG)q
.

+ Kq + Fn � Fu + Fg, (6)

where q is the displacement coordinate vector, including the
displacements of the two disks and two sliding bearings
along the x-axis and y-axis, respectively;M, C, G, and K are
the corresponding mass matrix, damping matrix, gyro
matrix, and stiffness matrix; Fn is the bearing force vector; Fu

is the unbalanced force vector; and Fg is the gravity vector.Ω
represents the rotating speed of the rotor which determines
the frequency of the unbalanced force.

Reynolds’ equation is the basic equation for oil film force
analysis:

1
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·
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·
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Ω ·
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+
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 ,

(7)

where R is the radius of the journal; ζ is the clockwise angle
from vertical direction; h is the oil film thickness; η is the
lubricating oil viscosity; and p is the oil film pressure. z

indicates axial-direction which is neglected in this study and
t for time.
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Figure 2: ,e flow chart of the proposed method.
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Figure 1: Overview of the unsupervised network, where Conv3–128means a convolutional layer with 128 filters of size 1× 3 and Relumeans
rectified linear unit activation function.
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Capone’s modified oil film force model [40] is adopted
based on which (7) can be solved analytically. ,en, the oil
film forces are obtained with the help of Capone’s
simplification.
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where subscript x indicates the horizontal component of the
oil film force in the radial direction and y indicates the
vertical component of the oil film force in the radial di-
rection. x, y, x′, and y′ are the general displacements and
velocities of corresponding directions.

4.2. Identification of the Unbalanced Force. As a case study,
training dataset is prepared by doing the dynamical simu-
lation of the numerical model described by equation (6).,e
initial values of the state variables are given as zeros. With
the expressions of bearing forces described by equation (8)

and preset unbalanced masses, the state variables can be
obtained by numerical integration method with time evo-
lution and the general accelerations and corresponding
bearing forces can be obtained by solving the equations (6)
and (8) algebraically.

,e data are prepared in a scaled time span from 0 to 100,
with an interval of 0.01, i.e., (0, 100, 0.01). ,erefore, the
length of the dataset is fixed to 10000. In this study, each
sample’s length is set to 1. ,at means, the number of
training data will be 10000.,e joint configurations (q, q

.
, q

..
)

took out from the training dataset will be input to the
proposed network. And, the τs-dimensional outputs are
compared with the τsm by loss function for parameters
update. Mean squared error (MSE) of τsm and τs is used as
optimization objection. Minibatch of 128 and Adam opti-
mizer are applied during the training process.

After 1000 epochs, the learning results of the bearing
forces under supervision are given in Figure 4. ,e red lines
in Figures 4(a)–4(d) represent the values of bearing force of
right end and left end bearings in horizontal and vertical
directions respectively, which are calculated by equation (8).
,e black dotted lines are corresponding outputs of the
proposed network.

,e prediction values of the unbalanced forces are shown
as blue asterisks in Figure 5. As the unbalanced force is
assumed to be of harmonic type, the first guess (green lines
in Figure 5) follow the rule of

g std∗ sin(t + g pha) + g mean, (10)

where g mean � Mean(data), g std � 3
�
2

√
/2Std(data), and

g pha � 0. ,e least square method is, then, used to fit the
amplitude and the phase of the unbalanced force. ,e
identification results (orange lines in Figure 5) can be used to
balance the rotor.

Compared with the ICM, the identification results are
listed in Table 1. ,e preset values are randomly chosen.
Because of the nonlinearties introduced by the bearing force,
the identification results by ICM are not closed to the preset
values, while the proposed values are close to the preset
value.

4.3. Balancing Results. Based on the identification results of
the amplitudes and the phases of the unbalanced forces, the
rotor system with preset imbalances established in case
study can be balanced.,e effects are illustrated in Figure 6.
In Figure 6, the red lines represent the responses of the left
bearing, the left disk, the right disk, and the right bearing.
,e amplitudes of the responses are huge. At some points,
the value is bigger than 1, which indicates rub-impact faults
should happen. Also, the shape of the responses before
balancing indicates that, besides the base frequency vi-
brations, there are other frequency components which
exist. After balancing, the response curves (black broken
lines) become smooth, and the amplitudes reduce
significantly.

Z

x

O

y#1 #2

Figure 3: Schematic diagram.
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Figure 4: ,e prediction values of the bearing forces after the training process: (a) horizontal component of bearing force at the left end;
(b) vertical component of the bearing force at the left end; (c) horizontal component of the bearing force at the right end; and (d) vertical
component of the bearing force at the right end.
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Figure 5: ,e prediction results of the unbalanced forces and their harmonic fits: (a) the results at correction plane 1 and (b) correction
plane 2.
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5. Discussion and Conclusions

A novel rotor balancing method using unsupervised deep
learning is proposed in this work. ,e method uses joint
configurations of the general displacements, velocities, and
accelerations to learn the unbalanced forces, thereby real-
izing a balancing process without weight trails. Compared to
the supervised control, the proposed method used the pa-
rameter sharing mechanism of convolutional networks to
learn the unbalanced forces unsupervisedly. A mechanical
model of a two-disc rotor with preset imbalances is balanced
as a case study.,e balancing results prove that the proposed
method considers both cost and accuracy at the same time.
,e dynamic behaviours of the rotor after balancing are
reasonable.

It is nothing that, in the proposed network and training
process, there are many parameters which can be optimized
to achieve better performances. For instance, physical prior
layer can be added to the neutral network module to

introduce physical meaning of the mechanical system. ,e
size of a single sample can be enlarged during data pre-
processing, so that more historic information could be in-
volved. All these aspects deserve further study.
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Table 1: ,e identification results of the unbalanced forces.

Preset value ICM Proposed method
Amplitude of imbalance at plane 1 0.294 0.0891 0.2219
Phase of imbalance at plane 1 π/2 0.2827 2.1432
Amplitude of imbalance at plane 2 0.3125 0.6259 0.376
Phase of imbalance at plane 1 π/3 0.6746 1.339
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Figure 6: Balancing effects on the (a) left end; (b) left disk; (c) right disk; and (d) right end.
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