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(e sensitivity analysis of the salting-out effect on well injectivity is a significant work in the research of geological storage of CO2
in deep saline aquifers, which is helpful in the selection of storage sites and the design of the injection strategy. We conduct a
detailed sensitivity analysis about the salting-out process using the local sensitivity method and two global sensitivity methods.
Sensitivity coefficients showed that brine salinity (XNaCl) has the highest sensitivity and interaction effect, the CO2 injection rate
(QCO2) has a greater influence in the early stage of the salting-out process and a smaller influence in the end stage, and the other
three parameters (empirical parameters related to the pore distribution m, the liquid residual saturation in the relative per-
meability function Splr, and the liquid residual saturation in the capillary pressure function Sclr) have a smaller sensitivity. (is
paper also analyzes the calculation amount of different sensitivity methods and suitable ways of obtaining the sensitivity coefficient
and reveals the following. (1) (e sensitivity coefficient changes dynamically with time, if only the sensitivity of the final state is
taken into account on a long-time physical process, and some sensitive parameters during the process may be neglected. (2) (e
selection of the sample size should be based on the convergence of multiple calculations, and the results of the empirical
calculation are uncertain. (3) (e calculation of Sobol sensitivity is complicated, the results calculated by surrogate model depend
on whether the sample is representative enough; on the other hand, it is feasible to use Sti-Si approximation to characterize the
second-order sensitivity to reduce the computation.(e research results not only reveal the sensitivity of the parameters related to
the injection well salting-out problem during CO2 storage in deep saline aquifers but also guide the calculation of global sensitivity
analysis with a similar physical process.

1. Introduction

Geological storage of carbon dioxide (CO2) is an effective
way to mitigate the effect of global warming [1]. Because of
its wide distribution and large storage capacity, the deep
saline aquifer is considered as an effective site for large-scale
CO2 geological storage [2]. In the near and medium-term,
the main interest of carbon sequestration technology is to
solve the problem of low storage capacity, and in the future,
deep saline aquifers are the main technology of carbon
sequestration [3]. Currently, CO2 geological storage has not
been commercialized due to the high construction cost.

(ere are broad prospects for CO2 geological sequestration
in deep saline aquifers because lots of countries have for-
mulated strict carbon emission reduction plans [4] and the
implementation of carbon pricing makes CO2 sequestration
profitable.

(e dissolution of CO2 in water and the dissolution of
water in CO2 occur at the same time in the CO2-brine system
[5]. Although the solubility of water in CO2 is low under site
conditions, this dehydration process cannot be ignored
when a large amount of dry CO2 fluid is continuously in-
jected into the rock formation [6].When CO2 is injected into
the deep saline aquifer with higher salinity, it removes the
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water from the brine and increases the concentration of the
brine; in turn, salt crystallization occurs when the con-
centration of the brine reaches the saturation limit [6–9].

At present, there are few site projects sealed in deep
saline aquifers. According to statistics, large-scale site
projects will enter the explosive period after 2020 [3]. Most
of the current research on the geological storage of CO2 in
deep saline aquifers focuses on the exploration of CO2
migration law, storage mechanisms, and risk assessment of
leakage [10–14]. (e monitoring data from the site project
show that the salt precipitation near the well is part of the
low permeability zone, which causes the accumulation of
injection pressure and reduces the CO2 injectivity [15].
(erefore, with the development of a large number of CO2
storage projects in the deep saline aquifers, it is necessary to
screen and evaluate the potential sites from the point of view
of the impact of salting out, to provide a basis for site storage
potential evaluation and site selection.

(e main purpose of studying the phenomenon of salting
out is to study the effect of salt precipitation on the per-
meability of rock formation. Verma and Pruess [16] proposed
to transform the relationship between porosity and perme-
ability into the relationship between solid saturation (Ss) and
permeability, and the value of Ss indicates the percentage of
volume of NaCl crystals in the pores of the rock. According to
the conservation of mass, Pruess [17] gives a method for
calculating the Ss value, so that the study of salting out can be
transformed into quantitative research of Ss.

