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Jointed structures in engineering naturally perform with some of nonlinearity and uncertainty, which significantly affect the
dynamic characteristics of the structural system. In this paper, the method of Bayesian uncertainty identification of model
parameters for the jointed structures with local nonlinearity is proposed. Firstly, the nonlinear stiffness and damping of the joints
under the random excitation are represented with functions of excitation magnitude in terms of the equivalent linearization. &e
process of uncertainty identification is separated from the representation of local nonlinearity. In this way, the dynamic behavior
of the joints is penetratingly characterized instead of ascribing the nonlinearity to uncertainty. Secondly, a variable-expanded
Bayesian (VEB) method is originally proposed to identify the mixed of aleatory and epistemic uncertainties of model parameters.
Different from traditional Bayesian identification, the aleatory uncertainties of model parameters are identified as one of the most
important parts rather than only measurement noise of output. Notablely, a series of intermediate variables are introduced to
expand the parameter with aleatory uncertainty in order to overcome the difficulty of establishing the likelihood function.
Moreover, a 3-DOF numerical example is illustrated with case studies to verify the proposed method. &e influence of observed
sample size and prior distribution selection on the identification results is tested. Furthermore, an engineering example of the
jointed structure with rubber isolators is performed to show the practicability of the proposed method. It is indicated that the
computational model updated with the accurately identified parameters with both nonlinearity and uncertainty has shown the
excellent predictive capability.

1. Introduction

Engineering structures with joints usually behave with some
of the nonlinear vibration characteristics. &ese nonlinear
phenomena are usually concentrated in the local joints of the
parts, such as bolt flanges, interference/clearance fit, cush-
ion, and vibration isolator. It may lead to complex nonlinear
responses such as natural frequency shift, phase distortion,
frequency response jump, and other phenomena [1–3] with
the increase of excitation levels. &ough calculation of the
direct nonlinear responses has been studied for many years,
it is still in difficulty for dealing with engineering structures
with a huge number of degrees of freedom (DOFs), espe-
cially under random excitations.&e equivalent linearization

to deal with nonlinearity is currently adopted because of the
maturity and convenience to calculate the random vibration
response [4, 5]. Friis et al. [4] summarized three commonly
used equivalent methods with numerical examples, in-
cluding the energy balance method, the intensity balance
method, and the direct linear fit in the least squares sense.
Alibrandi and Mosalam [6] proposed three linear equiva-
lence methods for reliability evaluation of random vibration
structures, that is, Gaussian linear equivalent linearization,
tail equivalent linearization, and tail probability equivalent
linearization. Other researchers have also done many studies
about equivalent linearization under random vibration
[7, 8]. However, the authors insist that the equivalent lin-
earization model should address the nonlinear features such
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as the fact that the equivalent stiffness and damping are
represented with functions of excitation magnitudes. Chen
et al. [9], respectively, established the polynomial models for
equivalent stiffness and equivalent damping varying with
excitation magnitudes in the study of a rubber vibration
isolator. &e polynomial coefficients are analytically derived
according to the sin-sweep vibration results in different test
cases.

From another point of view, the model parameters in-
evitably show some of uncertainties no matter linear or
nonlinear model to be built up [10, 11]. For example, the
modulus of some polymer materials like rubber could vary
20% among the same manufacture batch. In fact, the
equivalent stiffness and damping of the component joints
are also uncertain, because of the joint interface consisting of
a large number of microconvex bodies with random sizes
and positions.&e uncertainties inmodel parameters may be
characterized as either aleatory uncertainties, which are
irreducible variabilities inherent in nature, or epistemic
uncertainties, which are reducible uncertainties [11, 12]
resulting from a lack of knowledge or intentional simplifi-
cations. As opposed to model parameter uncertainty, model
form uncertainty [13, 14] is also epistemic and worthy of
note, but it is not the focus of this paper. Model parameters
are normally uncertain and therefore uncertainty also exists
in the dynamic response. Moreover, it is usually much
greater than measurement noise. As a result, the uncer-
tainties as well as the optimal estimations for parameters
should be identified in order to predict the uncertainty of the
response.

&ough there have been lots of literatures to study the
nonlinear dynamic behaviors of the jointed structure such as
the vibration isolator [15–17], the uncertainties of model
parameters are not often identified. Kerschen et al. [3] have
made a detailed summary of parameter identification
methods for nonlinear structures and divided them into
seven categories. &erein, structural model updating [18, 19]
is more convenient than other methods and recommendable
for the complex structure due to large number of DOFs in
the finite element model. Moreover, among various model
updating methods, Bayesian inference is a very popular
probabilistic identification method, which has been widely
used in both linear and nonlinear structures [20–27].
Compared with the deterministic method based on opti-
mization, Bayesian method can more flexibly deal with
modelling uncertainties and measurement noise.

