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Rotating machinery refers to machinery that executes specific functions mainly relying on their rotation. +ey are widely used in
engineering applications. Bearings and gearboxes play a key role in rotating machinery, and their states can directly affect the
operation status of the whole rotating machinery. Accurate fault detection and judgment of bearing, gearbox, and other key parts
are of great significance to the rotating machinery’s normal operation. A new fault feature extraction algorithm for rotating
machinery called Improved Multivariate Multiscale Amplitude-Aware Permutation Entropy (ImvMAAPE) is proposed in this
paper, and the application of an improved coarse-grained method in fault feature extraction of multichannel signals is realized in
this method. +is algorithm is combined with the Uniform Phase Empirical Mode Decomposition (UPEMD) method and the
t-distributed Stochastic Neighbor Embedding (t-SNE) method, forming a new time-frequency multiscale feature extraction
method. Firstly, the multichannel vibration signals are decomposed adaptively into sets of Intrinsic Mode Functions (IMFs) using
UPEMD; then, the IMF components containing the main fault information are screened by correlation analysis to get the
reconstructed signals. +e ImvMAAPE values of the reconstructed signals are calculated to generate the initial high-dimensional
fault features, and the t-SNE method with excellent nonlinear dimensionality reduction performance is then used to reduce the
dimensionality of the initial high-dimensional fault feature vectors. Finally, the low dimensional feature vectors with high quality
are input to the random forest (RF) classifier to identify and judge the fault types. Experiments were conducted to verify whether
this method has higher accuracy and robustness than other methods.

1. Introduction

Rotating machinery often works in a high speed and heavy
load environment, which is prone to failure and will cause
very serious consequences upon failure. +erefore, real-time
monitoring and fault diagnosis of the important parts of
rotating machinery have great significance [1]. When a
rotating machine fails, the defective parts will produce
corresponding vibration signals during its operation. +ese
vibration signals contain a lot of fault information. If they
can be extracted effectively, rotating machinery’s faults will
be diagnosed in time and effectively.

Time-frequency analysis methods such as fast Fourier
transform (FFT), empirical mode decomposition (EMD) [2],
and wavelet packet transform (WPT) [3] are widely used in
feature extraction of vibration signals. But the vibration
signal of rotating machinery has the characteristics of being
nonlinear and nonstationary [2]. Fast Fourier transform
(FFT) method is only suitable for the analysis of stationary
signal; WPT is more flexible than WT and can choose the
frequency resolution, but it is still not self-adaptive and still
needs to set the basic wavelet functions and parameters in
advance. Although EMD has good adaptability, it has some
defects such as mode mixing and end effect. In addition to
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the above shortcomings, time-frequency analysis methods
have strict requirements on operators’ knowledge and
ability, which limits their application and improvement in
vibration signal feature extraction.

Entropy-based methods have been widely used in the
field of fault diagnosis in recent years because of their ex-
cellent performance in dealing with nonlinear and non-
stationary time series. Among these methods, approximate
entropy (AE) [4], sample entropy (SE) [5], fuzzy entropy
(FE) [6], and permutation entropy (PE) [7] are commonly
used. AE is very dependent on the length of the data, and it is
easy to generate undefined entropy value. SE and FE have
low efficiency and are really time-consuming, so they are not
suitable for processing large amount of data signals. How-
ever, PE has shown its great advantages in the analysis of
complex time series and the measurement of the complexity
of nonlinear and nonstationary signals. Permutation en-
tropy is a dynamic mutation detection method, which can
locate the moment of the system mutation conveniently and
accurately, and can amplify the small changes of signals.
However, PE algorithm also has the problem of insensitivity
to the signal amplitude, which may lead to the loss of key
information. Azami et al. proposed the method of ampli-
tude-aware permutation entropy (AAPE) [8] to effectively
deal with this problem. +e multiscale amplitude-aware
permutation entropy (MAAPE) algorithm proposed by
Chen et al. can extract information from the time series of
different scales. However, this method still has defects, such
as it can only process single channel signal, and the tradi-
tional coarse-grained method used by this method cannot
extract the information completely enough. In view of these
deficiencies, this paper proposes the Improved Multivariate
Multiscale Amplitude-Aware Permutation Entropy
(ImvMAAPE) algorithm to extract fault features, which can
process multichannel signal and has a more scientific coarse-
grained method.

+e vibration signals of rotating machinery are usually
mixed with noise and other ingredients, and it has nothing to
do with the untreated complex vibration signals that only
directly use the ImvMAAPE method. As a result, consider
combining the ImvMAAPE method and the time-frequency
analysis method “empirical mode decomposition” to remove
the interference existing in the vibration signals, and extract
the fault characteristics more completely. Empirical mode
decomposition (EMD) has shown its excellent performance
in processing nonlinear, nonstationary signals. It has strong
adaptability and can overcome many shortcomings of the
traditional time-frequency analysis methods, but it also has
some problems, such as mode aliasing and residual noise. To
solve these problems, researchers had put forward several
modified methods including noise-assisted EMD [9],
masking signal EMD (MS-EMD) [10], noise-assisted mul-
tivariable EMD [9], and uniform phase EMD (UPEMD)
[11]. Among them, UPEMD can effectively make up for the
shortcomings of EMD and has advantage in computational
complexity. Based on these advantages, this paper uses
UPEMD to preprocess the original signal.+e original signal
is decomposed into a set of intrinsic mode function (IMF)
components. +en, the correlation coefficient of each

component is calculated and the original signal to screen the
IMFs has a larger correlation coefficient.+ese IMFs contain
more useful and less irrelevant fault information, able to
represent the original fault features more clearly. +en, the
decomposed parts of IMF components were combined into
the reconstructed signals, from which the fault features will
be extracted with ImvMAAPE.

Because the dimension of feature vectors formed by
ImvMAAPE is high and not all features can effectively
represent the fault information, even the partial redundant
features can affect the accuracy of fault diagnosis. +erefore,
it is necessary to deal with the high-dimensional charac-
teristics of these faults by dimensionality reduction. In this
paper, the t-distributed stochastic neighbor embedding (t-
SNE) method is used to reduce the dimensions of the initial
feature vectors. T-SNE involves typical nonlinear manifold
ways of dimension reduction algorithms; it represents the
similarity between data points in the form of probability
distribution and can make the close points in high-di-
mensional space closer in lower-dimensional space, make
the distant points in high-dimensional space more distant in
lower dimensional space, achieving the purpose of dimen-
sion reduction and getting the low dimensional feature
vectors to be more separable. After the dimensionality re-
duction, the low-dimensional feature vectors will be put into
a classifier for recognition and classification. In this paper,
the Random Forest (RF) classifier [12] is selected. +is
classifier was proposed by Breimanl in 2001; it has the
advantages of strong generalization ability, simple parameter
setting, simple implementation process, easy operation, fast
training speed, and high recognition accuracy, and it has
been widely used in the field of fault detection.

