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Renewable energy vehicle reducers are now being developed towards achieving high-speeds, high-torque, and high-integration
and intelligent trends. Its performance also determines the operation state and reliability of vehicles. *erefore, it is necessary to
conduct the online condition assessment and remaining useful life predictions for renewable energy vehicle reducers. In those
methods, the trend index construction is one of the most crucial steps. Hence, an adaptive trend index-driven remaining useful life
prediction method is proposed to conduct condition assessment and prediction of renewable energy vehicle reducers. Firstly, an
adaptive trend index is constructed, where the difference of the Fourier amplitude spectrum between the initial state and the
current state is calculated to present the health trend index. Secondly, the reducer’s performance degradation model is built. In
order to conduct remaining useful life prediction, the particle filtering is used to update the parameters of the reducer’s per-
formance degradation model with the constructed adaptive trend index. In order to verify the effectiveness of the proposed
method, an accelerated life test is conducted on a three-motor test bed to achieve the life-cycle data of reducers. *e proposed
method is verified with the obtained data and compared with the commonly used ARIMA model. *e test results show that the
proposedmethod achieves better results than the traditional methods. It means that the proposedmethod is a potential one for the
real-time monitoring of the health state of renewable energy vehicle reducers.

1. Introduction

Renewable energy vehicles are being developed with the aim
of advancing their intelligence, high performance, and
shorten development cycle. To conform with this develop-
mental trend, reducers, as one of the key elements in an
automotive transmission system, are also being gradually
developed towards having a higher speed, torque, and in-
tegration. *e state of the reducer decides the power,
comfort, and reliability of vehicles. It is therefore necessary
to conduct several life-cycle tests on the reducer during its
developmental stage. However, such tests are time-con-
suming and costly, and the reducers’ failure time is un-
certain. *erefore, in order to timely make managerial
decisions on the vehicle’s health, an online condition as-
sessment method should be first carried out to determine the

fatigue life of the renewable energy vehicle’s reducers and its
remaining useful life (RUL) prediction [1–3].

*e RUL prediction consists of a quantitative assessment
of the remaining lifespan of the existing service components.
*e RUL of a vehicle’s reducer is mainly predicted using
data-driven methods and physical model-based methods
[4–6]. For the accurate prediction, the physical model re-
quires specified reducer-related system and theory knowl-
edge. *e data-driven model mainly predicts the remaining
useful life according to the signal processing, statistical,
artificial intelligence theory, and methods, instead of relying
on engineering practice principles. *e data-driven RUL
prediction method thus already becomes the core one of
equipment prediction and maintenance.

Currently, the shallow neural network [7], support vector
machine [8], deep learning [9, 10], and other algorithms have
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already been applied for reducer-related data-driven RUL
predictions. Pan et al. [11] proposed a performance degrada-
tion assessmentmethod based on complete ensemble empirical
mode decomposition with adaptive noise and kernel principal
component analysis. In the proposed method, an extreme
learning machine is used to denoise and fuse the vibration
signals and predict the RUL of the gearbox. Chen et al. [12]
proposed a life predictionmethod based on the relative features
and multielement support vector machine. A multielement
support vector machine considers the interaction among all
variables and can obtain information from small samples.
According to the test, this method has been proven to accu-
rately predict the remaining useful life of a bearing. Wang et al.
[13] proposed a recurrent convolutional neural network-based
RUL method. In the proposed method, the monitoring data
were directly input into the recurrent convolution neural
network to conduct RUL prediction of machines. Guo et al.
[14] built a recurrent neural network-based health indicator
construction method to conduct RUL prediction of bearings.
In the proposed method, lots of life-cycle bearing data were
used to train and test the proposed model. *e above-
mentioned intelligent model-based RUL prediction method
usually requires lots of life-cycle data for themodel training, but
it is often difficult to achieve large amounts of life-cycle data in
industrial application. *is is especially true in the renewable
energy vehicle reducer field as we are still in the initial stages of
acquisition for the monitoring of data. Due to this lack of data,
it would be difficult to satisfy the requirements for predicting
the RUL of renewable energy vehicle reducers using the above-
stated intelligent model.