Sensitivity analysis of the parameters affecting Ss of the
injection well is the focus of the research on the salting-out
effect at present. Miri and Hellevang [18] summarize the
research results using simulation studies for the salt pre-
cipitation induced by CO2 injection. (ese numerical
simulation studies consider sensitivity parameters including
injection rate, initial brine saturation, salinity, water content,
capillary pressure, relative permeability, temperature, and
permeability. [19–25]. (e above studies are all local sen-
sitivity analysis considering a single factor and cannot give
the sensitivity comparison among the parameters and
cannot get the effect of the interaction between the pa-
rameters on the Ss.

(e global sensitivity analysis method can not only
examine the influence of input variables on response vari-
ables but also examine the interaction of input parameters
and the influence of multiparameters on response variables.
(e commonly used global sensitivity analysis methods
include the Morris method [26] and the Sobol method [27]
based on variance analysis. Jung et al. [28] and Wainwright
et al. [29] conducted a global sensitivity analysis using the
Morris method to evaluate the sensitivity of the leakage
signal (pressure disturbance) to the parameters of the
geological storage model of CO2. Zheng et al. [30, 31] carried
out a global parameter sensitivity analysis of the CO2 mi-
gration process in deep saline aquifers and compared the
Morris method, the Sobol method, and other sensitivity
analysis methods. It is found that the sensitivity arrangement
of the input variables is different when different response
variables are selected. Sobol’s method has high accuracy, but
the amount of calculation is too large. Wang et al. [32]

conducted a global sensitivity analysis to evaluate the sen-
sitivity of clogging signals (Ss) to model parameters, but they
use the kriging surrogate model to simplify the migration
dissolution process of CO2 injection into the deep saline
aquifers to simplify the calculation of Sobol’s method.

In this study, we conduct a more detailed analysis, using
the same salting-out forward model developed by Wang
et al. [32]. Firstly, we conduct a sensitivity analysis based on
the local sensitivity method and two global sensitivity
methods. (en, the influence of the selection of calculation
parameters on the results of sensitivity analysis is discussed.
An additional interpretation is provided for the local and
global sensitivity methods. Finally, differences between the
Sobol methods calculated from hydrogeological forward
simulation and surrogate model are compared. (e research
results not only reveal the sensitivity of the parameters
related to the injection wells salting-out problem during CO2
storage in deep saline aquifers but also guide the selection of
calculation parameters for similar sensitivity analysis, such
as the process of heat extraction, energy storage, and evo-
lution analysis of geological parameters [33–36].

2. Methodology

2.1. Modeling Approach of the Salting-Out Process. A radial
geological model was built to simulate the salting-out
process.(emodel used for sensitivity analysis is the same as
Wang et al.’s model [32]. Assume that supercritical carbon
dioxide (scCO2) is injected into a homogeneous, anisotropic
deep saline aquifer at a constant injection rate (QCO2). (e
thickness of the storage layer is 100m, and the horizontal
distance is 2,500m. (e radius of the injection well is 0.3m,
and it is 11.5m from the bottom of the model. (e one-
quarter concept model is shown in Figure 1. In the hori-
zontal direction, the injection well is the first unit with a unit
size of 0.3m, followed by 50 logarithmic size increasing
units; in the vertical direction, the injection well is 11.5m
above the center of the bottom boundary element with a
thickness of 1m, and the thickness of the bottom and top
units is 2m. Other parts are evenly divided into units with a
thickness of 5m. (e specific divided grid is shown in
Figure 2; the upper and lower borders and right borders are
sealed as no-flow boundary conditions. (e parameters of
the model used for simulation are given in Table 1.