In general, this paper proposes a new method of rotating
machinery health detection. First, calculate the ImvMAAPE
values of vibration signals preprocessed by UPEMD. +en,
use the t-SNEmethod to change the initial high-dimensional
feature vectors into low-dimensional feature vectors and put
the low-dimensional feature vectors into the random forest
classifier for recognition and classification. +rough the
gearbox fault detection and bearing fault detection, the
results demonstrate the effectiveness of the proposed
method. Compared with other methods, the superiority of
this method was verified.

+is article introduces the theory of the abovementioned
methods in Section 2, verifies the proposed method’s
function by gearbox and bearing data in Section 3, showing
that the method in fault detection and classification rec-
ognition have an outstanding performance. Section 4, with
the idea of comparative analysis, proves the superiority and
the necessity of using ImvMAAPE to extract features,
processing raw data with UPEMD and reducing data di-
mensions with t-SNE, giving a more complete demonstra-
tion of the advantages in the proposed method.

2. Theoretical Review

2.1. Basic Principle of UPEMD Algorithm. +e EMD algo-
rithm decomposes the signal according to the time scale
characteristics of the data itself, and decomposes the input
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signal g(t) into a set of intrinsic mode functions IMFi(t)

that can represent the local scale characteristics of the time
series and a residual quantity r(t).

g(t) � 􏽘
N

i�1
IMFi(t) + r(t). (1)

+is method does not need to set any basis function in
advance, and has obvious advantages in processing non-
linear and nonstationary data. It is suitable for analyzing
nonlinear and nonstationary signal sequences.

In order to eliminate the residual noise effect generated
by the EMD process, Deering proposed a method based on
the masking signal empirical mode decomposition (MS-
EMD) in 2005 [10], which uses sinusoidal time series for
auxiliary interference to achieve the purpose of removing the
residual noise, but the elimination effect is not obvious.
Wang et al. [11] found that the residual noise could be
minimized by trying all possible phases of the disturbance
signal, and based on this, a 2-level uniform phase empirical
mode decomposition (2L-UPEMD) method was proposed.
+is method can effectively reduce the effects of the mode
aliasing and the residual noise of EMD method by
decomposing the original signal into two intermodulated
components. +e multilevel UPEMD method determined
the IMF1 obtained by 2L-UPEMD decomposition as the first
component, the IMF2 was defined as a new signal, and the
low-frequency IMF was obtained by recursive decomposi-
tion in the same method [11, 13]. Multilevel UPEMD
method is used in this paper, and its specific implementation
process, is described as follows:

(1) Distribute the parameter np, set the amounts of IMFs
obtained by decomposition Nimf � log2 N and the
initial residual r0(t) � x(t). Among them, np is the
phase number, assuming that np phases are uniformly
distributed in the interval of [0, 2π], using θk � 2π
(k − 1)/np, k � 1, 2, . . . , np to calculate the kth

phase;
(2) Calculate εm � ε0 · std(rm− 1(t)) and (Tω)m � 2m. In

this case, std stands for standard deviation, ε stands
for disturbance amplitude, the period of the dis-
turbance signal corresponding to m is (Tω)m;

(3) Execute 2L-UPEMD algorithm to obtain IMF dm(t),
namely, dm(t) � U1(rm− 1; np, εm, (Tω)m, ns). Step (a)
to step (e) are the detailed steps of this algorithm:

(a) Distribute the parameter Tw(Tw � 1/fw), ε and np

(b) Calculate the disturbance signal: η(t: θk) � x(t) +

ε cos(2π(fw + k − 1/np))

(c) Two IMFs are obtained by using MS-UPEMD
(d) Repeat steps b and c until k increases from 1 to np

(e) Get the required IMF1 and IMF2 through
dm(t) � 1/np􏽐kdk,m(t)

(4) Calculate the difference between the residuals and
the IMF, then treat it as the new residuals; rm+1(t) �

rm(t) − dm(t) m � m + 1.
(5) Execute steps 2 to 5 fromm� 1 toNimf until all IMFs

are obtained.

In the multi-level UPEMD algorithm, the disturbance
amplitude ε0 is usually selected within the range of [0.1, 1.0].
np is the maximum phase value allowed by each IMF.
According to the suggestions in the literature [11], pa-
rameters ε0 and np were determined as 0.2 and 8,
respectively.

+e flowchart of the above steps is given Figure 1.

2.2. Basic Principle of CorrelationCoefficient. +e correlation
coefficient in probability statistics is a statistical index to
reflect the degree of correlation between the variables. In the
field of signal processing, it can effectively reflect the cor-
relation between the processed signal and the original signal.
+e correlation between the original signal and the false
signal or the noise signal is small; on this basis, the effect of
the signal processing can be judged. In this case, the cor-
relation coefficient can be used to screen out some IMF
components, which can improve data reliability and the
calculation efficiency of the subsequent steps. ρi is the
correlation coefficient between the ith IMF component and
the original signal, which is calculated as equation (2).

ρi �
􏽐

N
k�1 xk − x( 􏼁 dik − di􏼐 􏼑

������������������������

􏽐
N
k�1 xk − x( 􏼁 􏽐

N
k�1 dik − di􏼐 􏼑

2
􏽱 (i � 1, 2, . . . , n),

(2)

where N is the total number of the signal’s data points, xk is
the kth data point of the signal, x is the mean value of the
signal, dik is the k

th data point of the ith IMF component, and
di is the average of all data points of the i

th IMF component.