An alternative has recently been proposed by many
scholars which is based on the random filtering theory.
Additionally, a random degradation model is usually been
established to predict the RUL and guarantee the reliability
of reducers [15–17]. Teng et al. [18] extracted the vibration
signal features of full-cycle data on a gearbox and predicted
the RUL using the Hidden Markov Model. Li et al. [19]
considered the competing risk model within the semi-
Markov decision process framework to make maintenance
decisions on the early failure detection of gear systems.
During the modelling process, the parameter estimation on
the internal state of machines based on the monitoring value
requires a consideration of the impact of noise. To accurately
estimate the remaining life of machines, particle filtering and
the state space equation can be used. Sun et al. [20] con-
ducted state space modelling for the remaining life degra-
dation model of a gearbox and proposed a life prediction
method based on particle filtering. Cheng et al. [21] came up
with an improved particle filtering method and designed an
adaptive neural network fuzzy inference system to predict
the RUL of bearings in the wind turbine gearbox with the
fault index extracted from the monitoring data.

*emost crucial step of RUL prediction methods based on
random filter theory is the construction of appropriate trend
indexes [22–24]. Currently, most of trend indexes are mainly
constructed based on the manual feature extraction method. Li
et al. [25] proposed a trend index constructionmethodwith the
Kullback–Leibler distance under α stable distribution. *e
effectiveness of the proposed method was verified by the

bearing test data. Qiu et al. [26] put forward a trend index
construction method from frequency spectrum structural in-
formation and used it to verify the life predictions of rolling
bearings. Jin et al. [27] extracted the root mean square error as
the trend index to represent the state of the bearing’s health and
provide support for RUL prediction. Duong et al. [28] extracted
the discrete wavelet packet transform features of the bearing
vibration signals and then smoothed out the most character-
istics features to construct the trend index. *e above-
mentioned trend index construction method is based on the
manual feature extractionmethods, and they are used to extract
the change of the absolute value of monitoring signals, which is
greatly impacted by the operating condition. In order to
eliminate the impact of such factors, the relative-change fea-
tures are needed.

*is paper puts forward an adaptive trend index-driven
method for the life prediction of renewable energy vehicle
reducers. *e method mainly includes three steps: data ac-
quisition, trend index construction, and RUL prediction. In the
data acquisition stage, the vibration signals from the reducers
during the life-cycle process are obtained through the accel-
eration sensors, and the data are preprocessed. In the trend
index construction stage, a self-updatingmethod is proposed to
calculate the variation trends in the monitoring data of the
reducers during different performance states, relative to the
initial state. In the RUL prediction stage, the parameters for the
updating of the performance degradation model are based on
particle filtering. An accelerated life test is conducted for the
renewable energy vehicle reducers in which the casing was
reduced through a comprehensive performance three-motor
test bed to obtain the life-cycle data of the reducers. *e data
are then applied to verify the effectiveness of this method.

*e main contributions are mainly summarized as fol-
lows. (1) A new adaptive trend index construction method is
proposed. *e relative difference of the Fourier amplitude
spectrum between the initial state and the current state is
calculated as a new trend index to present the health con-
dition. (2) A single-exponential model is built to conduct
RUL prediction of renewable energy vehicle reducers. *e
model parameters are updated through particle filtering with
the constructed trend index. (3) *e accelerated life test of
renewable energy vehicle reducers is conducted to acquire
the full-cycle data.*ose data are important for verifying the
effectiveness of the proposed method.

2. The Proposed Method

*e reducer’s life prediction is mainly implemented in three
steps: data acquisition and preprocessing, trend index con-
struction, and RUL prediction. In the data acquisition and
preprocessing stage, the reducer’s monitoring data are obtained
through order sampling. In the trend index construction stage,
using the frequency spectrum of the monitoring data in the
initial stage as the reference, the difference between the fre-
quency amplitude of the monitoring data and the reference
frequency spectrum is calculated. In the RUL prediction stage,
performance degradation curve parameters are fitted with the
trend index for RUL prediction. *is process is shown in
Figure 1.
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2.1. Data Acquisition and Preprocessing. A renewable energy
vehicle reducer is installed on the test bed. *e test bed is
operated with the specified working conditions for testing. *e
monitoring data from the reducer’s vibration sensor are ob-
tained through high frequency sampling software. To accu-
rately distinguish between different working conditions and
find the implicit feature information, the data are classified and
collected. To eliminate the rotating speed’s impact on the
frequency domain of the fault features, in addition to the vi-
bration signals, the rotating speed signals are also collected
during the sampling process for order sampling.