However, most of the current Bayesian parameter
identification methods focus on the optimal estimation, and
the main uncertainty is considered to be the measurement
noise. &e probability distribution functions (PDFs) of the
model parameters with aleatory uncertainty are scarcely
obtained due to the high cost of repeated experiments to
adequately describe the aleatory uncertainties, though sta-
tistical variance is identified to address uncertainty in some
good way. &e other difficulty is to establish the likelihood
function since the uncertainty of experimental data comes
from both the measurement noise and the uncertainty of
parameters. It indicates that the experimental data of output
cannot be generally assumed as the normal distributed and

the likelihood function cannot be directly analytical
expressed.

In this paper, a new VEB method is originally proposed
to identify the PDFs of model parameters with the mixed
aleatory and epistemic uncertainties based on the experi-
mental data. A series of intermediate variables with the same
prior distribution are introduced, and the model parameters
with aleatory uncertainty are tactfully transformed in order
to establish the new likelihood function. Combined with the
equivalent linearization under different magnitudes of
random excitations, the local nonlinearity is also charac-
terized together with the uncertainties for jointed structures.
Compared with traditional Bayesian identification, uncer-
tainties of model parameters are identified based on repeated
experimental data rather than only measurement noise of
output. It is highlighted herein that the influences of pa-
rameters’ uncertainties (e.g., elastic modulus of the rubbers
in isolators) on structural responses are usually critical in
engineering rather than measurement noise. Compared with
interval analysis or other variance-based methods, more
detailed information of the uncertainties could be achieved
in terms of PDF and the identification results could be
quickly updated with the additional useful experimental
data. Moreover, the nonlinearity of the joints is separated
from the uncertainty, leading to the fact that the dynamic
behavior is penetratingly characterized instead of ascribing
the nonlinearity to uncertainty. &us, the computational
model updated with this method has a high predictive ca-
pability for the jointed structures.

&e paper is organized as follows. Section 2 provides a
brief introduction to the local nonlinearity modelling of the
jointed structures. Section 3 then introduces the Bayesian
identification of the uncertainties for model parameters
including the VEB method in detail. Section 4 studies a
virtual 3-DOF spring mass system with 3 different cases to
illustrate and verify the proposed method. Moreover, Sec-
tion 5 provides an engineering example of the jointed
structures with rubber isolators to show the practicability of
the proposed method. Finally, Section 6 ends with our main
conclusions.

2. Local Nonlinearity Modelling of the
Jointed Structures

&e jointed structures could be regarded as a combination of
many components. Generalized spring-damping elements
can be adopted to characterize the joints between the
boundary and components or among different components.
Some of elements are linear while some are nonlinear as
shown in Figure 1. It depends on the mechanical behavior of
the joints.

For the nonlinear system, the motion equation can be
written as

M€y + C _y + Ky + fnl(y, _y) � x(t), (1)

where x(t) denotes the excitation vector varying with time
and y(t) denotes the displacement solution.M, C, and K are,
respectively, the mass, damping, and stiffness matrices of the
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system, and fnl is the nonlinear term. For the weak non-
linearity, equivalent linearization is often adopted in engi-
neering. &e equivalent equation can be written as

M€y + Ceq _y + Keqy � x(t), (2)

where Ceq and Keq are equivalent damping and equivalent
stiffness matrices, respectively. Compared with C and K,
only a few elements of Ceq and Keq change because the
nonlinearity of the jointed structures only appears in a few
local positions.

Due to random excitation input, the nonlinearity of the
jointed structures is averaged or linearized in a sense [28].
&e frequency response function (FRF) of the nonlinear
system under the random excitation is defined by (3). It
appears to be linear in terms of its shape with eigenfrequency
drifting as shown in Figure 2(a):

Hnr(ω) �
Syx(ω)

Sxx(ω)
, (3)

where Syx(ω) and Sxx(ω) are the cross- and auto-spectrum
densities, respectively. It should be noted that the FRF of the
nonlinear system under the random excitation (i.e., Hnr(ω))
shows clear distinction from that under the sin-sweep ex-
citation. It mainly depends on the input power spectral
density (i.e., the vibration magnitude), and it approaches the
linear FRF as the power spectral density approaches zero.

Taking modal parameters (i.e., natural frequency and
damping ratio) from the FRFs with different vibration
magnitudes as the target, the equivalent stiffness and
damping of the nonlinear elements could be obtained, re-
spectively, as shown in the following:

keq(A) � keq1(A), keq2(A), . . . , keq,s(A) 
T
, (4)

ceq(A) � ceq1(A), ceq2(A), . . . , ceq,s(A) 
T
, (5)

where s denotes the number of nonlinear elements and A
denotes the magnitude of the random excitation.
According to the FRF of a nonlinear system with a signal
DOF under different magnitudes of random excitation as
shown in Figure 2(a), the equivalent stiffness and damping

of the nonlinear spring-damping element are shown in
Figure 2(b), respectively. It should be noted that the FRF
in Figure 2 appears undistorted and seems like a linear
FRF just with frequency drift. &e reason is not soft
nonlinearity but is the fact that the randomness of the
amplitude and phase of the excitation signal creates a
“linearized” or “averaged” FRF.

