
Research Article
Reliability Assessment on Pile Foundation Bearing Capacity
Based on the First Four Moments in High-Order Moment Method

Qiang Fu ,1 Xiao Li ,1,2 Zilong Meng ,1 Yinuo Liu ,1 Xueji Cai ,3 and Huawei Fu 1

1School of Civil Engineering, Central South University, Changsha, Hunan 410075, China
2National Engineering Laboratory for High Speed Railway Construction, 22 Shaoshan Road, Changsha 410075, China
3School of Architectural Engineering, Sanming University, Sanming, Fujian 365004, China

Correspondence should be addressed to Zilong Meng; mzl_post@163.com

Received 20 October 2021; Accepted 5 November 2021; Published 16 December 2021

Academic Editor: Xuepeng Zhang

Copyright © 2021 Qiang Fu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the high-order moment method (HOMM) was developed for estimating pile foundation bearing capacity reliability
assessment. Firstly, after the performance function was established, the first four moments (viz. mean, variance, skewness, and
kurtosis) were suggested to be determined by a point estimatemethod based on two-dimensional reduction integrations.,en, the
probability distribution of the performance function for the pile foundation bearing capacity was then approximated by a four-
parameter cubic normal distribution, in which its distribution parameters are the first four moments. Meanwhile, the quantile of
the probability distribution for the performance function and its reliability index was capable to be obtained through this
distribution. In order to examine the efficiency of this method in engineering application, four pile foundations with different
length-diameter radios were investigated in detail. ,e results demonstrate that the reliability analysis based on HOMM is greatly
improved to the computational efficiency without loss precision compared with Monte Carlo simulation (MCS) and does not
require complex partial derivative solving, checking point sought, and large numbers of iteration comparing with first-order
reliability method (FORM). Moreover, the probability distribution function (PDF) approximated by the four-parameter cubic
normal distribution was found to be consistent with that obtained by MCS. Eventually, the effects of parameter sensitivity for
relative soil layer of the certain pile on reliability index were illustrated using the above-mentioned method. It indicated that the
HOMM is an effective and simple approach for reliability assessment of the pile foundation bearing capacity.

1. Introduction

In decades, pile foundation is widely adopted in high-rise
buildings and long-span bridge structures. Specifically, the
pile foundation is with a series of advantages such as high
bearing capacity, low settlement, easy construction, and so
on [1, 2]. However, although it plays a significant role in
relevant structures, the reliability problems of bearing ca-
pacity for pile foundation have drawn much focuses in the
engineering field due to its crucial role in structure safety and
life control. In general, the main challenges for the reliability
problems involved with the bearing capacity of pile foun-
dation are caused by the uncertainties that existed in the
relative geotechnical environment (viz. randomness, fuzzi-
ness and knowledge incompleteness) [3–6].

To date, much effort has been put into it by researchers,
and lots of celebrated works can be traced towards this topic.
Tandijiria et al. [7] performed a reliability analysis for the
bearing capacity of the single pile subjected to horizontal
loads, in detail; in their research, the failure probability of the
bearing capacity under certain functions and the effects
caused by the failure probability on relevant parameters are
determined by implementing the response surface method
(RSM). Zhao et al. [8] conducted the reliability analysis for
pile under inclined load and proposed an approach that
combined with the higher-order response surface function
and RSM to investigate the relevant implicit performance
functions. Li and Li [9] proposed an approach by combining
the total probability theory and FORM to analyze the effects
of pile bottom sediment on the reliability of bearing capacity
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for the single pile. ,en, Li [10] adopted the FORM to
analyze the reliability of bearing capacity for a single pile by
redefining the deviation coefficient of the failure criterion.
Chan and Low [11] focused on the nonlinear behavior of the
computational models for soil and pile and determined
relevant reliability indexes of piles under horizontal load in
hard clay by combining certain optimization methods and
RSM. Specifically, in this research, both the deformation
failure mode and the bending failure modes were being
taken into account. Moreover, Babu and Basha [12, 13]
focused on the single anchored sheet pile wall in the sand
and calculated the relevant reliability indexes for its bearing
capacity by using FORM. In their research, the effects on
corresponding reliability indexes caused by a series of pa-
rameters such as filling characteristics have been carefully
examined. Kwak et al. [14] utilized the updated data ob-
tained by Bayesian statistics theory and predicted relevant
reliability indexes for driven steel pipe piles. Teixeira et al.
[15] examined the influence of geotechnical uncertainties on
the reliability of vertically loaded pile foundations by using
MCS and FORM and conducted a reliability sensitivity
analysis to the source of these uncertainties. Yoon et al. [16]
explored practical implications of reliability analysis for the
mono-pile foundation of an offshore wind turbine by RSM
and MCS and investigated the sensitivities of mono-pile
design parameters. Kawa et al. [17] dealt with reliability
analysis of cantilever sheet pile wall located in noncohesive
soil with random properties by utilizingMCS technique, and
the probability distributions of the results for different values
of vertical and horizontal scales of fluctuation are obtained.
Chanda et al. [18] assessed the influence of shear strength
variability of soil on seismic response of pile foundation
considering soil nonlinearity by MCS and inferred the
importance of shear strength variability of soil on increase in
the percentage of steel requirement in pile foundation. Xu
et al. [19] proposed a modified reliability optimizing cal-
culation approach based on the center point method of
FORM, which is capable of simplifying the nonlinear iter-
ation procedure during relative calculation. Cai et al. [20]
adopted the HOMM based on one-dimensional reduction
integration and three-parameters lognormal distribution,
which parameters are the first three moments of perfor-
mance function to calculate the reliability indexes of the
bearing capacity for pile foundation.