Fourier transform is conducted for the collected time
domain data in order to obtain the frequency domain data.*e
frequency domain data could be directly collected according to
the sampling device’s functions and used as the basic input data
of the subsequent health trend index construction.

2.2. Trend Index Construction. *is paper puts forward a
self-updating trend index construction method to calculate
the variation trend in the monitoring data of the reducer in
the different performance states, relative to the initial state.
*e proposedmethod covers three steps, including reference
learning, offset tolerance calculation, and trend index
construction.

In the stage of standard learning, the average frequency
spectrum of the signals collected n times is calculated. *en,
the mean value of the frequency spectrum is analyzed as the
reference value as follows:

xb �
􏽐

n
i�1 Xi

n
, (1)

where Xi is the frequency spectrum of signals collected for
the ith time, xb is a reference value, and n is the number of
training sets in the learning stage.

In the offset tolerance calculation stage, the frequency
spectrum of the signals collected for five continuous times is
calculated. Following this, the offset tolerance between the
frequency spectrum of the signals collected each time and the
reference frequency spectrum is analyzed.*e specific steps are
as follows:

S1 �
􏽐

i�n+5
i�n+1Xi

5
− xb,

S2 �
􏽐

i�n+6
i�n+2Xi

5
− xb,

· · · · · ·

SK �
􏽐

i�N
i�n+N−4Xi

5
− xb,

TIt � 􏽘 Si, i � 1, 2, 3, . . . , K,

(2)

where N is the number of sample data sets, TIt is the trend
index value at the current moment, and S1 ∼ SK is the re-
spective offset tolerance from the first to the Kth spectral line.

Finally, in the trend index construction stage, the trend
index at each moment is spliced into the constructed trend
index of the reducer as follows:

TI � TIt􏼈 􏼉t�1:K, (3)

where K is the length of TI sequence, and K � N − n − 4.
In conclusion, an autocorrelated trend index construc-

tion method is built. *e trend index of the current state is
compared with its initial state, which can be used to char-
acterize the development process of the reducer perfor-
mance state. With the mean value of the feature in the initial
frequency dataset with domain signals as a reference, the
mean value is calculated one time once five data sets had
been collected. *is is done to work out the deviation of the
two and so the variation spectrum is generated. Next, the
trend index of a point is formed by adding up the variation
spectrum, while the trend index curve which changes with
the timeline is formed by variation spectrums, namely, the
reducer’s trend index (TI). Please refer to the specific process
as follows (Algorithm 1):

2.3. RUL Prediction. According to the constructed trend
index, a good trend of the indexes’ time domain features
could be observed. In order to conduct a real-time
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Figure 1: Data-driven online condition assessment and life prediction of renewable energy vehicle reducers.
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evaluation of the health state of the reducers and the RUL
prediction, the particle filtering algorithm and the mathe-
matical model that describes the system degradation process
and constructs the trend index are used to conduct a
mathematical model linked with the RUL prediction of the
reducers.

Bayesian theory can solve this type of state estimation
problem, as well as conduct a recursive estimation of the
device’s future state value by taking the process monitoring
data (usually the sequential observation value) as the prior
information. *e sequential Monte Carlo method, also
known as the particle filtering algorithm, is used to estimate
the system’s state in a nonlinear and non-Gaussian condi-
tion. Generally, the system’s dynamic variation can be in-
dicated by the state transition equation (4) and observation
equation (5).

xk � fk xk−1,vk−1􏼐 􏼑, (4)

zk � hk xk, nk( 􏼁, (5)

where xk is the system state, zk is the system observation
value, fk is the state transfer function, hk is the observation
function, Vk−1 is the process noise, and nk is the observation
noise.

*e probability distribution of the system state xk in the
current moment is inferred by the existing observation data.
*e process includes two steps: prediction and update. *e
particle filter is a nonparameter implementation of the
Bayesian filter and is usually used to estimate a dynamic
system state. *e key to the particle filter’s effectiveness lies
in its use of a set of assumptions (namely, particles) to
indicate posterior probability, with each assumption
standing for a possible state of the system. *e state as-
sumption is represented by a set S with N weighted random
samples:

S � s
[i]