3. Bayesian Identification of the Model
Parameter Uncertainties

Compared with the determinate parameter identification,
Bayesian identification provides not only the optimal esti-
mations of the model parameters but also the probability
distribution to describe their uncertainties. Generally, the
structural response of interest (e.g., natural frequency or
modal damping ratio) can be expressed in terms of com-
ponents as follows:

zi � zi(x; θ, α), i � 1, 2, . . . , q, (6)

where q is the number of output responses, x is the con-
trollable and determinate input vector (e.g., the random
vibration magnitude), θ denotes the aleatory uncertain
parameter set, and α denotes the epistemic uncertain pa-
rameter set.

It is noted that θ has observable randomness and its
uncertainty is inherent and irreducible. However, α has an
unknown but unique truth value, whose uncertainty can be
reduced with the addition of useful information. &ese two
types of parameters are independent with each other. In
addition, the prior distributions of the aleatory uncertain
parameter could be expressed as πθ(θ|α1), where the
hyperparameter set α1 has also epistemic uncertainty and
does not appear in the model.

Ignoring the model form error, experimental error is
assumed to follow the normal distribution with zero mean,
and then the experimental observation of each output can be
expressed as

zi � zi(x; θ, α) + εi,

εi ∼ N 0, σ2i ,

⎧⎨

⎩ i � 1, 2, . . . , q. (7)

Denoting the n groups of test data set as
D � xk, zk , k � 1, 2, . . . , n, there are unknown values of θk

and εk corresponding to each set of test data (xk, zk); that is,

zki � zi xk; θk, α(  + εki, i � 1, 2, . . . , q, k � 1, 2, . . . , n.

(8)

3.1. Brief Introduction ofTraditionalBayesian Identificationof
Model Parameters. Traditional Bayesian parameter identi-
fication, namely, Bayesian model updating, deals with only
the epistemic uncertain variables. Measurement error is
assumed to be aleatory uncertainty, and each of the model
parameters is assumed to have an unknown unique true
value. &e belief in the true value is represented with
probability distribution in Bayesian method.

Component i

Component j Component k

Whole
structure

Nonlinear element

Nonlinear
element

Force

Vibration of ground

Force
Force

Force

Figure 1: Illustration of the nonlinear spring-damping elements
for the jointed structures.
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Ignoring the aleatory uncertain variables θ in (6)∼(8), the
posterior distribution of parameters α is obtained according
to test data set D by using the Bayesian formula:

p(α|D) �
L(D|α)πα(α)

 L(D|α)πα(α)dα
∝L(D|α)πα(α), (9)

where πα(α) is the prior PDF of α and L(•) is the likelihood
function. &e denominator in (9) is an integral constant
ensuring that the posterior PDF integrates to 1.

Assuming that the test data of output are independent
identically distributed (i.i.d) samples and test error follows
normal distribution, the likelihood function for a single
output can be constructed as

Li D|α, σi(  � 
n

k�1

1
σi

���
2π

√ exp −
1
2σ2i

zki − zi xk; α( ( 
2

 

�
1

(2π)
n/2σn

i

exp −
1
2σ2i



n

k�1

zki − zi xk; α( ( 
2⎛⎝ ⎞⎠.

(10)

If Bayesian identification is performed simultaneously
using multivariate outputs, one definition of the likelihood
function is shown in the following:

L(D|α, σ) � 

q

i�1
ηiLi D|α, σi( , (11)

where ηi is the weighted coefficient and σ � [σ1, σ2, . . . , σq]

is the test error vector.

3.2. Basic 7eory of VEB Identification. Due to aleatory
uncertainty in model parameters, uncertainties in output
data do not just come from the measurement error. &e
whole observed data cannot be generally assumed as the
normal distributed. Moreover, if the model outputs do not
linearly vary with aleatory uncertain parameters or these
parameters are not conjugate distributed (e.g., normally
distributed), the likelihood function cannot be analytically
expressed directly. Furthermore, the calculation amount of
the likelihood function value in terms of numerical ex-
pression is usually too huge to implement in Bayesian
method. As a result, the traditional Bayesian identification
encounters generally serious difficulty when the aleatory
uncertainty in model parameters cannot be neglected.