(e TOUGH2/ECO2N module is used to simulate CO2
migration in deep saline aquifers and the salting-out process
due to the miscibility of water and CO2 [17], and the in-
jection time is set at 100 days. In the sensitivity analysis, we
choose five parameters as input parameters: CO2 injection
rate (QCO2), salinity (XNaCl), empirical parameters related to
pore distribution (m), liquid residual saturation in the rel-
ative permeability function (Splr), and liquid residual satu-
ration in the capillary pressure function (Sclr). Table 2 shows
the ranges of reference parameter for sampling during
sensitivity analysis. We assume a uniform distribution
within the range of each parameter. From current re-
searches, the salting-out problem can clog the gas flow path
and reduce the CO2 injectivity [24, 39, 40]. According to the
VP model, the gas injectivity in the salting zone varies with
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the solid saturation value Ss [16], so Ss is used tomap the CO2
injectivity and as the response variable for the sensitivity
analysis. We set the injection unit as an observation point
and Ss as a function of time in the reference case shown in
Figure 3.

Figure 3 presents the time evolution of Ss at the ob-
servation point, from 10 seconds to 100 days after injection
of scCO2, the value of Ss keeps constant, which means a
complete salting-out situation. It takes saline in the well unit
1.6×105 s to reach the saturation limit, and the salt pre-
cipitation accumulation process keeps about 1.2×105 s.

2.2. Sensitivity Analysis of the Salting-Out Problem. (e
sensitivity coefficients show the impact of parameter change
on the calculated system behavior at the observation point.
We perturb five parameters:QCO2, XNaCl,m, Splr, and Sclr; the
number of parameters (nk) equals 5. Ss is used as the re-
sponse variable for sensitivity analysis, we consider a set of
nk parameters denoted by {xi|i� 1, . . ., nk}, and the forward
simulation output y� f({xi}), where f represents a forward
model calculated by the TOUGH2 simulator [41], as shown
in Section 2.1.

We discuss three sensitivity analysis methods, in-
cluding the local sensitivity method, the Morris global
sensitivity method, and the Sobol global sensitivity
method. Forward simulation is taken by the TOUGH2
code; the inverse modeling capabilities for the TOUGH2
detailed calculation of the three models are developed by
Wainwright et al. [29].

Local sensitivity analysis only tests the effect of a single
parameter on the model; it can be calculated by the following
equation:
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where Slocali is the local sensitivity coefficient for parameter i,
x∗i is the reference parameter value, Δxi is a parameter
increment, τx,i is the parameter-scaling factor, and τy is the
output-scaling factor [42]. (is coefficient can be used to
identify the parameters that most strongly affect the be-
havior of the system at the actual or potential observation
points.

A global sensitivity analysis method can test the inter-
action between parameters, and it can test the effect of
multiple parameters, which change concurrently with the
response variable. (e conventional approach to performing
global sensitivity analysis is the Morris sensitivity test
method and Sobol’s sensitivity test method. Morris [26]
proposed a data screening method that can select parameters
that have a low impact on the results and reduce the number
of analysis variables.

(e Morris method is one of the global sensitivity
analysis methods. (e elementary effect of parameter xi is
calculated by the following equation [29]:
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where EEi is the elementary effect of parameter xi, Δ� np/
{2(np − 1)} is the fixed increment from the unit interval [0, 1],
each parameter range is scaled to the interval [0, 1], par-
titioned into (np − 1) equally-sized intervals, and each pa-
rameter take on values from {0, 1/(np − 1), 2/(np − 1), . . ., 1},
where np is the number of sampling points in the interval [0,
1] [26], based on which the elementary effects (EE) and
variance (STD of EE) are calculated; reflecting the relative
parameter importance, as well as linearity and correlation,
EE and STD of EE are two sensitivity coefficients in the
Morris method. Nonlinear effects and interaction effects
cannot be separated using this method [26].