Among the above-mentioned researches, it can be
concluded that for the reliability analysis of pile foundation,
utilization of four methods, namely, MCS, FORM, RSM, and
HOMM emerged at a comparatively high frequency for
relevant researchers. However, for FORM, it is usually re-
quired complex partial derivative solving, checking points
sought, and large numbers of iteration. In addition, in real
engineering projects, due to the existence of complex en-
vironmental conditions and multiple failure modes of cer-
tain performance functions, computational nonconvergence
is easy to be occurred by using FORM. Compared to FORM,
although the RSM can overcome the limitations in FORM
when coping with relevant problems with multiple failure
modes, the procedures of complex partial derivative solving,
checking point seeking, and large numbers of iteration are

still inevitable. Moreover, while MCS can provide high
accuracy for the relevant application, it usually requires a
large amount of calculation and high cost. Furthermore,
when dealing with reliability analysis for the general pile
foundation problem, adopting the HOMM based on one-
dimensional reduction integration and only considering the
first three moments (i.e., mean, variance, and skewness) is an
advantage of simplicity and high efficiency with a clear
statistic concept. However, considering the great variability
that existed in real engineering projects, the accuracy of yield
reliability indexes is limited for engineering requirements
when the absolute value of the skewness for the pile
foundation is larger than 1.

,erefore, based on the above assertions, in order to
promote the accuracy of the predicted reliability assessment,
this paper developed a HOMM based on two-dimensional
reduction integration and take into account the first four
moments (i.e., mean, variance, skewness, and kurtosis) to
conduct the reliability assessment for bearing capacity of pile
foundation. ,e remainder of this paper is organized as
follows: In Section 2, the performance functions of bearing
capacity for pile foundation are firstly established; in Section
3, the expressions of afore-mentioned performance func-
tions and the relevant reliability indexes determined by the
HOMM based on two-dimensional reduction integration
and cubic normal distribution are given. It is then followed
by Section 4, an engineering example with four pile foun-
dations with the different length-diameter ratio is analyzed
by adopting above approach, which the probability distri-
bution of performance function, reliability indexes, and
quantile for those foundations are determined. In Section 5,
a sensitivity analysis of the effect by relative soil layers on
reliability indexes for the certain pile is discussed in detail.
Eventually, the conclusions of this paper are presented in
Section 6.

2. Performance Function of the Bearing
Capacity of Pile Foundation

Assuming that the ultimate vertical bearing capacity of pile
foundation isR and the total load applied on the pile top is S,
due to the existence of various uncertainties,R and S are a set
of random vectors. According to the definition of reliability,
when the pile foundation is in the failure state, the per-
formance function of the bearing capacity of the pile
foundation can be expressed as follows [21]:

Z � G(R, S)< 0, (1)

where R generally depends on the bearing capacity of
foundation soil to pile and S is the sum of the load Fk
transmitted by the superstructure to the top of pile foun-
dation and the weight of the overlying soil Gk. Without the
consideration of the eccentric effect, the failure function of
the vertical bearing capacity of pile foundation can be
written as follows:

G(X) � R − Fk + Gk( 􏼁< 0. (2)
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2.1. Ultimate Vertical Bearing Capacity of Pile Foundation.
Among many approximate estimation methods for the ul-
timate bearing capacity, the static load test is the most in-
tuitive and reliable. However, the great dispersion of static
load test datum and insufficient test samples bring to the
results large error and high cost. ,erefore, when studying
the reliability of the vertical bearing capacity of pile foun-
dation, R can be calculated according to the empirical pa-
rameter method in the code as follows [22, 23]:

R � R qsi, qp􏼐 􏼑 � π 􏽘
n

i�1
diqsiΔli + qpAp, (3)

where qs1, . . ., qsn denote standard values of ultimate lateral
resistance of pile foundation in the i-th layer, respectively.
,e symbol qp is used to denote standard values of ultimate
tip resistance of pile foundation. di is the diameter of the hole
in the i-th layer, Δli is the length of the pile in the i-th layer,
and Ap is the bottom area of the pile. Since the empirical
parameter method is used to estimate qsi and qp, the random
uncertainties of qsi and qp are much greater than that of di,
Δli, and Ap. In order to simplify the calculation and analysis,
in this article, qsi and qp are regarded as random variables
and di, Δli, and Ap are regarded as constants.