Assuming the n sets of test data are independent with
each other, a series of intermediate variables, namely,
[θ1, θ2, . . . , θn], with the same prior distributions are in-
troduced to temporarily replace the aleatory uncertain pa-
rameters θ. Each vector θk of the intermediate variables
corresponds to every sample set of the aleatory uncertain
parameters. Each intermediate variable is regarded as the
denotation of the true value of the corresponding test sample
with only epistemic uncertainty. &us, each set of the output
test data zk is randomly distributed around zk(x; θk, α) and
the test error could be assumed as a normal random variable
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Figure 2: Equivalent linearization of nonlinear spring-damping element with different vibration magnitudes. (a) FRFs and (b) equivalent
stiffness and equivalent damping.
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with zero mean. Hence, the likelihood function could be
constructed as

Li D|θk: k � 1 . . . n, α, σi(  �
1

(2π)
n/2σn

i

exp −
1
2σ2i



n

k�1

zki − zi xk; θk, α( ( 
2⎛⎝ ⎞⎠,

L D|θk: k � 1 . . . n, α, σ(  � 

q

i�1
ηiLi D|θk: k � 1 . . . n, α, σi( ,

(12)

where the test data set D is shown in (8). &en, according to Bayesian theorem, the posterior joint
PDF for all parameters can be expressed as

p θk: k � 1 . . . n, α, α1, σ|D( ∝L D|θk: k � 1 . . . n, α, σ(  

n

k�1
πθ θk|α1( πα(α)πα1 α1( πσ(σ), (13)

where πθ(θk|α1), πα(α), and πσ(σ), respectively, denote the
prior PDFs for intermediate variable θk, epistemic uncertain
parameter α and the experimental standard deviation σ.
πα1(α1) denotes the prior PDF for the hyperparameter α1
addressing the distribution of θk.

Integrating the intermediate variables, the posterior joint
PDF is rewritten as

p α, α1, σ|D(  � 
θk

p θk: k � 1 . . . q, α, α1, σ|D(  

q

k�1
dθk.

(14)

By marginalizing equation (14), the posterior PDF for
any epistemic uncertain parameter can be obtained.

&e posterior PDFs for aleatory uncertain parameters
can be acquired by integrating the hyperparameters as
shown in (15). Essentially, the result is weighted average by
the posterior probability of the hyperparameters:

p(θ|D) � 
α1
πθ θ|α1( p α1|D( dα1

� 
α,α1 ,σ

πθ θ|α1( p α, α1, σ|D( dαdα1dσ.

(15)

3.3. Algorithm Implementation of VEB Identification. Due to
the mathematical difficulties of the high-dimensional inte-
gration, Bayesian posterior distribution is generally esti-
mated by an effective stochastic simulation method called
Markov chain Monte Carlo (MCMC) [29–31] instead of the
direct integration. It generates a long sequence of samples
from the complex shaped unknown posterior distributions.
Metropolis–Hasting algorithm is a classical useful algorithm
to generate the MCMC samples.

Moreover, further management needs to be performed
because of the asymptotic convergence and autocorrelation
for the MCMC samples in sequence. &e head part of the

sample sequence which has not been convergent is removed.
&e whole sequence is diluted by extracting a sample at a
certain interval to ensure that the autocorrelation can be
ignored. &en, the useful MCMC samples are obtained to
characterize the posterior distribution of each variable.

&e sample data are usually arranged into a matrix,
where each column corresponds to each parameter to be
identified. It is convenient to obtain the marginal distri-
bution of each parameter or study the correlation between
parameters base on the sample matrix. It is also very easy to
get the posterior joint PDF ormarginal PDFs for α, α1, σ  by
sample matrix instead of (14).&e corresponding columns of
intermediate variables are just discarded from the full
matrix, and the remaining sample data are employed to
address the joint PDF.

In order to acquire the accurate posterior distribution,
the sample sequence should be long enough after head
removing and dilution. In other words, a huge amount of
MCMC samples is required to calculate. In general, the
computational efficiency depends on the calculation cost of
outputs represented by (6), which are used for likelihood
function calculation. Unfortunately, structural outputs are
usually expensively computed by solving the finite element
model in engineering. &us, efficient meta-model with high
accuracy is required to build up, such as polynomial re-
sponse surface, Kriging model, artificial neural network, and
polynomial chaotic expansion.

&e flowchart is shown in Figure 3 to illustrate the
implementation of VEB identification. First of all, the un-
certain parameters to be identified should be clearly clas-
sified according to their attributes. &en, nonlinear
modelling, probabilistic modelling. and modal testing are
carried out. &e process of MCMC is performed to obtain
the posterior samples of all parameters. Consequently, the
samples should be verified to satisfy the requirement of
asymptotic convergence and autocorrelation. Finally, the
posterior PDF of the parameters could be gained from the
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reduced MCMC samples to represent both the nonlinearity
and uncertainties.

Frankly speaking, VEB identification costs more com-
putational amount than traditional Bayesian method, be-
cause the variables to be identified are expanded and the
convergence rate of MCMC slows down. Denoting the
numbers of aleatory and epistemic uncertain parameters by r
and s, respectively, nr + s variables (including intermediate
variables) need to generate samples in MCMC processing,
where n denotes the number of test groups for aleatory
uncertain parameters. &us, the variables would expand
more serious as the number of test groups increases.
Moreover, it needs longer time and more computational
amount to get convergent MCMC samples using. However,
the computational cost of VEB identification is generally
acceptable and controllable. On one hand, the number n
would not be too large due to expensive experimental cost.
On the other hand, the advantage of Bayesian inference
method lies in making full use of prior information and less
test data to obtain accurate estimates. It prefers identifying
the parameters and updating the results again and again
according to the current small amount of new test data,

rather than waiting for allocating a large number of test data
and identifying them in one time.