(e Sobol method is a quantitative global sensitivity
analysis method based on a variance analysis first proposed
by Sobol [27]. (e sensitivity of a single input parameter
can be evaluated by calculating the contribution of that
parameter to the output variance, and the cross-sensitivity
of multiple input parameters can also be evaluated by
calculating the contribution of multiple input parameters
to the output variance. (e basic equations are given as
follows:

r =0.3 m

Qco2=20 kg (s)
h=11.5 m R=2500 m

H=100 m

Figure 1: Concept radial geological model.
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Figure 2: Reservoir mesh diagram and boundary conditions.
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(3)

where Si is the first-order sensitivity value, Sti is the total
sensitivity value, E[·] is the mean, V[·] is the variance, Xi is
the random system parameter, Y is the random system
response, and X−i is all random system parameters except Xi.
(e calculation method was proposed by Sobol [27] and
modified by Saltelli et al. [43].

3. Results and Discussions

3.1. Reasonable Calculation of Sample Size Using Different
Sensitivity Methods. Forward analysis was implemented 6
times (the formula is nk+ 1) for the local sensitivity method.
(e Morris method can be considered as an extension of the
local sensitivity method by comparing (1) and (2); one local
sensitivity simulation is 1 path (nB) in theMorris simulation.

(e Morris method requires multiple sampling frequencies
to calculate the average value. Figure 4 shows the mean EE
and STD of EE at 100 days for each parameter as a function
of nB with np � 4; the mean EE and the STD of EE appear to
stabilize after 200 nB. In the case of a lower path’s situation,
although the value of the mean EE and the STD of EE is not
stable, we can also distinguish the magnitude of the pa-
rameter’s sensitivity and assess the importance of
parameters.

In the Sobol method, we only need to determine ns,
where ns is the number of sets of nk dimensional parameter
vectors from Monte Carlo sampling. Figure 5 shows Si and
Sti for each parameter at 100 days as a function of ns. From
the figure, we can see that Si and Sti require several thousand
ns to stabilize (larger than 2,000 sets).

Due to the randomness of the Morris method, it is easy
to meet the error during the 1 path calculated, and it is
necessary to do multiple paths calculations to reduce the
error. Saltelli et al. [44] present an experienced range of paths
4∼10 to easily obtain Morris calculations. Most scholars did
not consider the effects of the paths on the Morris sensitivity
analysis, and they always use the experience paths, such as
nB � 4 (Wang et al. [32]), nB � 10 (Zheng et al. [31]), nB � 10
(Wainwright et al. [45]), and nB � 25 (Finsterle [46]). (is
way would bring some errors in the Morris sensitivity
analysis, and the error was discussed in Section 3.4. As to ns
in Sobol sensitivity analysis, most researchers also chose the
experienced value of ns to do the calculation, such as ns � 300
in Wainwright et al. [45]; it is also important to study the
effect of ns on sensitivity coefficients and get the big enough
ns to keep the sensitivity coefficient converged.

For the global sensitivity analysis coefficient, the con-
fidence intervals are shown so that we can evaluate the
parameter coefficient uncertainty with the given number of
simulations (draw error band). In the Morris method, the
standard error of the mean (SEM) of EE, defined as
SEM� STD/nB0.5 [26], is used to calculate the confidence
interval of the mean EE. In the Sobol method, the confidence
interval of Si is given as tanh{arctanh(Si)± 1.96SE} [29],
where SE is the standard error given by SE� (ns − 3)−0.5. We
chose nB � 200 and ns � 1,000 according to Figures 4 and 5 to
ensure that the sensitivity of the calculated values is stable;
the 95% confidence intervals of mean EE and Si are given
below.

Figure 6(a) shows a minor error band of the parameter
sensitivity coefficient. (is is because of the large number of
nB in the equation SEM� STD/nB0.5. (e width of the
confidence interval increases for small Si (Figure 6(b)),

Table 1: (e parameters of the model in the simulation.