2.2. Total Loads Applied on the Tip of Pile. For general
buildings subjected to low-level horizontal force, under the
axial vertical force of the standard combination of load
effect, vertical loads on the tip of the pile can be expressed as
follows [22]:

S � S Fk, Gk( 􏼁 � Fk + Gk � SG + SQ + Gk, (4)

where Fk is the vertical force acting on the top surface of the
bearing platform under the standard combination of load
effects, which can be written as the sum of the vertical dead
load effect SG and the vertical live load effect SQ on the tip of
the pile. Gk is the standard value of pile foundation cap and
cap soil. And Fk and Gk can be approximated by the fol-
lowing equation [23, 24]:

S � S Fk, Gk( 􏼁 � Fk + Gk ≈ nhAigi + cTc, (5)

where n is the number of floors; h is the amplifying coef-
ficient of axial pressure; Ai is the loading area of vertical
members on the i-th floor; gi is the representative value of
gravity load converted to the unit building area of the i-th
floor, 12∼14 for frame structure, 14∼16 for frame shear wall

structure, and 15∼18 for shear wall cylinder; cT is the average
weight of the bearing platform of the pile foundation and its
overlying soil; and c is the common volume of pile cap and
its overlying soil. In this paper, Fk and Gk are only regarded
as random variables.

3. Pile Foundation Bearing Capacity Reliability
Evaluation Based on HOMM

Each moment of pile foundation bearing capacity perfor-
mance function G (X) can be expressed as follows [25–27]:

μG � E[G(X)] � 􏽚
X

G(X)f(X)dX, (6)

σ2G � E G(X) − μG􏼂 􏼃
2

􏽮 􏽯 � 􏽚
X

G(X) − μG􏼂 􏼃
2
f(X)dX, (7)

αkGσ
k
G � E G(X) − μG􏼂 􏼃

k
􏽮 􏽯,

� 􏽚
X

G(X) − μG􏼂 􏼃
k
f(X)dX, k> 2,

(8)

where μG and σG are the mean and variance of G (X), re-
spectively; αkG is the k-order central moment of G (X), for
instance, α3G is referred to as skewness coefficient of G (X),
which reflects symmetry or lack of symmetry of its distri-
bution; α4G is known as kurtosis coefficient of G (X),
reflecting the sharpness or peakedness of its probability
distribution; and f (X) is the joint PDF of random variableX.

3.1. 7e Two-Dimension-Reduction Integration of the Stan-
dardNormal Space. While n denotes the number of random
variables and m denotes the m-point estimation of the
standard normal space, mn points will be required for cal-
culating equations (6) to (8). It needs a lot of computation
when n is large; therefore, for the sake of reducing the
computation, the two dimension-reduction integration is
introduced [28]; then, the k-th order original moments of
performance function G (X) can be approximated as follows:

μkG � E [G(X)]
k

􏽮 􏽯 � E G T
− 1

(U)􏽨 􏽩􏽨 􏽩
k

􏼚 􏼛

� 􏽘
i<j

μk
i,j − (n − 2) 􏽘

n

i�1
μk

i +
(n − 1)(n − 2)

2
μk
0,

(9)

where

μk
i,j � 􏽚

+∞

− ∞
􏽚

+∞

− ∞
Gij μ1, . . . , T

− 1
ui( 􏼁, . . . , T

− 1
uj􏼐 􏼑, . . . , μn􏽨 􏽩􏽨 􏽩

k
ϕ ui( 􏼁ϕ uj􏼐 􏼑duiduj, (10)

μk
i � 􏽚

+∞

− ∞
Gi μ1, . . . , T

− 1
ui( 􏼁, . . . , μn􏼐 􏼑􏽨 􏽩􏽨 􏽩

k
ϕ ui( 􏼁dui, (11)

μk
0 � G μ1, . . . , μi, . . . , μn( 􏼁􏼂 􏼃

k
, (12)
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where X� (X1, X2, . . ., Xn)T is a vector of basis random
variables of the system in original space andU� (U1, U2, . . .,
Un)T is a vector of basis random variables in standard normal
space corresponding toX. i, j� 1, 2, . . ., n and i< j. μi denotes
the mean of the i-th random variables Xi, and ui denotes the
estimation point of i-th random variables Ui in standard
normal space corresponding to Xi, and T− 1 is the inverse
Rosenblatt transformation.,en, using the point estimate in
standard normal space, the one-dimensional integral in
equation (11) and two-dimensional integral in equation (10)
can be approximated by the following equation:

μk
i � 􏽘

m

r�1
Pr Gi μ1, . . . , T

− 1
ui,r􏼐 􏼑, . . . , μn􏼐 􏼑􏽨 􏽩􏽮 􏽯

k
, (13)

μk
i,j � 􏽘

m

r1�1
􏽘

m

r2�1
Pr1Pr2 Gij μ1, . . . , T

− 1
ui,r1􏼐 􏼑, . . . , T

− 1
ui,r2􏼐 􏼑, . . . , μn􏽨 􏽩􏽮 􏽯

k
, (14)

where ui,r denotes the r-point estimation of the i-th random
variable in the standard normal space and Pr denotes its
corresponding weight, which can be calculated as follows
[29]:

ui,r �
�
2

√
xc, (15)

pr �
wc��
π

√ , (16)

where xc and wc are the abscissas and weights for Hermite
integration with the weight function exp (− x2) that can be
found in Abramowitz and Stegun [29]. Specially, for a five-
and seven-point estimates in standard normal space,
corresponding estimating point and weight is shown in
Table 1.

After obtaining the k-order original moment estimate
value μkG through equation (9), according to the relationship
between the central moment and the origin moment [27],
the mean, standard deviation, skewness, and kurtosis of G

(X) with n random variables, respectively, can be obtained as
follows:

μG � μ1G, (17)

σG �

��������

μ2G − μ21G

􏽱

, (18)

‘ptα3G �
μ3G − 3μ3Gμ1G + 2μ21G􏼐 􏼑

σ3G
, (19)

α4G �
μ4G − 4μ3Gμ1G + 6μ2Gμ

2
1G − 3μ41G􏼐 􏼑

σ4G
. (20)

3.2. Description of Probability Distribution of G (X) and Its
Reliability Index. For the sake of simplicity and flexibility,
Cai et al. [20] described the probability distribution of the
performance function G (X) for pile foundation bearing
capacity by using the three-parameter lognormal distribu-
tion [30–33] and the third-moment reliability index β3Μ,
which is derived from this probability distribution. How-
ever, when the absolute value of skewness coefficient α3G is
greater than 1, the approximated effect of the distribution of
G (X) does not work out so well. Under the circumstances,
the cubic normal distribution, which its four parameters are
the first four moments of performance function G (X), will
be introduced to improve approximated accuracy [34, 35].
,e PDF of the cubic normal distribution is formulated as
follows:

Xs �
X − μG

σG

� − l1 + k1U + l1U
2

+ k2U
3
, (21)

f Xs( 􏼁 �
ϕ(U)

σG k1 + 2l1U + 3k2U
2

􏼐 􏼑
, (22)

where Xs is the standardized normal random variable, f (Xs)
is PDF of G (X), ϕ (·) is the PDF of the standard normal
function, and the polynomial coefficients l1, k1, l2, and k2 are
given as follows:

l1 �
α3G

6 1 + 6l2( 􏼁
, (23)

l2 �
1
36

��������������

6α4G − 8α23G − 14
􏽱

− 2􏼒 􏼓, (24)

k1 �
1 − 3l2

1 + l
2
1 − l

2
2􏼐 􏼑

, (25)

Table 1: Five- and seven-point estimates corresponding to the
estimating point and weight.

Estimation point Weights

Five-point
estimate

u0 � 0 p0 � 0.53333
u1+ � − u1− � 1.35563 p1+ � p1− � 0.22208
u2+ � − u2− � 2.85697 p2+ � p2− �1.12574×10− 2

Seven-point
estimate

u0 � 0 p0 � 0.45714
u1+ � − u1− � 1.15441 p1+ � p1− � 0.24012
u2+ � − u2− � 2.36676 p2+ � p2− � 0.03076
u3+ � − u3− � 3.75044 p3+ � p3− � 5.4826910− 4
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k2 �
l2

1 + l
2
1 + 12l

2
2􏼐 􏼑

. (26)

,rough the PDF obtained above, the fourth-moment
reliability index β4M and the corresponding failure proba-
bility Pf of G (X) can be expressed as follows:

β4M �

�
23

√
p

��������
− q0 + Δ03

􏽰 , (27)

Pf � Φ − β4M( 􏼁, (28)

where

Δ0 �

�������

q
2
0 + 4p

3
􏽱

, (29)

p �
3k1k2 − l

2
1

9k
2
2

, (30)

q0 �
2l

3
1 − 9k1k2l1 + 27k

2
2 − l1 + β2M( 􏼁

27k
2
2

. (31)

And Φ (·) is the cumulative density function (CDF) of
the standard normal function; in order to make equation
(21) operable, the following condition should be satisfied:

α4G ≥
7 + 4α23G

3
. (32)

To sum up, the reliability evaluation procedure of
bearing capacity for pile foundation is able to be summarized
as follows, and its flowchart is shown in Figure 1.