,ω[i]
|i � 1, 2, . . . , N􏼐 􏼑􏽮 􏽯, (6)

where s[i] is the state vector of the ith sample and ω[i] is the
weight of the ith sample. *e weight is not 0, and the sum of
all the weights is 1. *e sample set represents the following
distribution, namely, the posterior probability density of the
system’s states:

p(x) � 􏽘
N

i�1
ωi

k · δs[i](x), (7)

where δs[i] is the Dirac function in state s[i] of the ith sample
and ωi is the normalized weight of the kth particle. *e
update process can be simplified as the following equation:

ωi
k � ωi

k−1
p zk|x

i
k􏼐 􏼑p x

i
k|x

i
k−1􏼐 􏼑

q x
i
k|x

i
k−1, z1: k􏼐 􏼑

� ωi
k−1p zk|x

i
k􏼐 􏼑,

when q xk|z1: k( 􏼁 � p xk|xk−1( 􏼁( 􏼁.

(8)

Sample set S can be used to approximate any distribu-
tion, while these samples are taken from this approximated
distribution to specify such an approximation.

*rough the trend index analysis of the experimental
data, a single-exponential model is adopted as the degra-
dation model. *is results in a good fitting result, and the
observation equation is as follows:

zk � ae
bk

+ nk, (9)

where a and b are model parameters, k is the time point, and
nk is the process noise.

After establishing the gearbox’s degradation model, the
reducer’s RUL prediction could be conducted by combining
the constructed trend index, as well as through the calcu-
lation of the particle filtering algorithm. *e operation
process is as follows:

(1) Determine the initial value of parameters a and b
through data fitting

(2) Divide some data for the initial training and division
of the prediction interval

(3) Use the particle filtering method to assign values to
the particle points in the prediction interval

(4) Construct a new trend index with the particle points
(5) Conduct an RUL prediction of the reducer with the

value of the new trend index

*e RUL of the reducer at tk moment is calculated by

RULk � inf lk: z tk+lk( )􏼚 􏼛≥ ζ, (10)

Input: All sorted sample vibration signals xi􏼈 􏼉
N
i�1.

(1) Xi􏼈 􏼉
N

i�1 � fft( xi􏼈 􏼉
N

i�1)

(2) mark�mean ( Xi􏼈 􏼉
0.1N
i�1 )

(3) for i� n+ 1, n+ 2,..., N
(4) Pi−n􏼈 􏼉 � Xi􏼈 􏼉

(5) End
(6) for i� 1, 2, ..., N-n-4
(7) Ri􏼈 􏼉 � mean( Pi+4

i􏼈 􏼉)

(8) HIi􏼈 􏼉 � sum(abs( Ri􏼈 􏼉 − mark))

(9) End
Output: Trend health indicators of the samples.

ALGORITHM 1: *e process of constructing the trend index (TI).
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where inf ·{ } is the lower limit of the variable and lk is the
time spent from the kth time point to the failure of the
reducer. *e specific calculation process is as follows
(Algorithm 2).

3. Experiment and Results

3.1. Experimental Platform. A three-motor test bed will be
built for the test research in order to obtain the original
actual degradation data of the corresponding reducer for the
poststage data processing, modelling, and life prediction.

*is test platform can be used to test the performance,
fatigue life, and other items of the renewable energy vehicle’s
driving system (electrically driven power assembly, hybrid
power assembly, gearbox assembly, and so on). *e test
platform’s sketch and physical maps are shown in Figure 2 and
3, respectively. *e test platform’s main structure consists of
three motors. Among these, one is the main drive motor used
for driving the test piece to work, and the other two are load
motors used for simulating the load functions. Both drive and
load motors can be switched in order to implement simulation
tests for forward and reverse drive conditions. *ese three
motors function as both motor and generator, while the whole
platform’s electrical control system employs the AC closed
energy recovery system based on the DC bus. To meet the test
requirements for different temperature conditions, the plat-
form is equipped with test temperature control devices, such as
a low temperature cooling device and an environment room.
Additionally, the detail parameters of vibration signal acqui-
sition are shown in Table 1.

3.2. Experiments. *e two-stage reducer from a typical re-
newable energy vehicle is adopted as the test piece for the
accelerated life test.*emax speed reaches 12000 r/min. Please
refer to Table 2 for the main parameters of the test piece. It is
installed on the test platform according to the vehicle’s in-
stallationmethod, and a certain type and amount of lubricant is
added as per the requirements.*e vibration sensor is installed
on the casing near the high-speed shaft as shown in Figure 4.