Parameter type Parameter value
Hydrogeological parameters kx � 100mD, ky � 100mD, kz � 100mD, porosity (ϕ)� 12%

Initial condition Pressure (P)� 10MPa, temperature (T)� 45°C, gas saturation (Sgas)�

0%, salinity (XNaCl)� 10%QCO2 � 20 kg/s
Parameters in the relative permeability equation (van
Genuchten–Mualem model [37, 38]) m� 0.472, Slr � 0.20, Sgr � 0.05, Sls � 1

Parameters in the capillary pressure equation (van Genuchten
function [38]) m� 0.472, Slr � 0.05, P0 �19.61 kPa, Pmax � 10MPa, Sls � 0.999

Table 2: (e range of reference parameters.

Parameter Range
QCO2 5∼25 (kg/s)
XNaCl 5∼25 (%)
M 0.217∼0.557
Splr 0.10∼0.30
Sclr 0.0∼0.20
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Figure 3: Time evolution of solid saturation at the observation
point (injection well).
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implying that more simulations are required to rank the low-
sensitivity parameters. (e relationship between the sensi-
tivity coefficient and nB, the relationship between sensitivity
coefficient and ns, and the plot of sensitivity coefficient with
the confidence intervals help to get the credible sensitivity
coefficient.

3.2. Times Evolution of Sensitivity Coefficient with Different
Sensitivity Methods

3.2.1. Local SensitivityMethod. (e relationship between the
local sensitivity coefficient of each parameter and time is
given in Figure 7.

Figure 7(a) shows the time evolution of the sensitivity
coefficient of the local sensitivity analysis method. For easier
comparison, Figure 7(b) shows the absolute values of the
local sensitivity coefficient: |Slocali |, which could represent the
magnitude of parameter effects. As shown in Figure 7, XNaCl
is the most influential parameter at the early time, and QCO2
has a dominant effect afterward, m has the smallest effect,
and Splr and Sclr have an intermediate effect. (e sensitivity
to QCO2, Splr, and Sclr decreases later, the sensitivity to m
increases later, but the sensitivity to XNaCl stays constant. At
the end of the injection process, XNaCl is still the most in-
fluential, but Sclr occupies the second position. (e

sensitivity of QCO2, Splr, and m remain at a lower sensitivity
coefficient after 2.79×105 s; the corresponding precipitation
does not increase in Figure 3.

3.2.2. Morris Sensitivity Method. In the Morris method, the
number of partitions (np) and the number of paths (nB) are
the two parameters that determine the result of the sensi-
tivity analysis. (e premise of getting an accurate global
sensitivity analysis is to investigate the influence of these two
parameters. (e influence of nB has been researched in
Section 3.1. Figure 8 shows the influence of np, the mean EE,
and the STD of EE stabilized from 4 to 40 partitions, which
means that np has a small impact on the stability of both
mean EE and STD of EE in this study. From the above
studies, the mean EE and STD of EE would converge when
nB � 200 and np � 4. (e Morris sensitivity analysis results
are shown in Figure 9.

Figure 9 shows the time evolution of the mean ele-
mentary effect from the Morris sensitivity analysis method.
(e number of simulations is 1,200 (the formula is
nB × (k+ 1)). (e mean EE represents the average effect of
each parameter on the parameter space (Figure 9(a)), the
mean |EE| is used to identify the noninfluential factors
(Figure 9(b)), and the STD of EE is used to identify inter-
action effects (Figure 9(c)).
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Figure 4: (a) Mean EE and (b) STD of EE as a function of the path (nB).
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In Figure 9(b), QCO2 is the most influential at the early
time, and XNaCl has a dominant effect afterward. (e sen-
sitivity to XNaCl, m, Splr, and Sclr increases later, but the
sensitivity toQCO2 decreases later. At the end of the injection
process, XNaCl still has a dominant effect. (e effect of QCO2
is reduced to a similar extent as that ofm, and the sensitivity
of Splr and Sclr keeps a lower sensitivity coefficient.