2.3. Basic Principle of ImvMAAPE

2.3.1. Permutation Entropy (PE). Permutation entropy is
widely used in the analysis of the complex time series to
measure the complexity of nonlinear and nonstationary
signals. It is a dynamic mutation detection method, which
can conveniently and accurately locate the moment of the
system mutation, and can amplify the small changes of
signals. +e calculation process of the permutation entropy
algorithm is as follows:

Firstly, the m-dimensional reconstruction vector of the
original time series is obtained through

X
m,d
t � xt, xt+d, . . . , xt+(m− 2)d, xt+(m− 1)d􏽮 􏽯 t � 1, 2, . . . , N − (m − 1)d, (3)
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wherem is the embedded dimension and d is the time delay.
Arrange the elements of the reconstructed vector in order

of their size to obtain a set of permutations πi and their number
g(πi), then calculate the probabilities of all permutations.

xt+ j1− 1( )d, xt+ j2− 1( )d, . . . , xt+ jm− 1− 1( )d, xt+ jm− 1( )d􏼚 􏼛,

p πi( 􏼁 �
g πi( 􏼁

N − (m − 1)d
.

(4)

According to the principle of Shannon entropy [7], the
expression of the permutation entropy can be derived as
follows.

PE(x, m, d) � − 􏽘

πi�m!

πi�1
p πi( 􏼁ln p πi( 􏼁. (5)

2.3.2. Amplitude-Aware Permutation Entropy (AAPE).
+e permutation entropy only considers the order of the
time series’ amplitudes, and it ignores the influence of the
amplitude values of the elements and the influence of the
elements with the same amplitudes in the corresponding
time series on the permutation entropy. AAPE has intro-
duced the relative normalized probability to improve the
statistical rules of p(πi) and take the mean and the deviation
of signal amplitude into consideration, which makes AAPE
more robust and flexible in the measurement of complexity.

Assume that the initial value of p(πm,d
i ) is 0, while the

parameter t of the time series Xm,d
t increases from 1 to

N-m+1 step by step, update p(πm,d
i ) every time the order of

πm,d
i appear:

p
update πm,d

i􏼐 􏼑 � p πm,d
i􏼐 􏼑 +

α
m

􏽘

m

k�1
xt+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1 − α
m − 1

􏼒 􏼓 􏽘

d

k�2
xt+(k− 1)d − xt+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (6)

Start

End

Distribute the parameter np,
calculate Nimf = log2 N, r0 (t) = x (t)

Distribute the parameter
Tw (Tw = 1 / fw) ε and np

η (t : θk) = x (t) + ε cos 2π

εm = ε0 · std (rm–1(t))
(Tw)m = 2m

m = m + 1

k = k + 1

dm (t) = u1 (rm–1; np , εm , (Tw)m , ns)

Using MS-UPEMD to
get two IMFs.

No

No
Yes

Yes

k ≥ np?

m ≥ Nimf?

rm+1(t) = rm (t) – dm (t)

fw + k–1/np 

dm (t) = (1/np)∑kdk,m (t)

Figure 1: +e flowchart of the Multi-level UPEMD method used in this paper.
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where α ∈ [0, 1] is the adjustment coefficient, which is used
to adjust the weight of signal amplitudes’ mean and

deviation; it is usually set to 0.5. At this time, for the whole
time series, p(πm,d

i ) is:

p πm,d
i􏼐 􏼑 �

p
update πm,d

i􏼐 􏼑

􏽐
N− (m+1)
t�1 α/m 􏽐

m
k�1 xt+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐

m
k�2 xt+(k− 1)d − xt+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

. (7)

+e corresponding AAPE is:

AAPE(x, m, d, α) � − 􏽘

πk�m!

πk�1
p πk( 􏼁ln p πk( 􏼁. (8)

2.3.3. Improved Multivariate Multiscale Amplitude-Aware
Permutation Entropy (ImvMAAPE). AAPE algorithm is a
univariate analysis method, which cannot be used for
multichannel vibration signals. By introducing the theory of
multi-dimensional embedding reconstruction into AAPE,

the fault information of multichannel sampling can be
utilized relatively fully. +e p-channel time series
X � xc,1, xc,2, . . . , xc,i, . . . , xc,N􏽮 􏽯, c � 1, 2, . . . , p is recon-
structed as Z � xc,i, xc,i+d, . . . , xc,i+(m− 2)d, xc,i+(m− 1)d􏽮 􏽯, where
c is the channel number, and the reconstructed vectors are
arranged in ascending the order as follows:

xc,i+ j1− 1( )d≤xc,i+ j2− 1( )d≤ · · · ≤xc,i+ jm− 1− 1( )d≤xc,i+ jm − 1( )d􏼚 􏼛.

(9)

+en, according to AAPE algorithm, we can get

p
update πm,d

c,i􏼐 􏼑 � p πm,d
c,i􏼐 􏼑 +

α
m

􏽘

m

k�1
xc,t+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1 − α
m − 1

􏼒 􏼓 􏽘

d

k�2
xc,t+(k− 1)d − xc,t+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠,

p πm,d
c,i􏼐 􏼑 �

p
update πm,d

c,i􏼐 􏼑

􏽐
N− (m+1)
t�1 α/m 􏽐

m
k�1 xt+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − α/m − 1􏽐

m
k�2 xt+(k− 1)d − xt+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

,

(10)

where 􏽐
p
c�1 􏽐

m!
j�1pc,j � 1, pj � 􏽐

p
c�1 pc,j

We can get the expression of mvMAAPE through

mvAAPE(X, m, α, d) � − 􏽘

πj�m!

πj�1
p πj􏼐 􏼑ln p πj􏼐 􏼑. (11)

Since the algorithms above only consider a single time scale
and cannot represent the complexity of signals under different
time scales, the concept of multiscale entropy is introduced
here to granulate the time series, so that the algorithm can
analyze the time series under different time resolutions.

For the scale factor τ and given p channel time series
U � uk,1, uk,2, . . . , uk,i, . . . , uk,L􏽮 􏽯, we can get the multiple
coarse-grained time series Yτ

k � yτ
k,1, yτ

k,2, . . .􏽮 􏽯:

y
τ
k,j �

1
τ

􏽘

jτ

b�(j− 1)τ+1
uk,i, 1≤ j≤

L

τ
, 1≤ k≤p. (12)

It can be seen that

mvMAAPE(U, m, α, d, τ) � mvAAPE y
τ
k,j, m, α, d􏼐 􏼑.

(13)

+e coarse-grained method adopted by mvMAAPE still
fails to obtain the information contained in the time series
completely. For example, when the time scale τ � 2, this

method only considers the coarse-grained sequence
starting from uk,1 while the coarse-grained sequence
starting from uk,2 is ignored in the calculation of
mvMAAPE, resulting in the loss of some information, as
shown in Figure 2. Extending to any time scale τ, the
traditional coarse-grain method will ignore τ − 1 coarse-
grained sequences containing key information, which will
lead to insufficient analysis and thus affect the analysis
effect. To remedy this defect, an improved coarse-grained
method was adopted.