(1) To construct the performance function G (X) of
bearing capacity for pile foundation, the first four
moments of G (X) are obtained by point estimate
based on two-dimension-reduction integration.

(2) When skewness coefficient |α3G|≤ 1, the three-pa-
rameter lognormal distribution will be used to ap-
proximate probability distribution of G (X);
otherwise, for improving accuracy purpose, the
probability distribution of G (X) is approximated by
the four-parameter cubic normal distribution.

(3) Reliability index, failure probability, and quantile
will be determined according to this approximate
probability distribution of G (X).

4. Engineering Application

In this paper, the application of the above-mentioned ap-
proach is illustrated by a case from Cai et al. [20, 36]. In
detail, a 7-storey reinforced concrete building adopting three
types of punch filling piles with pile diameters D of 800mm,
900mm and 1,000mm and pile length L varied from
13–50m is utilized for relevant analyzing. Specifically, the
stratum relative to the pile foundation is mainly consisted of
miscellaneous fill, gravel with cohesive soil, and strongly
weathered granite. ,e relevant data of pile foundation in
this project is graphically shown in Figure 2. For simplicity,

in this paper, the piles in this case with four different length-
diameter ratios (nos. 6, 9, 87, and 156 in Figure 3) are
adopted for further analysis; the relevant parameters are
described in Table 2.

For each pile, the mean value μi, standard deviation σi,
the coefficient of variance (COV) δI of the ultimate shaft
resistance qsi, and ultimate tip resistance qp for the sur-
rounding soil are determined by adopting the sample data
provide from the report of in situ geological investigation in
the following equations [27]:

μi ≈ 􏽢μi �
1
n

􏽘

n

i�1
Xi,

σ2 ≈ 􏽢σ2 �
1

n − 1
􏽘

n

i�1
Xi − X( 􏼁

2
,

δi ≈ 􏽢δi �
􏽢σ
􏽢μi

,

(33)

where X denotes the mean of actual measured values of
sample data, Xi denotes the actual measured values of each
sample of i-th, and 􏽢μ, 􏽢σ and 􏽢δ are mean, variance, and COV
of sample estimates value, respectively.

By observation of the statistical histogram obtained by
the sample data, it is assumed the fqsi (X) is obeying the
normal distribution and the fqp (X) is obeying the log-normal
distribution; the result of K–S test with a 5% degree of
confidence showed that the test is failing to reject the null
hypothesis. ,erefore, in this paper, the ultimate shaft re-
sistance qsi is considered to be obeying the normal distri-
bution with 5% confidence, and ultimate tip resistance qp is
considered to be obeying the lognormal distribution with 5%
confidence [37–39]. In addition, it is also assumed that the
relevant random variables are independent, and the vertical
force Fk subjected to the pile caps and the mean value for the
self-weight of pile caps and soils Gk can be determined by
equation (5). Specially, according to the national standard
[40], the afore-mentioned vertical force Fk and mean value
for the self-weight Gk approximately obey the lognormal
distribution with both COV δI are 0.07. ,e detailed values
for each random variable and the corresponding probability
distributions are illustrated in Table 3.

4.1. To Obtain the First Four Moments of Performance
Function for Each Pile Foundation. According to Section 2,
the performance function G (X) for each pile foundation is
able to be expressed as follows:

G qsi, qp, Fki,Gk􏼐 􏼑 � π 􏽘
k

i�1
diqsiΔli + qpAp − Fki − Gk.

(34)

In this paper, the commercial software Mathematic is
utilized for relevant calculating. In detail, the first four
moments of performance function G (X) for relevant piles
are obtained by adopting seven estimated points in standard
normal space and Rosenblatt’s inverse normal
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transformation combined with equations (9) to (20), and the
yield results are shown in Table 4. Additionally, the relevant
results G (X) obtained by adopting MCS 106 times are also
presented in Table 4 for the purpose of comparison to verify
the accuracy of the afore-mentioned approach.

It is shown that in Table 4, the results of the first four
moments of performance function G (X) for the pile
foundation bearing capacity yielded by both HOMM and
MCS exhibited a good consistency. However, the time re-
quired for the relevant calculation of HOMM is compara-
tively less than MCS, which reveals that this method can
provide higher efficiency with reliable accuracy than MCS.

