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+e full-waveform inversion (FWI) of a Love wave has become a powerful tool for shallow-surface site characterization. In classic
conjugate gradient algorithm- (CG) based FWI, the energy distribution of the gradient calculated with the adjoint state method
does not scale with increasing depth, resulting in diminished illumination capability and insufficient model updating. +e inverse
Hessianmatrix (HM) can be used as a preprocessing operator to balance, filter, and regularize the gradient to strengthen themodel
illumination capabilities at depth and improve the inversion accuracy. However, the explicit calculation of the HM is unacceptable
due to its large dimension in FWI. In this paper, we present a new method for obtaining the inverse HM of the Love wave FWI by
referring to HM determination in inverse scattering theory to achieve a preconditioned gradient, and the preconditioned CG
(PCG) is developed. +is method uses the Love wave wavefield stress components to construct a pseudo-HM to avoid the huge
calculation cost. It can effectively alleviate the influence of nonuniform coverage from source to receiver, including double
scattering, transmission, and geometric diffusion, thus improving the inversion result. +e superiority of the proposed algorithm
is verified with two synthetic tests.+e inversion results indicate that the PCG significantly improves the imaging accuracy of deep
media, accelerates the convergence rate, and has strong antinoise ability, which can be attributed to the use of the pseudo-HM.

1. Introduction

+e shear modulus is one of the vital engineering parameters
directly related to the strength of a near-surface medium,
with the shear wave (S-wave) velocity being a critical in-
dicator. +e multichannel analysis of surface waves based on
dispersion curves has been one of the most accepted
methods of shallow-surface S-wave velocity imaging [1, 2].
However, this method applies to a pseudo-layered medium
that has gentle horizontal variations, and the resultant image
of a pseudo-two-dimensional (2D) profile is formed by
interpolation. +is type of procedure limits the vertical and
horizontal resolution of the method.+erefore, a method for
extracting dispersion curve clusters by scanning multi-
channel seismic data with the application of the localized
slant stack method to multichannel single-shot records has
been presented to achieve 1.5D imaging [3]. +is method,
however, takes advantage of the multichannel dispersion
information to the maximum extent and still cannot be used

to implement 2D or 3D imaging. Furthermore, Li et al. [4, 5]
proposed a dispersion curve wave-equation theory that
formulated wave-equation dispersion (WD) inversion. 2D
S-wave velocity imaging could be directly implemented in
this method, and the method was free from the cycle-
skipping phenomenon. However, this method required
preprocessing data via mode decomposition and noise
suppression, so the ground-state energy in the surface waves
was dominant overall frequency bands and not perturbed by
the excited-state energy. +ese procedures are complicated,
and the images acquired do not have high precision. For the
above methods based on dispersion analysis, it is difficult to
obtain quality results in shallow exploration, and the en-
gineering objectives sometimes cannot be met.

By using all the amplitude and phase information for
seismic datasets, full-waveform inversion (FWI) [6, 7]
matches the observed and predicted data to reveal a high-
resolution and high-precision underground velocity model,
and it can meet the need for velocity parameters imposed by
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complex structural imaging. +is technique has gradually
become a research hotspot in the field of seismic data in-
version [8–10]. Previous FWI works have primarily focused
on the inversion of P and S waves [11–14], but the devel-
opment of surface wave FWI has become feasible [8] due to
the dominance of surface wave energy in the near-surface
wavefield (the vertically induced Rayleigh wave accounts for
70% of the horizontally induced Love wave for 90% of the
near-surface wavefield) [15]. Compared with a Rayleigh
wave, a Love wave is formed by the interference of multi-
reflected SH-waves near a free surface [16] and is inde-
pendent of the P-wave velocity while being more sensitive to
the S-wave velocity. +ese properties have led to a relatively
efficient and straightforward FWI framework for Love
waves. Gradient-based local optimization algorithms such as
the steepest descent algorithm [6] and conjugate gradient
algorithm [17] have been widely used in solving FWI, a
large-scale and strong nonlinear optimization problem, with
low computational cost. However, the calculated gradient of
the adjoint-state method [18] contains a singular value and
uneven energy distribution, both of which are caused by the
double scattering and limitations in the wavefield illumi-
nation and the wavelet frequency band. Hence, the model
gradient amplitude at depth decreases rapidly, along with the
diminished illumination capability, and the model param-
eters cannot be updated with apparent improvements.