3.4. Output Prediction. For structural analysis in engineer-
ing, our purpose of parameters identification is usually
predicting the output accurately under different inputs. &e
advantage of uncertainty identification in this paper is that
probability distribution of predictive output could also be
addressed for further study.

Ignoring the experimental errors in prediction, the
predictive output vector is expressed as z′ � z′(x′, θ, α) and
its probability distribution is determined by the distributions
of parameters θ and α. &us, the PDF for z′ could be
addressed with its samples, which could be calculated by (6)
according to the posterior MCMC samples for θ and α.

With consideration of experimental errors in prediction,
the predictive output vector is expressed as

z∗ � z′ x′, θ, α(  + ε. (16)

&e conditional PDF of the predictive outputs could be
written as

Replacing the specimens
n times to exhibit aleatory

uncertainties

Creating efficient meta-model for
modal analysis z (x;θ,α)

Equivalent linearity modelling with
varying excitation level

Testing under m
levels to exhibit the

nonlinearity

Modal testing under random
excitation

m×n sets of uncertain test outputs
(e.g. modal frequencies)

D={z*|x,θ,α}

Establishing the likelihood function
and then expressing the scaled

posterior PDF

Calculating the MCMC
posterior samples for all

parameters

Reducing the variables and getting the MCMC
posterior samples of the parameters to be identified

Satisfying the requirement of the asymptotic
convergence and autocorrelation?

Yes

No

Obtaining the posterior PDF of the parameters
varying with excitation level

Determining the parameters to be identified:
{θ (aleatory), α (epistemic), α2 (hyperparameters)}

Expanding the parameters with
aleatory uncertainties

θ→ {θ1, θ2, ..., θn}

Figure 3: &e flowchart of the VEB identification method.
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p z
∗
i |θ, α, σi(  �

1
(2π)

1/2σi

exp −
1
2σ2i

z
∗
i − zi
′(x′, θ, α) 

2
 , i � 1, 2, . . . , q. (17)

From Bayesian theory, the posterior PDF of predictive
outputs is expressed as

p zi
′|D(  � 

θ,α,α1 ,σ
p zi
′|θ, α, σi( p α, α1, σi|D( πθ θ|α1( dθdαdα1dσi, i � 1, 2, . . . , q. (18)

4. Numerical Examples

4.1. Example Statement. A 3-DOF system with 4 linear
springs and a nonlinear spring is oscillated under base
excitation as shown in Figure 4. &e virtual modal test of the
system is accomplished, respectively, under random exci-
tation with 6 acceleration levels, including 0.1 g, 1 g, 2 g, 4 g,
6 g, and 8 g. Since the stiffness of the nonlinear spring k4
varies with the vibration magnitudes, the FRF shifts as the
excitation acceleration increases as shown in Figure 5.

In order to verify the effectiveness and practicability of
the proposed method, three cases were studied as shown in
Table 1. &e mass of each block is 0.1 kg, while stiffness
parameters k1 and k3 are equal to 1000N/m and 2000N/m,
respectively, for all cases. &e outputs are 3 natural fre-
quencies, while controllable input variable is the acceleration
magnitude of base excitation. &e example focuses on the
identification of the other spring stiffness parameters, that is,
k2, k4, and k5.

In case 1, the nonlinear stiffness k4 is modelled with the
quadratic polynomial, and the coefficients {a, b, c} need to be
identified. &e traditional Bayesian identification is adopted
with the consideration of measurement noise, and the un-
certainties of model parameter cannot be identified. In case
2, linear stiffness k2 and k5 with aleatory uncertainties are
identified using VEB method. Symmetrical and asymmet-
rical PDFs are set for k2 and k5, respectively, that is, normal
and gamma distributions. In case 3, both nonlinear stiffness
k4 and linear stiffness k2 and k5 are identified together with
their uncertainty using VEB method. Specifically, the con-
stant term c of the polynomial model for nonlinear stiffness
k4 is assumed as an aleatory uncertain parameter with
normal distribution.

&e natural frequencies from virtual modal test are
generated from (19), where fi and fi denote ith experi-
mental and computational frequency and x denotes the base
excitation magnitude. &e measurement noise ε is normally
distributed with zero mean and 0.02Hz standard deviation:

fi � fi x; k2, k4, k5(  + ε, i � 1, 2, 3. (19)

4.2. Case Study 1: Nonlinear Stiffness Identification with
consideration of Measurement Noise. &e quadratic poly-
nomial model for the stiffness of nonlinear spring verse
excitation magnitude is established as

k4 � ax
2

+ bx + c. (20)

&e parameter set to be identified is α � a, b, c, σ{ } in this
case study, where σ is the standard deviation of the test error.
Traditional Bayesian identification is employed to obtain the
posterior PDFs for a, b, c, σ{ } according to virtual experi-
mental data at 6 excitation levels as shown in Figure 6. In
fact, the second natural frequency is useless for nonlinearity
identification, because the change is not obvious among
different vibration levels.&e uniform PDF in a wide range is
taken as the prior distribution of the parameters.