For the p-channel time series of length L
U � uk,1, uk,2, . . . , uk,i, . . . uk,L􏽮 􏽯, k � 1, 2, . . . , p, with the
scale factor τ, the ath coarse-grained time series
Yτ

k,a � yτ
k,i,1, yτ

k,i,2, . . .􏽮 􏽯 can be calculated by:

y
τ
k,i,a �

1
τ

􏽘

a+iτ− 1

b�a+(i− 1)τ
uk,b, (14)

where 1≤ i≤L/τ, 1≤ k≤p, 1≤ a≤ τ, the scale factor is τ, that
is, there are τ different coarse-grained multivariate time
series, the coarse-grained improvement process of the kth
channel’s coarse-grained time series with scale factors of 2
and 3 is shown in Figure 2. +e mvMAAPE values of time
series Yτ

k,a corresponding to each scale factor τ and em-
bedding dimension are calculated, then the mean of these
values are defined as ImvMAAPE:
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ImvMAAPE(Y, m, α, d, τ) �
1
τ

􏽘

τ

i�1
mvMAAPE(Y, m, α, d).

(15)

For the three key parameters of ImvMAAPE, embedded
dimension m, time delay d, and adjustment coefficient α, if
the value of the embedding dimension m is too small, that
will cause the reconstructed vectors to contain too little
states, and if m is too big, that will leave the time sequence
homogenized, losing its ability to reflect the time series’ tiny
change as well as increasing the complexity of calculation.
After making a comprehensive consideration according to
the literature [14, 15], set the three parameters asm� 5, d� 1,
and α� 0.5.

2.4. Basic Principle of t-Distributed Stochastic Neighbor Em-
bedding (t-SNE). T-SNE is an improved algorithm on the
basis of stochastic neighbor embedding (SNE) algorithm.
Both of them are typical nonlinear manifold dimensionality
reduction algorithms, and both express the similarity be-
tween data points in the form of probability distribution.

+e steps of t-SNE algorithm are as follows:

(1) For high-dimensional data sequence H � h1, h2,􏼈

. . . , hn}, calculate the conditional probability dis-
tribution pj|i between high-dimensional data points
hi and hj.

pj|i �
exp − hi − hj

�����

�����
2
/2σ2i􏼒 􏼓

􏽐k≠iexp − hi − hk

����
����
2/2σ2i􏼒 􏼓

, (16)

where σi is the variance of the Gaussian distribution
centered on xi, which is determined by the given
perplexity and the binary search.

(2) Calculate the joint probability density pij according
to pj|i and we obtain:

pij �
pj|i + pi|j

2n
. (17)

(3) Assume that the low-dimensional space sample data
sequence is L and get its initialization value L 0{ }:

(4) Calculate the gradient zC/zl of the sample data in the
low-dimensional space:

zC

zhi

� 4􏽘
j

pij − fij􏼐 􏼑 hi − hj􏼐 􏼑 1 + hi − hj

�����

�����
2

2
􏼒 􏼓

− 1
,

(18)

where fij is joint probability density, C is the cost
function defined by KL distance:

fij �
1 + hi − hj

�����

�����
2

2
􏼒 􏼓

− 1

􏽐k≠k′ 1 + hk − hk′
����

����
2
2􏼒 􏼓

− 1,

C � KL � 􏽘
i

􏽘
j

pijlog2
pij

fij

.

(19)

+e calculation is based on one degree-of-freedom
t-distribution.

(5) Update the output:

L
(n)

� L
(n− 1)

+ α
zC

zL
+ m(n) L

(n− 1)
− L

(n− 2)
􏼐 􏼑, (20)

where n is the number of iterations, α is the learning
rate, and m is the momentum factor.

(6) Repeat steps (4)–(6) until the number of iterations n
is satisfied.

2.5. Basic Principle of Random Forest Classifier. Random
forest classifier (RF) was proposed by Breiman L. in 2001. It
has the advantages of strong generalization ability, simple
parameter setting, and fast training speed. Its imple-
mentation process is simple and the recognition accuracy is
high. It has a wide range of applications in the field of fault
diagnosis. +e basic principle of RF is as follows:

RF integrates multiple weak classifiers, including many
decision trees tj(x, vk), k � 1, 2, . . . , n􏽮 􏽯. Among them
vk, k � 1, 2, . . . , n􏼈 􏼉 are the same distribution and inde-
pendent random variables; after obtaining the prediction
result of each decision tree, the final output result is de-
termined according to the voting principle.
xi � (xi,1, . . . , xi,p)T represents the ith training sample, p is
the number of eigenvalues of the ith training sample, use yi as
the label of xi, then the training sample set of random forest
classifier is expressed as T � (x1, y1), (x2, y2), . . . ,􏼈

(xN, yN)}. After n times bootstrap samples of T, n bootstrap
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Figure 2: +e improved coarse-grained process of multiscale
entropy with scale factors τ � 2 and τ � 3.
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subsamples Tj(j � 1, 2, . . . , n) are obtained. +en, a deci-
sion tree classifier r1(x), r2(x), . . . , rk(x)􏼈 􏼉 composed of a
group of decision tree models rj(x) is obtained.+e decision
tree model rj(x) is based on each subsample Tj, and CART
decision tree is generally used. Finally, the new test sample
category can be obtained by the vote of n decision trees
according to the principle of the largest number of votes.+e
classification decision expression is

f(x) � argmaxy 􏽘

n

j�1
I rj(x) � y􏼐 􏼑, (21)

where I(•) is the indicative function. When the condi-
tions in brackets are met, the value is 1, otherwise the
value is 0; y is the target variable generated by the category
label yi.

2.6. @e Method Proposed in @is Paper. In this paper, an
improved mvMAAPE (ImvMAAPE) method is proposed,
which has good feature extraction ability for nonlinear,
nonstationary, and multichannel vibration signals generated
by rotating machinery. By combining with UPEMD, t-SNE,
and RF classifier, a new comprehensive fault detection
method for rotating machinery is proposed.