(e sensitivity coefficient of QCO2 has different trends
with other parameters. As seen in Figure 9(a), the sensitivity
coefficient of QCO2 is positive at the early stage and then
decreases to a negative value, which means that QCO2 has a
positive correlation with Ss at the early time, and QCO2 has a
negative correlation with Ss at the later stage. In the early
time, dry CO2 injection into deep saline aquifers would bring
H2O into the CO2 flow, and the change of QCO2 leads to the
same change trend of H2O loss of brine water, which means
the positive correlation. In the process of continuous in-
jection of CO2, the water saturation gradually decreases and
the capillary pressure would increase; as seen in Figure 10,
the capillary pressure in the pore would prevent further H2O
loss; this is the reason for the reduced sensitivity coefficient.
(e gas saturation of the rock formation gradually increases,
generating a capillary pressure in the direction of the in-
jection well, which causes the saline water to flow back to the
injection well when the capillary pressure gradually increases
and exceeds the displacement pressure (as shown in

Figure 11). During the brine backflow process, the change in
QCO2 leads to different changes in Ss, causing a negative
correlation [25]. (e research in this paper shows that the
sensitivity coefficient can be changed with time before the
salting-out process is stable and the influence of the pa-
rameter on the response variable is positive or negative.
Researchers should consider the dynamic change of the
sensitivity index when performing a similar sensitivity
analysis, in particular, considering a long-time physical
process.

3.2.3. Sobol Sensitivity Method. We take ns � 2,000 to keep Si
and Sti index stable and then conduct the Sobol global
sensitivity analysis; the results are shown in Figure 12.

Figure 12 shows the time evolution of the sensitivity
index of the Sobol method with 14,000 simulations (the
formula is ns × (k+ 2)). Figure 12(a) shows the first-order
effect excluding the interaction effect (Si). Figure 12(b)
shows the total sensitivity index of the Xi parameter, in-
cluding the interaction effect, and is used to identify pa-
rameters with negligible effects (Sti). Figure 12(c) shows the
difference between Sti and Si as a function of time, identi-
fying the interaction effects. Due to the variance based on (2)
and (3), the sensitivity coefficient of Si and Sti will remain
positive for all time (Figure 12(a) and Figure 12(b)). In
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Figure 5: (a) Si and (b) Sti as functions of sets (ns) using the Sobol method.
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Figure 12(a), the largest effect of QCO2 at early times can be
seen, and XNaCl has a dominant effect afterward. (e sen-
sitivity to QCO2 and XNaCl increases later, and the sensitivity
to QCO2 decreases to the stable value, but the sensitivity to
XNaCl increases to the stable value at the end of time. (e
patterns of the three low-influential parameters (m, Splr, and
Sclr) are similar to each other throughout the time. At the end
of time, the patterns of QCO2 and XNaCl are similar in
Figure 12a and Figure 12(b), suggesting that a change in any
of these two parameters would have a significant impact on
Ss even without taking into account the effects of the in-
teraction. (e ranking of low sensitivity parameters (m, Splr,
and Sclr) importance is not easily recognized than Slocali in the
local sensitivity analysis and mean EE in the Morris

sensitivity analysis. According to the results of the confi-
dence interval in Section 3.1, more simulations are required
to rank the low-sensitivity parameters.

All parameters show interaction effects at the early time
since Sti-Si is larger than 0 (Figure 12(c)). (e Sti-Si decreases
later and stabilizes at a low value, indicating a low interaction
effect at the end times. (e patterns of the Sti-Si in the Sobol
method are different from the patterns of the STD of EE in
the Morris method; this is because STD of EE includes both
the nonlinear effects and interaction effects, but Sti-Si rep-
resents only the interaction effects [29]. Comparing
Figure 9(c) with Figure 12(c), QCO2 and XNaCl have an
abnormal trend in Figure 9(c), and the sensitivity coefficient
is much higher than the other three parameters, which
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Figure 7: Time evolution of local sensitivity coefficient: (a) local sensitivity coefficient; (b) absolute values of the local sensitivity coefficient.
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indicate significant nonlinear effects of QCO2 and XNaCl.
Comparison of STD of EE and Sti-Si helps to get a deep
understanding of the sensitivity coefficient of the parameter.
(e nonlinear effect of QCO2 can be seen in Wang et al. [32],
it is mainly due to the critical value of QCO2, which controls
the backflow phenomenon in the salting-out problem.