&e optimal identification values of the parameters are
listed and compared with the true values in Table 2. &e
posterior PDFs of the parameters are shown in Figure 7. &e
sequence of MCMC samples for parameter a are shown in
Figure 8 as an example to demonstrate that the convergence
and autocorrelation are satisfied.

It is indicated that the Bayesian identification results are
very close to corresponding true values. Moreover, the
posterior PDF becomes more and more sharp and the
optimal estimation is generally closer to the true value as the
amount of experimental data increases as shown in Table 2
and Figure 7. However, nothing is obtained for the aleatory
uncertainty of model parameters. &e epistemic uncer-
tainties described in Figure 7 just come from the mea-
surement noise and the identification error.

4.3. Case Study 2: Linear Stiffness Identification Together with
Its Aleatory Uncertainties. Ignoring the nonlinear spring k4,
the linear model parameters, that is, spring stiffness k2 and
k5, are set as the normal and gamma distribution, respec-
tively, as shown in the following:

k2 ∼ N μ2, σ
2
2 ,

k5 � 1000 + δ,

δ ∼ Γ(d, e).

(21)

Virtual experimental frequency samples and the corre-
sponding samples of spring stiffness are scattered as shown
in Figure 9. In order to study the effect of the experimental
data amount, 3, 5, and 10 sets of experimental samples are
provided for VEB identification stage by stage. Because 1st
frequency is barely affected by k2 and k5, the experimental
samples of 2nd and 3rd frequencies are utilized for VEB
identification. In this case study, the aleatory uncertain
parameter and the hyperparameter sets are θ � k2, k5  and
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α2 � μ2, σ2, d, e , respectively, while epistemic uncertain
parameter set is empty.

Asmentioned above, the advantage of Bayesian parameter
identification lies in the full use of prior information, which
can greatly reduce the demand for experimental sample size.
&ree forms of priors for hyperparameters are provided in-
cluding uniform distribution, flat distribution, and sharp
distribution, together with the comparison of their posterior
PDFs, as shown in Figure 10. Similarly, the comparison for

the aleatory uncertain parameters is shown in Figure 11.
Identification errors are given in Table 3. 10 sets of experi-
mental samples are provided for VEB identification herein.

&e effect of different test sample sizes on identification
results is also studied with flat prior distribution for the
hyperparameters. &e comparison is shown in Figure 12 and
Table 3.

As the form of prior PDFs for the hyperparameters
changes from “flat” to “sharp” (“uniform” is the flattest one),
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Figure 4: A 3-DOF oscillating system with linear and nonlinear springs.
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Table 1: Comparison of the example cases.

Item Case 1 Case 2 Case 3
Nonlinear/linear Nonlinear Linear Nonlinear
Uncertainty Epistemic Aleatory Epistemic and aleatory

Parameters (N/m)

k1 1000 1000 1000
k2 2000 Normal dist. Normal dist.
k3 2000 2000 2000

k4 ax2 + bx + c 2000 ax2 + bx + c

c∼normal dist.
k5 1000 Gamma dist. Gamma dist.
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Figure 6: Boxplots of 50 sets of virtual experimental natural frequencies.

Table 2: Parameter identification results in case study 1.

Parameter True value
Identification value

n� 1 n� 5 n� 50
a 15 15.252 1.68% 15.146 0.97% 14.984 −0.11%
b −250 −252.70 1.08% −251.69 0.68% −249.81 −0.08%
c 2000 2002.9 0.15% 2002.7 0.14% 1999.7 −0.02%
σ 0.02 0.01905 −4.77% 0.02004 0.20% 0.02054 2.68%
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Figure 7: &e posterior PDFs of the parameters according to experimental data with different sizes.
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the epistemic uncertainty of prior information is essentially
reduced. &us, the posterior PDFs for the hyperparameters
become sharper and the highest probability estimation is
closer to true value as shown in Figure 10 and Table 3. &e
probability distribution of the model parameter becomes
closer to the true one as shown in Figure 11. &ough the
identification results become more accurate as the increase
of the experimental sample size as shown in Figure 12, the
influence of prior distribution seems much more obvious. It
also reminds us that prior distribution should be carefully
assigned. Improper sharp prior distributions may mislead
the identification results.

It should be noted that the standard deviation of mea-
surement noise is not identified in this case study. &e
author insists that measurement error should be obtained
through instrument calibration as a known parameter rather
than identified together with other parameters. In fact, it
could confuse the identification results of aleatory uncertain
parameters.