+e testing procedures are as follows:

(1) Obtain the original vibration data of rotating ma-
chinery under various working conditions through
experiments

(2) Process the original vibration signals by UPEMD
method and decompose them into multiple IMF
components

(3) Calculate the correlation coefficients between each
IMF component and the original signal

(4) Calculate the ImvMAAPE values of the recon-
structed signal samples under different working
conditions, obtaining high-dimensional feature
vectors

(5) Use the t-SNE method to reduce the dimension of
high-dimensional feature vectors

(6) After dimensionality reduction, the low-dimensional
feature vectors are put into the RF classifier to obtain
the final fault classification and recognition results

+e flow chart of this method is shown in Figure 3.
+e original vibration signals of the failure machinery

are processed by UPEMD, obtaining a set of IMF com-
ponents, and the correlation coefficients between them
and the original vibration data are calculated. Calculate
the ImvMAAPE values of the signal reconstructed by the
selected IMF components with more fault information.
+en, the t-SNE method is used to reduce the dimension
of high dimension feature vectors, remove the interfer-
ence and redundancy features, and obtain the sensitive
low-dimension features. Finally, the reduced low di-
mensional feature vectors are input into the random forest
classifier to get the fault recognition and classification
results.

3. Experimental Analysis and Results

In order to validate the proposed rotating machinery fault
diagnosis method’s excellent performance and its versatility
for all kinds of rotating machinery, the data sets of gearbox
and bearing are selected for validation, which are two typical
examples in rotating machinery fault diagnosis research.
+is paper selected the gearbox data set provided by PHM
association in an international competition held in 2009 [16]
and the rolling bearing data set provided by Casey Western
Reserve University [17].

3.1. Gearbox Fault Diagnosis and Identification. Firstly, use
the PHM gearbox data set to conduct the experimental
verification; this data set contains several composite faults’
data of gears, bearings, and shafts. +e abridged drawing of
the collection platform’s practicality picture and internal
structure are shown in Figure 4.

Acceleration sensors are installed at both the input and
output ends of the box to collect the dual-channel vibration
signal data. +e sampling frequency is 66.67KHz, the
sampling time is 4s, and each group of data is sampled at
266656 points. +e 8 working conditions’ waveforms are,
respectively, shown in Figure 5. It can be seen that the data
are chaotic, and it is almost impossible to observe the
characteristics of vibration signals in various working
conditions with our naked eyes.

In this paper, the data of 8 working conditions of the
helical gear meshing mode with 30Hz rotation rate and high
load double channel is selected and the specific conditions of
each working condition are listed in Table 1. Because there
are 266656 data points of each of the 8 working conditions, it
is too much to improve the algorithm operation efficiency,
so on the premise that no distortion is generated and the
reliability of the data is basically unchanged, the original data
are sampled down by 1/3. +e length of a single sample is
2048 points, and 43 samples of each fault are taken. +ere is
no overlap in the data of each sample, and a total of 344
samples were obtained; 200 samples and 144 samples were
randomly selected as the training set and the test set,
respectively.

In order to reduce the noise and interference signals in
the original vibration signal, extract the signal components
containing valuable fault characteristic information and
highlight the inherent characteristics of the fault vibration
signal; the original signal is decomposed by UPEMD
method. Reference literature [11], and set the relevant pa-
rameters as follows: set the first IMF to be extracted as
startmode� 1, set the number of IMF components to be
extracted as numImf� 11, set the number of screening it-
erations as numSift� 10, set the maximum number of phases
allowed by each IMF as maxPhase0� 8, and set the non-
normalized amplitude of the auxiliary sine wave as
ampSin0� 0.2. After decomposition, a series of IMFs are
obtained by calculating the correlation coefficient between
each IMF component and the original signal, the noise
component, and false component, or the component with
low reference value generated by decomposition can be

Shock and Vibration 7



eliminated. Due to space constraints, only the vibration
signal decomposition results of the second working con-
dition, that is, the first fault state, are shown here, as can be

seen in Figure 6. +e correlation coefficients between each
IMF component and the original signal were calculated, and
the four IMF components with the largest correlation
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Spur Gear:24T
Helical Gear:48T

Accelerometer
2

Accelerometer
1

Output
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Input
Sha�

Techometer Spur Gear:16T
Helical Gear:32T

Figure 4: +e collection platform’s practicality picture and internal structure abridged drawing.
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Figure 3: +e flow chart of the proposed method.

8 Shock and Vibration



coefficients were selected from the data of each working
condition and signal channel for signal reconstruction.
+ese four components contain most of the fault infor-
mation and have the most reference value. +e remaining
components have little correlation with the original data and
are highly likely to be irrelevant noise components, so they
need to be eliminated. Use the ImvMAAPE method to
extract features from the reconstructed signal.

+e vibration signal comes from the interaction and
coupling between the vibration of each component of the

gearbox and the ambient noise when the gearbox is working.
When there is a fault, there tends to be a periodic pulse
component, and the vibration signals formed by different
fault states have different characteristics; these features are
embedded in the vibration signal, whether the information
contained in the vibration signal is fully used determines
whether the fault feature extraction is sufficient, further
speaking, determines the accuracy of the final fault identi-
fication and classification. Compared with some existing
multiscale entropy feature extraction methods, the proposed
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Figure 5: Partial data of the gearbox data set.

Table 1: +e detailed conditions of each part corresponding to the 8 working conditions of the gearbox.

Part names Working condition
Spur 1 Spur 2 Spur 3 Spur 4 Spur 5 Spur 6 Spur 7 Spur 8

Gears

32T Good Chipped Good Good Chipped Good Good Good
96T Good Good Good Good Good Good Good Good
48T Good Eccentric Eccentric Eccentric Eccentric Good Good Good
80T Good Good Good Broken Broken Broken Good Good

Bearings

IS:IS Good Good Good Ball fault Inner ring fault Inner ring fault Inner ring fault Good
ID:IS Good Good Good Good Ball fault Ball fault Good Ball fault
OS:IS Good Good Good Good Outer ring fault Outer ring fault Good Outer ring fault
IS:OS Good Good Good Good Good Good Good Good
ID:OS Good Good Good Good Good Good Good Good
OS:OS Good Good Good Good Good Good Good Good

Shafts Input Good Good Good Good Good Imbalance Good Imbalance
Output Good Good Good Good Good Good Keyway sheared Good
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ImvMAAPE method has the ability to process multichannel
data. One important thing is that this method can obtain
more complete coarse-grained sequences and overcome the
defect of traditional multiscale entropy of losing key coarse-
graining sequences. ImvMAAPE values’ error bar diagrams
with 20 scales under 8 working conditions are shown in
Figure 7. It can be seen that the error range of ImvMAAPE
value is small. At many scales, there is almost no aliasing of
the error range under different working conditions or even if
there is the aliasing, it is very small. Even if the features are
aliased at one scale, they can be distinguished at another
scale, and this reflects the excellent feature extraction per-
formance of ImvMAAPE.