By conducting MCS with 106 times for the performance
function G (X) of pile foundation bearing capacity, the
calculated results of sample points are illustrated by quan-
tile-quantile plot by commercial software SPSS in Figure 3.
Specifically, in the quantile-quantile plot, the distribution

function type is set as standard normal distribution; the
vertical axis and the horizontal axis revealed the quantile of
the performance function G (X) of pile foundation bearing
capacity and standard normal distribution, respectively. ,e
bold and thin points are representing the results of sample
data calculated of G (X) and normal distribution corre-
sponding to each quantile, respectively.

It is demonstrated that in Figure 3, both the bold and
thin points are almost located in the same line, which
revealed that the sample distribution of the performance
function G (X) and the standard normal distribution exhibit
an obvious linear relationship. It is worth mentioned that in
Table 4, it is found that the calculated result of the coefficient
of skew coefficient α3G≈ 0 and the Kurtosis coefficient
α4G≈ 3. ,erefore, it is able to consider the bearing capacity
of performance function G (X) for each pile foundation is
obeying normal distribution.

Formulate the performance function of
bearing capacity of pile-foundation G (X)

Start

Approximate the k-th order original 
moment of G (X) into the summation of 

univariate function and bivariate function

Obtain estimated point and weight of 
variable in the original space

Two-dimension reduction integration

Inverse normal transformation
(Rosenblatt and Nattf transformation)

Obtain the first four-order moments
(Mean, Variance, Skewness and Kurtosis)

Point estimate method 
Transform original moment into central moment

Approximate the distibution of G (X) to 
three-parameter lognormal distribution 

Approximate the distibution of G (X) to 
four-parameter cube normal distribution 

Reliability index 
4M

Failure probability
Quantile

Finish

|a3G|⩽1

Failure probability
Quantile

Reliability index 
3M

Figure 1: Flowchart of reliability evaluation procedure of bearing capacity for pile foundation based on HOMM.
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Shock and Vibration 7



200 400 600 800 1000 1200

16

14

12

10

8

6

4

2

0
  Pile top load Q (×10 KN)

Pi
le

 to
p 

se
ttl

em
en

t s
 (m

m
)

6# (L:d=36.1)
9# (L:d=32.5)

 87# (L:d=20)
 156# (L:d=40.7)

(c)

Figure 2: Diagrams of the relevant data of pile foundation in this project: (a) diagrams of pile foundation location layout of building,
(b) detail diagrams of pile foundation, and (c) the Q-s curve of pile foundation for each pile foundation.
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Figure 3: ,e normal Q-Q plot of sample data of performance function G (X) for each pile foundation: (a) the Q-Q plot of sample data for
the no. 6 pile, (b) the Q-Q plot of sample data for the no. 6 pile, (c) the Q-Q plot of sample data for the no. 87 pile, and (d) the Q-Q plot of
sample data for the no. 156 pile.
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4.2. ToCalculate theReliability Index of PerformanceFunction
G (X) for Each Pile Foundation. ,e results of the fourth-
moment reliability index β4Μ and the corresponding failure
probability Pf based on the approximated probability dis-
tribution of G (X) of bearing capacity for each pile foun-
dation are listed in Table 5, which can be obtained by
substituting the results of Table 4 into equations (27) to (32).
,e relevant results yield by adopting FORM and MCS of
106 times are also listed in Table 5 for comparison purposes.

It is found that in Table 5, the calculation of the fourth-
moment reliability index β4Μ and the corresponding failure
probability Pf based on HOMM required less time thanMCS
and possessed clearer statistical concept without the re-
quirement of iteration and solving partial derivative equa-
tions. In addition, the results obtained by the HOMM and
that yield from the three-parameters lognormal distribution
proposed by literature [20] are emerged in high agreement,

which revealed that the accuracy of the HOMM is reliable.
Moreover, it is also observed that the calculated fourth-
moment reliability index β4M for the four different pile
foundations is larger than the valued (βT≥ 2.7) of tertiary
ductility failure members listed in “unified standard for
reliability design of building structures” [21], which is also in
consistence of the conclusions with the literature [36].
,erefore, it is reasonable to be concluded that the HOMM
is providing an effective path for the reliability of the bearing
capacity of pile foundation in the engineering field.

4.3. Probability Distribution of Bearing Capacity of Perfor-
mance Function G (X) for Each Pile Foundation. ,e results
in Table 4 are substituted into equations (21) to (26) to
obtain the PDF curve of performance function G (X) of
bearing capacity for each pile foundation as shown in

Table 2: Parameters of each pile foundation and soil layers.

Pile no. Length, L (m) Elastic modulus, E (MPa) Diameter, D (mm) Soil layer Altitude (m) ,ickness (m)

6# 32.54 31.5 900
Miscellaneous fill 41∼50 9
Clayey gravel 20∼41 21

Intensely weathered granite 0∼20 20

9# 32.50 31.5 1,000
Miscellaneous fill 43∼50 7
Clayey gravel 33∼43 10

Intensely weathered granite 0∼33 33

87# 16 31.5 800
Miscellaneous fill 44∼50 6
Clayey gravel 35∼44 9

Intensely weathered granite 0∼35 35

156# 32.58 31.5 800
Miscellaneous fill 47∼50 3
Clayey gravel 34∼47 13

Intensely weathered granite 0∼34 34

Table 3: Probability model and statistical parameters of basic random variables.