4.4. Case Study 3: Identification of Both Nonlinear and Linear
Stiffness Together with Its Uncertainty. Both the nonlinear
stiffness (k4) and linear stiffness (k2 and k5) are identified in
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this case study as well as their uncertainty.&e constant term
c expressed in (20) is set as the normal distribution to ad-
dress the aleatory uncertainty of nonlinear stiffness k4.
Virtual experimental samples for frequencies are generated

in 20 groups under 6 different excitation magnitudes. &e 20
groups of samples imply the aleatory uncertainty of pa-
rameters. &e boxplots of test data and corresponding
samples for aleatory uncertain parameters are shown in
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Figure 13. In this case study, the aleatory and epistemic
uncertain parameter sets are θ � k2, k5, c  and α � a, b{ },
respectively, while hyperparameter set is
α2 � μ2, σ2, d, e, μc, σc .

Adopting uniform prior distributions, the posterior
PDFs of epistemic uncertain parameters and hyper-
parameters are shown in Figure 14. Both the posterior mean
and highest posterior density estimation are, respectively,
listed as the identification results shown in Table 4. &ese
two kinds of identification results show minor difference,
while the latter is slightly more accurate. Since the former is
more robust in general, the posterior mean is recommended
as the optimal estimation in this paper.

According to every set of possible values for hyper-
parameters, plausible PDFs of spring stiffness are obtained as

plotted with grey lines in Figure 15. According to the
posterior mean of the hyperparameter, the optimal PDFs of
spring stiffness are obtained as plotted with black lines to
compare with true distribution plotted with green dotted
lines in Figure 15. Furthermore, the expectation and 95%
confidence interval (CI) for k4 in specified input could also
be gained from the corresponding optimal PDF.&e optimal
expectation and bounds of 95% CI for k4 varying with ex-
citation magnitude are plotted with red solid and blue
dashed lines, respectively, in Figure 15.

One of the important purposes of parameter identifi-
cation is highlighted to improve the model accuracy and
prediction capability. &e natural frequencies of the system
are predicted by the updated model as shown in Figure 16.
&e expectations varying with excitation magnitude are
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Figure 12: Influence comparison of experimental data amount on identification of aleatory uncertain parameter.

Table 3: Identification errors of the hyperparameters for aleatory uncertain variables.

Subcase μ2 (%) σ2 (%) d (%) e (%)

Different priors
Uniform −1.20 8.93 −2.76 13.48

Flat −1.16 1.37 −2.52 1.86
Sharp −0.61 0.19 −1.18 −0.22

Different sample sizes
n� 10 −1.16 1.37 −2.52 1.86
n� 5 −1.21 2.27 −12.66 2.00
n� 3 −1.24 −2.72 −9.01 2.38
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Figure 14: Posterior PDFs of the epistemic uncertain parameters and hyperparameters.

Table 4: Identification errors of the epistemic uncertain parameters and hyperparameters.

Parameter True value
Posterior mean Highest posterior density estimation

Value Relative error (%) Value Relative error (%)
a 15 14.86 −0.93 14.88 −0.77
b −250 −248.74 −0.51 −248.79 −0.48
μ2 2000 2008.28 0.41 2007.79 0.39
σ2 30 33.93 13.10 31.90 6.34
d 2 2.22 11.14 2.07 3.30
e 20 21.05 5.24 20.69 3.43
μc 2000 2003.44 0.17 2003.75 0.19
σc 40 39.36 −1.60 38.00 −4.99
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plotted with blue solid lines. &e 95% and 99% CIs are
plotted with green and purple stripes. Moreover, the PDFs
of frequencies at any specified excitation could be obtained
as plotted with black dashed lines. It is demonstrated that
shifting down of the 1st and 3rd frequencies are captured
with the increase of excitation magnitude, and the un-
certainties of the frequencies are also represented with
PDFs or CIs for decision-making. By contrast, only optimal
estimation plotted with red solid line in Figure 15 and
expectation prediction plotted with blue solid line in
Figure 16 could be accurately obtained in traditional
Bayesian method.

Furthermore, 100 sets of experimental samples for fre-
quencies at x� 1, 3, 5 and 7, respectively, are generated and
marked with red “+” in Figure 16 to validate the prediction
stripes. &e result shows that the 95% CI covers most of the
validation points and the 99%CI covers almost all of them. It
is indicated that the model updated by the proposed method
has excellent predictive capability.

5. Engineering Example

&e jointed structure suspended by elastics is randomly
vibrated by a shaker at the bottom as shown in Figure 17.&e
thick disk and the cylindrical mass block are connected by
four rubber isolators to reduce the vibration of the block,
which represents some important elements to be protected.
&e modal tests are performed using 10 groups of different
rubber isolators under random force excitation with 5 dif-
ferent levels. &e experimental samples of axial natural
frequency are plotted in Figure 18. It is indicated that the
frequency shifts down obviously with the increase of exci-
tation force. Moreover, the aleatory uncertainty of the
isolator stiffness due to the notable difference of the rubber
material is also significant and should be quantified.