To alleviate this problem, four different approaches have
been proposed and developed: the distance-weighting, layer-
stripping, and full Hessian matrix (HM) schemes and the
approximate-HM strategies. +e distance-weighting [19, 20]
method adjusts the gradient amplitude across the model
space by multiplying the gradient by a function of the
distance from the source, and this method balances the
energy distribution of the gradient by giving greater weight
to the far offset and deep regions. Based on this idea, the
layer-stripping method [21] divides a model into several
parts according to different depths, and these parts are
updated continuously according to the rules, from shallow to
deep. +erefore, the gradient in the deep region is not
suppressed due to the large gradient amplitude in the
shallow region, and the reconstruction effect in the deep
region is improved. Both methods can improve the accuracy
of model reconstruction to a certain extent. However, the
function of distance or depth cannot completely or precisely
express the scaling of a gradient. +ere is no objective
standard to ensure the concrete implementation of these
methods. For example, there are no standards for deter-
mining how to set the weight value of distance or depth in
the distance-weighting method or how to determine where
and when to move from one layer to the next in the layer-
stripping method. Different criteria will lead to different
inversion results. +e full-HM method relies on the ad-
vantages of second-order optimization algorithms such as
the Newton [7] and Gauss-Newton [22] algorithms. A
second-order partial derivative of the cost function, known
as the HM, contains information about the curvature that
can be used to clearly predict the illumination deficiency at
depth in the model [14]. +us, an inverse HM can adjust the
ratio and balance the correction terms of the gradient to

strengthen the illumination of the deep part of the model.
Pratt et al. [22] implemented FWI in the frequency-spatial
domain through a Full-Newton algorithm and provided a
complete calculation method of the full-HM. +is method
greatly improved the inversion accuracy, but the calculation
cost was too expensive to be acceptable under conventional
conditions. In addition, Métivier et al. [14] calculated the full-
HM based on the second-order adjoint state method and
proposed the truncated-Newton method, which improved the
calculation efficiency and ensured the robustness compared
with the Full-Newton method. After that, some new Newton-
class algorithms emerged [23, 24], but none of them could
greatly reduce the computational cost of the full-HM. +e
approximate-HM employs the idea of estimation or con-
struction to obtain the HM, solving the dilemma of deter-
mining the HM explicitly with current computing capabilities.
+e most common method is calculating the HM with the
reciprocity theorem and the virtual source theory. Pratt et al.
[22] pointed out that the approximate-HM was a diagonally
dominant matrix with a high-frequency approximation. Only
M diagonal elements in the HM are needed in the inversion
involving M parameters. +is fact greatly simplifies the cal-
culation of the HM. Shin et al. [25] provided an estimating
method for the diagonal terms in the approximate-HM in
prestack depth migration based on inverse scattering theory.
However, they failed to complete factors related to the geo-
metric spreading. Later, Choi et al. [26] improved this esti-
mation method by considering the amplitude of the seismic
data in calculating the diagonal terms. However, this new
approximate-HM only explained the source geometric
spreading. Another approach is to construct the approximate-
HM by combining information from a gradient, model, and
cost function, including L-BFGS [27, 28], the corrected
pseudo-Newton algorithm [10], and the pseudo-Newton al-
gorithm [29]. +ese methods have further simplified the
approximation method of the HM and achieved relatively
effective results, but some accuracy has been lost.

In this paper, we present a new method to estimate the
HM in Love wave FWI based on the calculationmethod of the
HM in inverse scattering theory, and the preconditioned CG
(PCG) is developed in combination with the CG. +e pro-
posed method uses the stress components of the Love wave
wavefield to construct a pseudo-inverse HM to filter, balance,
and regularize the gradient and alleviate the influence of
nonuniform coverage from source to receiver, including
double scattering, transmission, and geometric diffusion, thus
improving the inversion accuracy. Because the required stress
components have been obtained in the forward simulation,
no extra calculation overhead is needed, thus ensuring the
calculation efficiency and saving the calculation costs.
Moreover, the construction of the gradient and the HM are
derived in detail, and the implementation procedure of the
PCG-based Love wave FWI is described in detail. +e trial
results from the checkerboard model and the complex
structure model indicate that compared with the classical CG,
the PCG can clearly rebuild the stratigraphic anomaly
boundary and reconstruct the primary stratigraphic anomaly
at depth, and it has strong antinoise ability. +e advantages of
PCG are due to the presence of the pseudo-HM.
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2. Methodology

+e core concepts of FWI are to fit the predicted wavefield
from the forwarding modeling to that observed in the field
and minimize the misfit between these two datasets.
+erefore, the optimal modeled data can be achieved. +e
optimization includes several key steps, such as the forward
simulation of the seismic wavefield, the establishment of the
optimization algorithm, the determination of the gradient,
and the determination of the HM of a cost function.