ImvMAAPE produces high-dimensional feature vectors
of 20 dimensions, which will greatly reduce the efficiency of
the algorithm if it is directly imported into the classifier for
recognition and classification, and not all features are useful,
some of them are redundant and some of them even contain
confusing information which can lead to misjudgment of the
classifier. +erefore, it is necessary to reduce the dimen-
sionality of the initial high-dimensional feature vectors. By
comparing the ImvMAAPE values under various working
conditions and scale factors in Figure 8, it can be found that
the entropy values of different working conditions are dif-
ferent under various scale factors, and the entropy values of
different scale factors in different working conditions differ in
different degrees; at some scales, the entropy of each working
condition overlaps greatly, which is not suitable for identi-
fication and classification, and even causes the misjudgment
of the classifier. At some other scales, the entropy of each
working condition has obvious difference, and the fluctuation
range of entropy values is small; these entropy values contain
a lot of valuable information. In addition, some working
conditions are difficult to distinguish at one scale but can be
well distinguished at another scale, which requires a process of
evaluation and screening. In this paper, the t-SNE method is
used for dimensionality reduction; it can extract and retain
useful features, eliminate useless features, form low-dimen-
sional feature vectors, and improve the separability of each
feature. +e visualized three-dimensional feature space
formed after dimensionality reduction is drawn and is shown
as an example in Figure 8(a); it can be seen that the features
after dimensionality reduction by the t-SNE algorithm have

good clustering characteristics, and the clustering center is
relatively obvious; except for the outliers and confounding
points, the samples of all kinds of working conditions are
gathered together, respectively, and the sample clusters of
different working conditions have a large interval and a high
degree of discrimination. When the t-SNE algorithm is not
adopted, three features need to be selected randomly for
plotting, as shown in Figure 7(b). +e discrimination degree
of each working condition is not high, the aliasing degree is
serious, and there is no clustering center. If these three fea-
tures participate in classification judgment, it will not only
reduce the classification efficiency but also produce inter-
ference and affect the classification results.

In this paper, the t-SNE method was adopted to reduce
the dimension of the original feature vectors to 8-dimen-
sional feature vectors. +e new feature vectors were input
into the RF classifier, one result of fault classification is
shown in Figure 9 with the classification accuracy of 99.3%.
+is proved that this method could effectively identify and
classify the faults of rotating machinery.

In order to avoid the interference of accidental factors,
the experiment is repeated 20 times and the classification
accuracy was recorded.+e results are shown in Table 2. It is
obvious that, out of the 20 trials, even the worst classification
accuracy can reach 98%, and the best result can reach 100%.
+en, refer to the standard deviation of accuracy; it can be
proved that the fault identification and classification method
of rotating machinery proposed in this paper has high ac-
curacy and stability.

3.2. Bearing Fault Diagnosis and Identification. In order to
verify the universality of the method proposed in this
paper, select bearing data to verify the method. +e bearing
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data set was provided by CaseyWestern Reserve University,
the appearance and structure abridged drawing of the test
bench is shown in Figure 10, and the two-channel bearing
data are collected by the acceleration sensor installed at the
12°’clock position of the motor shell’s drive end and fan
end. In this experiment, the motor has no load, the speed is
1797 RPM, and the sampling frequency is 12 KHz. +e data
set includes four working conditions: normal, inner ring
fault, outer ring fault, and ball fault; in addition, the inner
ring fault, outer ring fault, and ball fault have three fault
degrees with 0.1778mm, 0.3556mm, and 0.5334mm
grooves processed by electric spark, respectively. +ere are
10 data types totally, marked as NM, IRF1, IRF2, IRF3,
ORF1, ORF2, ORF3, BF1, BF2, and BF3, respectively.
Table 3 lists the brief information of the bearings’ ten
working conditions data.

Intercept 102400 data points of each fault type’s data,
take 2048 points as one sample, forming 500 samples totally.
Among them, 300 samples and 200 samples were randomly
selected as the training set and the test set, respectively. +e
collected two-channel bearing vibration signal waveform is
shown in Figure 11. It can be seen that there are differences
between the waveforms of the original vibration data under
various working conditions. +ese differences can be
extracted by feature extraction and the fault state identifi-
cation, and classification can be carried out.

Similar to the gearbox fault detection process mentioned
above, the method proposed in this paper is used to extract
bearing fault features, and then identify and classify the fault
types. Calculate the correlation between each IMF com-
ponent and its original fault signal obtained by the method
of correlation analysis; the ten IMFs of the fan end channel
signal generated by UPEMD of the bearing’s first working
condition is shown in Figure 12, and the calculation results
are shown in Figure 13. +e first four IMF components with
large correlation coefficients were selected for signal re-
construction, while the remaining IMF components with
small correlation coefficients that may contain noise in-
formation and the redundant information were ignored. In
order to limit the article space, only the representative fan-
end channel data decomposition results and correlation
analysis results of the inner ring fault with the first failure
degree were displayed.

Calculate the ImvMAAPE values of the reconstructed
signals and draw Figure 14. It can be intuitively seen that
the characteristic value of entropy extracted by this method
has a small spread range. +e entropy values have a good
distinction effect under different working conditions, and
the separation of the entropy value is evident at many
scales; even if the entropy value appears aliasing at one
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scale, it can be distinguished well at another scale. +is is
consistent with the analysis of the gearbox data.

After the fault features were extracted by ImvMAAPE, the
t-SNE method was used to reduce the dimensionality of high-
dimensional fault feature vectors. +rough visualization pro-
cessing, it can be found that, as shown in Figure 15(a), the
differentiation degree among the sample clusters of various
working conditions is good, there are very few sample points
that deviate from their clusters, and most of the sample points
can cluster together closely around their obvious cluster
centers. +is shows that the separability of samples is im-
proved. In order to verify the necessity of dimensionality re-
duction using the t-SNE method, randomly select three
features whose dimensions were not reduced and plot them in
Figure 15(b). It can be seen that the same sample points diverge
seriously, there is no obvious clustering center, and the sep-
arability is poor. Except for the two conditions of NM and
ORF1, which have obvious differentiation, the sample points of
the other conditions are mixed together. +eir sample clusters
appear large aliasing, which will greatly affect the subsequent
recognition and classification accuracy of the classifier, and it is
verified by experiments in the following paper.