A nonlinear probabilistic model of equivalent spring
stiffness ke varying with excitation magnitude is established
by first-order approximation, as shown in the following
equation:

0.02

0.015

pr
ob

ab
ili

ty
 d

en
sit

y

pr
ob

ab
ili

ty
 d

en
sit

y

probability density

x=2
1400

1500

1600

1700

k4
 (N

/m
)

0.01

0.005

0

0.03 2200

2000

1800

1600

1400

1200

1000

800

0.025

0.02

0.015

0.01

0.005

0
1800 1900 2000

k2 (N/m) k2 (N/m) x (g)
2100 2200 1000 1050 1100 1150 1200 0 2 4 6 8

plausible
optimal
true

plausible
optimal
true

plausible optimal expectation
bounds of 95% CI

Figure 15: Identification results of PDFs for equivalent spring stiffness. Plausible PDFs are plotted with grey lines, and the optimal PDF is
plotted with black lines.

probability density probability density

43

42.5

42

15 37
44

43.5

43

42.5

42

41.5

36

35

34

33

14.5

14

13.5

fre
qu

en
cy

 (H
z)

fre
qu

en
cy

 (H
z)

fre
qu

en
cy

 (H
z)

13

12.5

0 2 4
x (g)

mode 1 mode 2 mode 3

13.8 35

34.5

34

13.6

13.4

13.2

6 8 0 2 4
x (g)

6 8 0 2 4
x (g)

6 8

expectation prediction
validation samples
95% CI
99% CI

expectation prediction
validation samples
95% CI
99% CI

expectation prediction
validation samples
95% CI
99% CI

Figure 16: Prediction stripe with probability distribution for natural frequencies versus excitation magnitude.

14 Shock and Vibration



ke � pF + k0,

k0 ∼ N μ0, σ
2
0 ,

⎧⎨

⎩ (22)

where F is the effective force of random excitation, k0 is the
underlying linear stiffness of the structure, and the pa-
rameter p denotes the gradient of equivalent stiffness with
excitation. k0 is normal distributed with unknown hyper-
parameters μ0 and σ0, and p is the epistemic uncertain
variable to be identified.

&e finite element model of the jointed structures is
established, and the rubber isolators are simulated by spring
element with equivalent stiffness ke. Polynomial response
surface is also built up as the surrogate model for low com-
putational cost. &us, the model parameters, as well as their
uncertainties, are identified by VEB method according to
experimental frequency data. &e posterior PDFs of uncertain
model parameters are shown in Figure 19. Accordingly, the
optimal estimations of the parameters are shown in Table 5.

&e prediction results including the expectation and 95%
CI of the structural natural frequency are shown in Fig-
ure 20. It should be noted that the frequency expectation
plotted with solid red line indicates the prediction of de-
terminate nonlinear model, while the PDF at any specified
force indicates the uncertainty prediction of the structural
natural frequency.

&ough the determinate nonlinear model could address
the trend of frequency shift with effective force, the quan-
titative uncertainty of the frequency is unknown for deci-
sion-making. If the nonlinearity is not characterized in the
model, the uncertainty range of the frequency would be very
wide in order to cover all the test data. &us, the uncertainty
range may be useless for decision-making. However, com-
bining the nonlinear prediction with the uncertainty, the
95% CI shows excellent capability of prediction as shown in
Figure 20 with light purple stripe. It completely covers the
test samples and accurately describes the nonlinearity and
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Figure 17: Experimental setup of the jointed structure.
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uncertainty, which demonstrates significant practicability
for engineering structures.

6. Conclusions

In order to address both the nonlinearity and uncertainties
of jointed structures under random excitation, equivalent
linearization and Bayesian identification method are used in
this paper. A novel method of VEB identification is origi-
nally proposed to obtain the optimal estimation and the
probability distribution of model parameters, especially for
the parameters with aleatory uncertainty. &e numerical
example with 3 case studies is performed to illustrate and
verify the proposed method. It is demonstrated that the
model parameters identified by VEB method are very close
to their true values, and they would be much closer as the
supplement of more experimental data or more accurate

priors.&e engineering example of the jointed structure with
rubber isolators is also carried out to show the practicability
and prediction capability. &e nonlinear stiffness varying
with the inputs is well identified together with its uncertainty
in terms of PDF. Moreover, the outputs are also accurately
predicted with the uncertain stripes varying with the inputs.
It is indicated that both the nonlinear feature and the un-
certainties of the output are characterized to support de-
cision-making in our method, which has significant
practicability for analysis of engineering structures. &e
limitation of this method also shows that the convergence
rate of MCMC would obviously slow down with the in-
creasing of the number of model parameters. As a result, the
identification should be avoided for high-dimensional (i.e.,
more than 20) parameters especially with aleatory
uncertainties.
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