3.3.Uncertainly ofMorris Results aboutDifferent PathChoice.
Figure 13 shows the Morris global sensitivity analysis of Ss
near the injection well, the traditional sensitivity coefficient
is calculated by the equation di �Δf(Δxi)/Δxi (Figure 13(a)).
(e difference in coordinate values is due to the introduction
of the scaling factor τx,i/τy during the sensitivity calculation
of Figure 13(b), which helped to avoid a wide range of axes
and plot closer and useful graphs [47].

(e number of paths in Figure 13(a) is equal to 4, the
descending order of the mean EE is XNaCl, QCO2, m, Sclr, and
Splr, and the descending order of the STD of EE is QCO2, Sclr,
Splr, m, and XNaCl [32]. Under the same path (equal to 4) and
time (100 days) conditions, the results in Figure 13(b) are quite
different from those in Figure 13(a), especially the STD of EE of
the parameter XNaCl. XNaCl has a dominant interaction or
nonlinear effect in Figure 13(b), but it has the lowest inter-
action or nonlinear effect in Figure 13(a). (is is because the
larger uncertainty of the initial parameters is selected because

of the smaller number of paths. (e sensitivity analysis result
becomes more stable as the number of paths increases
(Figure 13(b)). When the number of paths is 500, the
descending order of the mean EE is XNaCl, QCO2, Sclr, Splr, and
m and the descending order of the STDof EE isXNaCl,QCO2,m,
Sclr, and Splr. (is result is more accurate than Figure 13(a)
carried out by Wang et al. [32].

3.4. Comparison of Sobol Results between the Physical Model
and Surrogate Model. If the model has a simple and explicit
mathematical expression f(x), the sensitivity of Sobol can be
calculated by the analytic method. If the model does not have
a simple mathematical expression, to be able to extract a
large number of samples while reducing the amount of
computation, in one manifold method, the surrogate model
[48, 49] is used instead of the physical model to calculate the
response variable Ss, and then the Sobol sensitivity is cal-
culated by Monte Carlo method [44]. In this paper, the
sensitivity coefficient is calculated by real forward simula-
tions instead of the calculation of the sensitivity coefficient
coming from the Kriging surrogate model in Wang et al.
[32]. (e results of the comparison are shown in Figure 14.

Figure 14(a) and Figure 14(b) show the first-order and total
sensitivity coefficients of the salting-out model parameters,
respectively. First of all, these two figures have a similar pattern
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Figure 8: (a) Mean EE and (b) STD of EE as a function of partition (np).
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about the sensitivity coefficient.XNaCl has the greatest influence
on the response variable Ss, much higher than the other pa-
rameters. (e descending ranking of the sensitivity coefficient
is XNaCl, m, Splr, QCO2, and Sclr in Figure 14(a); however,
Figure 14(b) shows the different range of the sensitivity co-
efficient: XNaCl, QCO2, Splr, m, and Sclr. QCO2 has the second
place in this article but the lowest position in Wang et al. [32].
In this paper, the Morris method and the Sobol method get a
similar sensitivity coefficient; what else the sensitivity coeffi-
cient result from Sobol method in this paper can also corre-
spond to the sensitivity coefficient of the Morris method in
Wang et al.(e difference in results can be attributed to the use
of the surrogate model and the number of simulations, full of
simplicity and experience.

Figure 14(c) shows the contribution of the parameter
interaction to the sensitivity, which is called the second-
order sensitivity coefficient [32]. Interaction parameters that
can be considered include XNaCl and m, XNaCl and Splr, and
QCO2 and m. In Figure 14(d), the difference between Sti and
Si identifies the interaction effect. XNaCl has the biggest
interaction effect, m and Splr have a dominant interaction
effect afterward, andQCO2 has the smallest interaction effect.
(e results in Figure 14(c) and Figure 14(d) are consistent,
but the difference between Sti and Si is much easier to get
than the second-order sensitivity coefficient.