Put the 8-dimensional feature vector processed by the
t-SNE method into the RF classifier for recognition and
classification. +e classification results are shown in

Figure 16, and the classification accuracy can reach 100%. In
order to avoid accidental events, 20 experiments were
carried out with this method and the results were recorded.
At the same time, the detection method using the other four
feature extraction methods proposed above was tested 20
times and the results were recorded.+e results are shown in
Table 4. By comparison, it can be found that ImvMAAPE can
extract useful information from vibration signals more
completely, so that the classification results are more ac-
curate and stable. It can be seen that the rotating machinery
fault detection method proposed in this paper also has
excellent performance in bearing fault diagnosis; it can not
only realize accurate classification of bearing fault types but
also accurately identify and classify different fault degrees of
the same fault type.

4. Comparison and Analysis

4.1. @e Superiority Analysis of the ImvMAAPE

4.1.1. (Performance) Analysis of Feature Extraction Ability.
In order to verify the superiority of the ImvMAAPE method
proposed in this paper, calculate the ImvMAAPE values of 8
working conditions of the gearbox at 20 scales and the
corresponding values of Multivariate Multiscale Amplitude-
Aware Permutation Entropy (mvMAAPE), Multiscale
Amplitude-Aware Permutation Entropy (MAAPE),Multi-
variate Multiscale Sample Entropy (mvMSE), andMultiscale
Sample Entropy (MSE), and plot their consequences in
Figure 17 to make comparative analysis. Compare the cal-
culation consequence of ImvMAAPE and mvMAAPE; it can
be found that although the average entropy values obtained
by the two methods are roughly the same, the values of
mvMAAPE at different scales fluctuated significantly. +e
various working conditions’ entropy values have a high
degree of overlap, and it shows that the coarse-grained
sequence acquisition algorithm adopted by ImvMAAPE can
extract the characteristic information of vibration signals in
various working conditions more completely. With more
representative features, smaller entropy deviation, and more
stable performance, ImvMAAPE can make it easier to

Table 2: Gear box fault detection results using the proposed method.

+e proposed method
Maximum value (%) Minimum value (%) Average value (%) Standard deviation
100 97.2 98.67 0.715

Accelerometer Accelerometer
Torque transducer/encoder

self-aligning coupling
Dynamometer

Fan-end bearing

Drive-end bearing

Base

Motor

Coupling

Figure 10: +e appearance and structure abridged drawing of the bearing test bench.

Table 3: +e brief information of the bearings’ ten working
conditions data.

Fault
location

Fault diameter
(mm)

Fault
severity Abbreviation

Normal — — Norm

Inner race
0.1778 Minor IRF1
0.3556 Medium IRF2
0.5334 Severe IRF3

Outer race
0.1778 Minor ORF1
0.3556 Medium ORF2
0.5334 Severe ORF3

Ball
0.1778 Minor BF1
0.3556 Medium BF2
0.5334 Severe BF3
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Figure 11: Parts of original vibration signal of bearings. (a) Normal. (b) IRF1. (c) BF1. (d) ORF1. (e) IRF1. (f ) BF2. (g) ORF2. (h) IRF3.
(i) RF3. (j) ORF3.
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distinguish different working conditions. Compare the
multi-data channel algorithms with the single data channel
algorithms; more specifically, compare ImvMAAPE,
mvMAAPE with MAAPE and compare mvMSE with MSE.
It can be seen that the entropy deviation of the multichannel
algorithm is obviously smaller and more stable, and the
entropy ranges have a lower overlap degree. +is is because
the single-channel algorithms only use one channel vibra-
tion signal, the characterization of fault characteristics is not
complete enough, it is vulnerable to external interference,
accidental factors have great influence, and it is easy to
ignore the fault information that is not easy to be obtained by
the sensor in this position.

However, the multichannel algorithm can comprehen-
sively consider the fault information of multiple channels, it
reduces the contingency, and the fault information

extraction is more comprehensive, leading to the higher
stability and robustness.

On the other hand, the T-SNE method is adopted to
carry out dimension-reduction process on the feature vec-
tors of the gearbox data samples extracted by ImvMAAPE,
mvMAAPE, and MAAPE. Descend the feature vectors to 2
dimensions, and plot Figure 18; it can be intuitively found
that the samples of the same working conditions represented
by the features extracted by ImvMAAPE method have ob-
viously gathered together is clear. Although the features
extracted by mvMAAPE method can gather samples of the
same working conditions together, they are relatively scat-
tered and the sample interval of different working conditions
is small. While the samples of various working conditions
characterized by the MAAPE method almost gathered (were
almost aliased) together, they cannot be distinguished
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Figure 12: +e ten IMFs generated by UPEMD of the fan end channel signal of the bearing’s first working condition.
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effectively. +is also intuitively reflects that the features
extracted by the ImvMAAPE method have a great im-
provement in classification performance compared with

those extracted by the MAAPE method; besides, the features
extracted by ImvMAAPE also show excellent adaptability in
subsequent dimension reduction.
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Figure 15: (a) 3D feature map processed by T-SNE; (b) 3D feature map without t-SNE processing.
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Figure 16: +e identification and classification results of the bearing faults using the method proposed in this paper.

Table 4: +e fault detection results of 20 experiments using the method proposed in this paper.

+e proposed method
Maximum value (%) Minimum value (%) Average value (%) Standard deviation
100 98 99.425 0.467
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Figure 17: Gearbox entropy analysis diagram of five multiscale analysis methods: ImvMAAPE (a), mvMAAPE (b), MAAPE (c), mvMSE
(d), and MSE (e).
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Calculate the ImvMAAPE, mvMAAPE, MAAPE, MSE,
and mvMSE values of the bearing data under 10 working
conditions and plot them in Figure 19. It should be noted
here that due to the inherent disadvantage of the sample
entropy [18], it will generate many undefined SE values but
the PE algorithm will not generate undefined values, which
also reflects the reliability of the PE algorithm on the other
side. By comparing and analyzing Figure 19, it is found that
the improved coarse-grained extraction method and the
multichannel data processing method can still show excel-
lent performance, and they can extract better features.
Moreover, the features extracted by ImvMAAPE showed the
best stability and discriminability.