Random variance Probability distribution Mean COV (%)
Ultimate lateral resistance of miscellaneous fill, qs1 Normal 22 (kPa) 30
Ultimate lateral resistance of gravel with cohesive soil, qs2 Normal 100 (kPa) 30
Ultimate lateral resistance of strongly-weathered granite, qs3 Normal 120 (kPa) 30
Ultimate tip resistance of strongly-weathered granite, qp Lognormal 1,800 (kPa) 30
Vertical loads on tip of the pile of no. 6, Fk6 Lognormal 3,200 (kN) 7
Vertical loads on tip of the pile of no. 9, Fk9 Lognormal 4,600 (kN) 7
Vertical loads on tip of the pile of no. 87, Fk87 Lognormal 1,750 (kN) 7
Vertical loads on tip of the pile of no. 156, Fk156 Lognormal 4,000 (kN) 7
Weight of bearing platform and soil, Gk Lognormal 30 (kN) 2

Table 4: Calculating comparison between HOMM and MCS.

Calculation method Pile no.
,e first four moments of G (X)

Elapsed time, t (second)
μG (kN) σG (kN) α3G α4G

MCS

6# 5.30×103 1.87×103 5.69×10− 3 3.00 27.33
9# 6.23×103 2.10×103 6.72×10− 3 3.00 26.51
87# 2.04×103 7.57×102 4.26×10− 2 3.02 20.67
156# 5.33×103 1.89×103 4.35×10− 3 3.00 22.57

HOMM

6# 5.31× 103 1.87×103 5.69×10− 3 3.00 0.056
9# 6.23×103 2.10×103 7.72×10− 3 3.00 0.075
87# 2.05×103 7.57×102 4.27×10− 2 3.00 0.050
156# 5.33×103 1.89×103 4.35×10− 3 3.00 0.069
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Figure 4. For comparison, Figure 4 also shows the frequency
histogram of 106 MCS.

Figure 4 shows that the outer contour of the frequency
histogram of G (X) is close to the PDF curve of G (X)
obtained by equations (21) to (26). For each pile, MCS is
used to calculate the quantiles with confidence levels of 90%,
95%, and 99%, (i.e., zMCS

0.01 , zMCS
0.05 and zMCS

0.1 ), and those results
have a great agreement with the values of
GPDF
90% , GPDF

95% andGPDF
99% , which calculated from the PDF curve

obtained by equations (21) to (26). Meanwhile, the proba-
bility function curve of G (X) from the three-parameter
lognormal distribution proposed by literature [20] is the
same as the probability function curve proposed in this
paper; that is to say, both of candidate approximated
probability distribution is able to be reliable used in

conventional pile foundation in engineering. In other words,
Figure 4 also illustrates that the PDF of the probability
distribution of the performance function G (X) of bearing
capacity for pile foundation in conventional engineering can
be described by equations (21) to (26), which provides a
reference for the design and bearing capacity analysis of pile
foundation in practice.

5. Sensitivity Analysis on Bearing Capacity
Reliability in Pile Foundations

In engineering practice, general differences exist between the
measured and statistical values of geotechnical parameters.
In the aforementioned example, the static loading test can
only reflect the interaction between four sampled piles and

Table 5: ,e reliability index and failure probability result of three methods.

Pile no
FORM MCS HOMM

Pf βFORM Pf βMCS Pf β4Μ
6# 2.21× 10− 3 2.85 2.17×10− 3 2.85 2.11× 10− 3 2.85
9# 1.23×10− 3 3.03 1.17×10− 3 3.04 1.12×10− 3 3.06
87# 3.27×10− 3 2.72 2.99×10− 3 2.75 2.90×10− 3 2.76
156# 1.89×10− 3 2.90 1.86×10− 3 2.90 1.81× 10− 3 2.91
Elapsed time (second) 0.164 23.625 0.039
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Figure 4: Histogram and PDF curve of a performance function for each pile foundation: (a) histogram and PDF curve for G (X) of no. 6,
(b) histogram and PDF curve for G (X) of no. 9, (c) histogram and PDF curve for G (X) of no. 87, and (d) histogram and PDF curve for G (X)
of no. 156.

10 Shock and Vibration



each soil layer, respectively. However, the values of pa-
rameters in other soil layers can hardly be precise enough to
the actual ones. ,erefore, it is necessary to study the in-
fluence of the uncertainty of soil parameters on the reli-
abilities of pile foundations.