4. Conclusions

(e sensitivity analysis of the salting-out effect on well
injectivity is a significant work in the study of geological
storage of CO2 in deep saline aquifers, which is helpful in the
selection of storage sites and the design of the injection
strategy. In this study, we conduct a more detailed sensitivity
analysis using the salting-out model, which includes the local
sensitivity method and two global sensitivity methods. (e
main conclusions obtained from this study are as follows:

(1) Morris sensitivity coefficient requires several hundred
and Sobol’s sensitivity coefficient requires several
thousand sampling matrices to stabilize in this study.
(e stability and accuracy of sensitivity calculation are
related to the selection of calculation times, which
cannot be selected according to experience but should
be chosen to make the sensitivity coefficient converge.

(2) (e sensitivity coefficient would change with the
evaluation time. XNaCl has always been the most
important factor affecting salting out, and the pa-
rameters m, Splr, and Sclr have low sensitivity.
However, the less sensitive parameter QCO2 at the
end of the evaluation time has a dominant effect
during the evaluation process.(is indicated that the
law of time evolution cannot be ignored when
studying the physical process of the problem, which
is a long-time accumulation process, such as the
salting-out process in this study.

(3) Local sensitivity is a simplification of Morris, which
can quickly select the most sensitive parameters. (e
Morris method is suitable for qualitatively selecting
the most sensitive parameters and can obtain the
interaction effect or the nonlinear effect. Sobol can
quantify the sensitivity coefficient and cross-sensi-
tivity coefficient, and it can help to compare with the
Morris method to understand the nonlinear effect.
(e ranking of low sensitivity parameters (m, Splr,
and Sclr) importance is not easily recognized using
Sobol’s method; more simulations are required to
rank low sensitivity parameters.

(4) Using the surrogate model to calculate the Sobol
coefficient may cause some errors and uncertainty.
Possible errors and uncertainties should be evaluated
before the surrogate model is adopted to simplify the
computation. On the other hand, the interaction

0.015

0.010

0.005

0.000

Se
co

nd
-o

rd
er

 se
ns

iti
vi

ty

Interaction parameters

Q
CO

2&
X N

aC
L

X N
aC

L&
m

X N
aC

L&
S pl

r

X N
aC

L&
S clr

m
&
S pl

r

m
&
S clr

S pl
r&
S clr

Q
CO

2&
m

Q
CO

2&
S pl

r

Q
CO

2&
S clr

5.
22

50
7E

-5

2.
77

78
7E

-4

0 7.
90

75
5E

-5

0.
01

62
3

0.
00

37
8

4.
48

49
1E

-6

0 6.
97

60
7E

-5

1.
44

24
4E

-5

(c)

0.020

0.015

0.010

0.005

0.000

-0.005

-0.010
Model parameters

S ti
-S

i

QCO2 XNaCL Splr Sclr

4.2E-4

0.0169

0.00453

0.00167

-0.00517

m

(d)
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sensitivity expressed by the Sti-Si approximation
without calculating the second-order coefficient is
effective.

Nomenclature

di: Sensitivity coefficient in traditional sensitivity
calculated method

kx, ky,
kz:

Permeability in three directions

m: Parameter related to pore size distribution
nB: (e number of parameter paths
nk: (e number of parameters
np: (e number of sampling points
ns: (e number of parameters sets
P: Pressure
P0: Gas entry pressure
Pmax: Maximum capillary pressure
QCO2: Injection rate of CO2
Sgas: Gas saturation
Sgr: Residual gas saturation
Si: First-order sensitivity coefficient in Sobol method
Slocali : Local sensitivity coefficient
Slr: Residual liquid saturation
Sls: Liquid saturation in the saturated state
Ss: Solid saturation
Sti: Total sensitivity coefficient in Sobol method
T: Temperature
xi: Input parameter
XNaCl: Salinity
ϕ: Porosity.
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