*e test piece underwent both running-in and fatigue life
tests according to the “QC/T1022-2015 Technical specification
for reduction gearbox of battery electric passenger cars”—a

standard used in China’s auto industry. Specifically, the vehicle
ran for a total of 43 hours, including 33 hours in a high-torque
forward driving condition, 4 hours in a high-torque reverse

Input: All trend index (TI).
(1) For i� t:10: T.
(2) Carry out the initial value fitting of the parameters through TI [1: t].
(3) while min( xz

k􏼈 􏼉
Z

z�1)<Thres
(4) k � k + 1
(5) Importance sampling
(6) Weight update 􏽦wi

k � ωi
k/􏽐

N
i�1 ω

i
k

(7) Resampling
(8) State estimation 􏽢xk � X(N/2)

(9) End.
(10) Calculate the residual life according to formula (8).
(11) End.

Output: Prediction results distribution of residual life.

ALGORITHM 2: Remaining useful life prediction.
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Figure 2: Principal chart of triaxial reducer test bed.
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Figure 3: Triaxial reducer test bed.

Table 1: Parameters of vibration center

Parameters Value
Measuring range (r/min) ±80 g
Sampling frequency 24KHz
Number of axles Single axis
Sensitivity 26mV/g
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driving condition, followed by another 6 hours in a high-speed
forward driving condition. *is is equally divided into ten
cycles for the test. Except for in instances of uncontrollable
damage, the test is not stopped until all cycles have been
completed. Two test pieces finish the life-cycle test. Of these,
one finished the test normally with no serious failure, but the
bearing is seriously worn; the other finished the test normally,
and there is no serious failure, but the bearing is serious worn
and gear pitting is also serious.

A data set is generated following the collection of 12288
pieces of data every 12 turns. Figure 5 displays the time
domain curve of the data from test pieces 1 and 2 in different
working conditions.

3.3. Trend Index Construction. Time-frequency transform
was conducted for the collected signals. *is method was
divided into two parts that were seamlessly integrated: the
learning phase and monitoring phase. From Figure 6, we
observe the following: (a) the reference spectrum ob-
tained from the mean value of a test piece’s first ten pieces
of data; (b) the mean value of the frequency spectrum of
every adjacent five time points; (c) the allowance between
frequency spectrum (b) and reference spectrum (a),
where the variation spectrum can be formed no matter
whether the deviation is positive or not; and (d) the
absolute value of the variation spectrum (c). *e trend
index of a point can be formed by adding up the variation
spectrum.

Several variation spectrums are obtained from the
above-stated steps, while the trend index curve of samples 1
and 2 was obtained according to the time change. Based on
the obtained two groups of the trend index, the window
function is used for data mean filtering. *e results are
shown in Figure 7, where obvious monotony and tendency
can be seen. *e constructed trend index grows slightly at
first and then sharply increases, which conforms to the
gearbox degradation rules. It can be used to calculate the
variation trend of the reducer’s monitoring data in its dif-
ferent performance states relative to the initial state. *e
performance trend prediction is the foundation of life
prediction, and its accuracy and predictability are closely
related to the precision of the subsequent RUL prediction.

3.4.RULPrediction. To determine the fitting function of the
failure process, a feature analysis is conducted for the trend
index obtained from the data processing. *e precondition
using the particle filtering algorithm fits the mathematical
expression of the specified target’s degradation process. In
order to accomplish this, the form of the fitting function for
the sample data’s degradation process needs to be deter-
mined. *e single-exponential and double-exponential
models are the most widely used in particle filtering.
During the fitting and analysis of the experimental data, the
single-exponential model is eventually selected as the fit-
ting function for the degradation process, and the fitting
function for the trend index degradation is rewritten as
follows:

xk � exp −bkΔt( 􏼁xk−1. (11)

According to the determined fitting function, new
samples were further divided for particle filtering. Since
the sample set would greatly influence the final prediction
results, the overall data distribution could be carried out
in ideal conditions. If the overall distribution of the data
was deemed to be the prior distribution, the fitting results
could be employed to obtain relatively ideal experimental
results. If the above-determined two groups of parame-
ters are used directly, the particle filtering results are as
shown in Figure 8. *e initial parameters are shown in
Table 3.