Taking 6# pile as an example, based on the HOMM, the
effects of different mean values and variation coefficients of
ultimate pile side resistance and ultimate pile end resistance
on the reliability of bearing capacity for pile foundation are
studied. ,e results are shown in Figure 5.

Figure 4(a) shows that the larger μqs1 is, the better the
fourth-moment reliability index β4Μ of the pile foundation

is. But with the incensement of δqs1, the impact of μqs1 on β
will decrease gradually. Additionally, the effect of δqs1 on β
will dramatically increase, if δqs1> 30%.

Figure 4(b) shows that μqs2 has little effect on the reli-
ability of pile foundation. What’s more, the larger δqs2 is, the
more unfavorable it is to the reliability of pile foundation.
When δqs2 is less than 30%, the influence of δqs2 on β4Μ is
particularly obvious, which implies that δqs2 is a sensitive
factor of 6# pile. When δqs2 is larger, the influence of δqs2 on
reliability results starts to decrease. When δqs2 is greater than
30%, β4Μ is lower than βT of grade III ductile members; the
pile foundation tends to be unsafe.
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Figure 5: Sensitivity analysis for relative soil layer of no.6 pile foundation: (a) relationship between mean μqs1 and reliability index β4M,
(b) relationship between mean μqs2 and reliability index β4M, (c) relationship between mean μqs3 and reliability index β4M, and (d) re-
lationship between COV and reliability index β4M.

Shock and Vibration 11



Figure 4(c) shows that the larger μqs3 is, the more fa-
vorable it is to the reliability of pile foundation. However,
with the increase of δqs3, its influence on β4Μ gradually
decreases. When δqs2 exceeds 83%, β4Μ is lower than βT; the
pile foundation tends to be unsafe.

Figure 4(d) shows that the larger μqp is, the better the
reliability of pile foundation is. Simultaneously, the larger
the δqs2 is, the more unfavorable it is to the reliability of pile
foundation. When δqs2 exceeds 62%, β4Μ begins to appear
lower than βT; the pile foundation tends to be unsafe.

In conclusion, for 6# pile, the variation coefficient of
ultimate resistance (qsi and qp) of each soil layer has a more
obvious impact on the fourth-moment reliability index β4Μ
than the mean value, and the greater δqsi is, the more un-
favorable it is to the reliability of pile foundation. ,e co-
efficient of variation of the second layer of soil is the
sensitivity factor of 6# pile.

,erefore, ensuring the accuracy of soil layer parameters
in the project is conducive to accurately and reasonably
predicting the reliability of pile foundation.,e results of the
uncertainty analysis of the parameters of each soil layer of
the pile foundation are able to be used as a theoretical
reference for engineers in pile foundation design and
construction.

6. Conclusions

In this paper, the reliability assessment of the performance
function for pile foundation based on the HOMM was
conducted. Specifically, by analyzing four pile foundations
with different ratios of length to diameter, the first four
moments of performance function G (X) for pile foundation
were initially determined by adopting the point estimate
based on two dimensions reduction integration. After that,
the probability distribution function of the performance
function G (X) was obtained by utilizing the approximate
cubic normal distribution based on the first four moments,
and then the fourth-moment reliability index β4M of the
bearing capacity for the pile foundation was further esti-
mated. Finally, in order to investigate the impact on the
reliability of the bearing capacity for pile foundation caused
by the variability of different soil layers, this paper also
conducted a reliability sensitivity analysis on the certain pile
by applying the HOMM.,e conclusions can be drawn up as
follows:

(1) Compared to the predicted results of the reliability
index by adopting MCS, the results yielded by the
HOMM show a good consistency. However, the
HOMM was shown a higher efficiency.

(2) Compared to the FORM, using HOMM to calculate
the reliability index of the bearing capacity for the
pile foundation was not required to the solving
procedures of partial derivatives, checking point
tracing, and iteration, which the simplicity and ef-
ficiency of the HOMM are verified.

(3) ,e predicted results of the reliability index for the
bearing capacity of the four different pile founda-
tions were greater than the grade III ductile members

values of the target reliability index provided in the
national code, which revealed the safety of those pile
foundations were guaranteed.

(4) It was suggested that the probability distribution
function of the bearing capacity for pile foundation
could be approximated by three-parameter lognor-
mal distribution when the skewness |α3G|≤ 1. Oth-
erwise, the four-parameter cubic normal distribution
was recommended.

(5) Compared to the mean of the ultimate resistance of
relevant soil layers, the results of the sensitivity
analysis showed that the COV emerge higher sen-
sitivity; in detail, the reliability index exhibited a
decrease trend as the COV increased; additionally,
the sensitivity factor for the certain pile was found as
the COV of the soil on the second layer.
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