+e feature vectors’ dimension of the bearing data
samples extracted by ImvMAAPE, mvMAAPE, andMAAPE
are reduced by the t-SNE method; Figure 20 shows the
performance in distinguishing of the features extracted by
different methods. +e ImvMAAPE method still shows the
best performance, which can prove the conclusion of the
gearbox experiment above.

4.1.2. Fault Identification and Classification Effect Analysis.
+e use of the ImvMAAPE feature extraction method in
the field of fault detection has shown its excellent per-
formance. In order to give a further verification of it, use
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Figure 18: +e performance comparison of the two-dimensional feature vectors reduced by the t-SNE method of the gearbox’s 8 working
conditions extracted by ImvMAAPE (a), mvMAAPE (b), and MAAPE (c) algorithms.
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the four methods: mvMAAPE, MAAPE, mvMSE, and
MSE to analyze the data samples of gearbox and gear,
respectively, with the fault detection process proposed in
this paper. After 20 experiments, the maximum, mini-
mum, average, and standard deviation of classification
accuracy were recorded, and the results were shown in
Tables 5 and 6, respectively. +rough comparative anal-
ysis, it can be found that the fault detection method using
ImvMAAPE has the highest accuracy, and the standard
deviation of the method’s experimental results is only
0.71, which is very low compared with other methods,

indicating that the classification accuracy is very stable.
+rough Figures 21 and 22, we can intuitively see the
accuracy and the fluctuation of each classification result of
the five methods; it can be seen that the classification
accuracy of ImvMAAPE is the highest and the most stable,
and the classification accuracy of the entropies with
multichannel is higher than with single channel, this also
validates the previous analysis. In summary, the
ImvMAAPE method proposed in this paper can extract
useful fault features from signals more effectively and
completely. +e comprehensive fault detection method
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Figure 19: Gearbox entropy analysis diagram of the five multiscale analysis methods: ImvMAAPE (a), mvMAAPE (b), MAAPE (c), and
mvMSE (d).
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composed of this method and UPEMD, t-SNE, and RF
classifier can realize very accurate fault diagnosis of ro-
tating machinery.

4.2. @e Necessity of Using UPEMD to Process Raw Data and
Using t-SNE to Reduce Dimensionality. In order to verify the
necessity of using UPEMD to process the original data and
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Figure 20: +e performance comparison of the two-dimensional feature vectors reduced by the t-SNE method of the bearing’s 10 working
conditions extracted by ImvMAAPE (a), mvMAAPE (b), and MAAPE (c) algorithms.

Table 5: +e gearbox experiment results of different entropies.

Entropy name Maximum value Minimum value Average value Standard deviation
ImvMAAPE 100 97.2 98.67 0.714585
mvMAAPE 93.1 84.8 88.615 1.939961
MAAPE 39.2 25 32.065 3.991211
mvMSE 83.3 71.5 76.325 2.965215
MSE 54.9 41 47.185 3.675849
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using the t-SNE method to reduce the dimensionality of the
initial high-dimensional feature vectors, use the idea of
controlling variables to design three fault detection methods:
the complete method proposed in this paper, the method
without UPEMD, and the method without t-SNE. +e
maximum value, minimum value, average value, and
standard deviation of these three methods, respectively, are
calculated 20 times, and two kinds of samples of the gearbox
and bearing data sets are used.+e results are summarized in
the form of a bar graph, as shown in Figure 23. It can be
found whether the method proposed in this paper lacks the
process of processing the original signal by UPEMD or the
process of reducing dimensions by t-SNE, the final classi-
fication accuracy and stability will decrease in both exper-
iments of the two datasets, especially for the gearbox dataset
with relatively noisier data collection environment and more
complex working conditions, the lack of these two methods
in the overall method can even reduce the accuracy of fault
classification and identification by about 10%. Such exper-
iment results have verified the analysis of the influence of
UPEMD and T-SNE methods on the overall fault classifi-
cation and recognition effect in Section 3 above. +e
reconstructed signals obtained by UPEMD have less noise
interference and redundant information compared with the

Table 6: +e bearing experiment results of different entropies.

Entropy name Maximum value Minimum value Average value Standard deviation
ImvMAAPE 100 98 99.425 0.466651
mvMAAPE 97 89.5 93.75 1.650359
MAAPE 68 56.5 61.7 3.294333
mvMSE 90.5 82 85.65 2.518876
MSE 100 98 99.425 0.466651
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Figure 21: +e gearbox experiment results of different entropies.
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Figure 23: Verification of the necessity of UPEMD and t-SNE.
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original signal, making the extracted features more valuable.
+e feature vectors reduced by the t-SNEmethod can reduce
the feature redundancy and the feature confusion, as the
same kind of fault features gather closely, and the fault
features with different kinds are far away from each other.

5. Conclusions

In this paper, a new nonlinear analysis method has been
proposed: the Improved Multivariate Multiscale Amplitude-
Aware Permutation Entropy (ImvMAAPE). It realized the
application of the improved coarse-grained method in fault
feature extraction of multichannel signals. Based on this, a new
fault diagnosis method for rotating machinery is proposed.
Firstly, the UPEMD method is used to process the vibration
signals of rotating machinery to obtain a series of IMF com-
ponents. +en, the correlation coefficients between each
component and the original signal are calculated, and the
components with higher correlation coefficients were screened
out to obtain reconstructed signals. ImvMAAPE values of the
reconstructed signals were calculated to obtain high-dimen-
sional feature vectors, and the t-SNE method was used to
reduce their dimensionality. Finally, the low-dimensional
feature vectors gotten by dimension reduction were put into
the RF classifier for recognition and classification. According to
the fault detection results using the gearbox and the bearing
data sets, we can see the identification accuracy of the method
proposed in this paper can be up to100%. In the fourth section
of this paper, mvMAAPE, MAAPE, mvMSE, and MSE are
selected to compare with the ImvMAAPE method, which
proved that the ImvMAAPE method can make full use of the
information contained in the multichannel data, and can fully
extract the information contained in the coarse-grained se-
quence and achieve better feature extraction effect. After the
dimension reduction, the extracted features are input into the
RF classifier, and compared with other methods; the accuracy
of the method proposed in this paper is the highest and the
classification result is the most stable. In conclusion, compared
with the existing fault detection methods, the proposed fault
detection method for rotating machinery has higher accuracy,
better robustness, and can adapt to a variety ofmechanical fault
states in practical engineering applications. It has high engi-
neering application value [19–22].

Data Availability
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