According to Figure 8, it can be clearly seen that the
prediction results are basically consistent with the actual
data. *e actual data are within a 95% confidence interval of
the prediction results, and the deviation is slight at the failure
threshold moment.

In the case of insufficient data, the life prediction could
only be conducted on the basis of existing data. *erefore,
it is necessary to reconduct the dataset division and fitting
of the function curve. *e most common modelling
method is to extract a portion of the actual dataset as the
training set. In the follow-up life prediction, two initial

Figure 4: Secondary reducer.

-30

-20

-10

0

10

20

30

0 1 2 3 4 5 6 7 8 9

am
pl

itu
de

time (s)

Figure 5: Dataset time domain curve.

Table 2: Parameters of some secondary reducers.

Parameter Value
Max speed (r/min) 12000
Max torque (N.M) 210
Max power (kW) 90
Gear type Helical gear

6 Shock and Vibration



data samples are defined as 664 and 667, and ten samples
are added in each training. *e results are shown in
Figure 9.

During the RUL prediction, the median particle dis-
tribution at each time point is taken as the predicted value
at the current moment, while the RUL of the gearbox at this
current moment is calculated according to the previously
stated method. According to the previous fitting results and
actual data, the failure threshold of the two samples is set to
be 1. *e prediction results show that the prediction results
of the two samples at the beginning are greater than the
actual value, and that a great deviation occurs between the
predicted RUL and actual RUL. With the passage of time,
however, the observation data gradually increased, and the
prediction results are shown to be closer to the actual RUL.
Particle filtering increased with the samples, and its su-
periority is reflected.

To further verify the effectiveness of this method, the
commonly used ARIMA model is applied for comparison.

ACF reflects the correlation between the values of the
same sequence in different time series.

ACF(k) � ρk �
Cov yt, yt−k( 􏼁

Var yt( 􏼁
. (12)

PACF is the relevance of x (t− k)’s impact on x (t) after
eliminating the interference of the k− 1 random variables,
including x (t− 1), x (t− 2), . . .. . ., x (t− k+ 1).

*e formula definition of the p-order autoregressive
process is as follows:
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Figure 6: Frequency domain signal and offset tolerance calculation.
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yt � μ + 􏽘

p

i�1
ciyt−i + εt, (13)

where yt is the current value, μ is a constant, p is the order, ci

is the autocorrelation coefficient, and ϵt is the error.
*e stationary time series is obtained after processing,

and its ACF and PACF are worked out in order to determine
the parameters of the ARIMA model, p� 1, d� 1, q� 1, and
s� 12.

*e difference method is applied for the model’s pre-
diction. According to Figure 10, based on the first 600 pieces
of data in sample 1, the prediction results are to be greatly
different of the actual data. Additionally, the predicted
median point’s trend within the distribution has no cross
point with the failure threshold. *erefore, the method fails

to reasonably predict the great variation trend index and is
clearly not as good as the method proposed in this paper.
Consequently, the first 1000 groups of data from sample 1
and the first 900 groups of data from sample 2 are selected
for the prediction. *e results obtained are shown in Fig-
ures 11 and 12, respectively. *ey show that the prediction
results’ 95% confidence interval is too broad. Additionally,
the error is deemed to be great.
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Figure 9: Results of several predictions.
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Figure 10: ARIMA-based prediction results for sample 1 (1).

Table 3: Initial parameters used in the prediction process.

Sample 1 Sample 2
Total data length 1154 1157
Training set (1:600) (1:600)
Prediction set (601:1154) (601:1157)
Number of particles 5000 5000
Parameter b (0.003098, 0.003171) (0.002819, 0.002878)
Failure threshold 1 1
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4. Conclusions

To evaluate and predict the performance status of renewable
energy vehicle reducers in real time, this paper puts forward a
data-driven method to predict the working life of a renewable
energy vehicle reducer. An accelerated life test is conducted on
a three-motor test bed, and life-cycle data are obtained from
two renewable energy vehicle gearboxes to verify the proposed
algorithm.*e experimental results show that (1) the proposed
method constructs a suitable trend index which is able to
represent the current degradation condition and predict the
future degradation trend of renewable energy vehicle reducer.
(2) Relative to the traditional ARIMAmodel, the particle-based
life prediction method receives better prediction results with a
more convergent distribution. In future research, more life-
cycle tests will be carried out on renewable energy vehicle
gearboxes, and more experimental verifications will be
conducted.
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