2.1. Forward Problems. Wave equations describe the phys-
ical process of seismic waves as they travel through a me-
dium.+e forward problem involves obtaining the wavefield
at the receiving point by solving the wave equation when the
underground medium parameters and the source function
are known. In a 2D isotropic medium, assuming that a
particle has only a nonzero displacement in the y-direction
of the X-Z plane (X is the horizontal distance and Z is the
depth), coupled with Hooke’s Law, the pseudo-conservative
Love wave elastodynamic equation [30] in the time domain
is
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where ρ(x, z) is the density, Vs(x, z) is the S-wave velocity,
σxy(x, z, t) and σzy(x, z, t) are the shear stresses, vy(x, z, t)

is the particle velocity, and F(x, z, t) is the seismic source
excited by an external force. A general form of (1) is

D(m)u(m) � φ, (2)

where D(m) is the partial-differential operator, u(m) is the
seismic wavefield, φ is the external force loaded, m is the
parameterized model in terms of the S-wave velocity and the
density, m � (Vs, ove it rem) � (m1, m2, . . . , mN), and N is
the number of model parameters. +e high-order staggered-
grid finite-difference method [30] with second-order tem-
poral accuracy and tenth-order spatial accuracy is used to
solve (1) and (2) discretely. +e free-surface boundary of the
top part of the model is processed with the stress-image
method, and the bottom, left, and right boundaries of the
model are processed with the multiaxial perfectly matched
layer technique. +e number of absorption layers in three
directions is 50.+e source is a Ricker wavelet, and it is loaded
into vy(x, z, t).

2.2. Inversion Problems. FWI is a highly nonlinear problem,
so nonlinear inversion theory should be adopted to solve it.
In order to measure the fitting degree of the predicted data
dpre and the observed data dobs, as well as the residual energy

between these data, we define an L2-norm-based cost
function:
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where ‖ · ‖2 denotes the L2-norm calculation, R is the
mapping from the wavefield to the receiver arrays, and u(m)

is the solution to equation (2). +e inversion process in-
volves finding a parameterized model that perfectly predicts
the observed data by minimizing the cost function through a
global or local optimization method. +e global algorithm
can basically avoid the local minimum problem, but a large
amount of computation hinders its popularization and
application. +e local algorithm [31] is still widely used at
present, and it is implemented by updating the model pa-
rameters iteratively, for which the iteration sequence is
expressed as

mk+1 � mk + αkΔmk, (4)

wheremk, αk, and Δmk are the model parameters of the kth
iteration, the optimal step length estimated with the para-
bolic fitting method [32], and the descent direction of the
model update, respectively. A Taylor series expansion with
second-order precision is performed on the cost function (3)
at the (k+1)th iteration:
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+e derivative of the cost function E(mk+1) with respect
to Δmk is assumed to be zero in order to find the minimum
of the cost function near the model mk:
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+e descent direction is obtained by rearranging (6):
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where ∇E(mk) andH−1
k are the gradient and the inverse HM

of the cost function, respectively.
+e inverse HM in the gradient-based local algorithms is

substituted for by the identity matrix, and the CG is widely
used in FWI with the descent direction:
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(8)

where βk+1 is the scalar parameter of the (k + 1)th iteration
and the superscript Tdenotes the matrix transpose operator.
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+e core idea of the preconditioned gradient-based local
algorithms is to solve or construct the inverse HM (7), and
the descent direction is
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+e value of βP is calculated with a formula from
Métivier et al. [14]. To accelerate the convergence of the cost
function, the scalar parameter is made nonnegative [33]:

βk+1 � max 0, βk+1􏼈 􏼉. (10)

2.3. Adjoint-State Gradient and Preconditioned Operator.
+e acquisition of the cost function gradient is the core of
the local optimization methods, which can be calculated
with the explicit method [8] and the adjoint state method
[18].+e explicit method obtains gradients by calculating the
actual derivatives of the cost function concerning the various
model parameters, which requires as much forward calcu-
lation as the model parameters. +is type of computation is
unacceptable for larger models. +e adjoint state method

overcomes this problem and only requires two forward
calculations to obtain the gradient. In the adjoint-state
method, it is pointed out that the gradient is the zero-lag
cross-correlation of the forward-propagating wavefield and
the backward-propagating wavefield obtained from the
backward-propagating data residual at the geophone. +is
relationship is presented with detailed derivation in [34].
+e backward-propagating wavefield can be determined
with the adjoint function as follows:

D(m)
∗Hγ � −R

∗H dobs − Ru(m)( 􏼁, (11)

where (·)∗H denotes the conjugate transpose, c is the
backward-propagating wavefield to be calculated, and u(m)

is the solution to (2) corresponding to the designated seismic
source terms. Specifically, the source term on the right-hand
side of (2) is a reverse time series consisting of the differences
between the observed data and the predicted seismic data.
Hence, the cost function gradient to the model parameters
can be calculated according to the following equation:

∇E(m) � real zmD(m)u(m), γ(m)( 􏼁ω, (12)

where real denotes real arithmetic and (·, ·)ω is the scalar
product of the enclosed terms in the inner product space ω.
Based on this equation, combined with the chain rule [17],
the Love wave FWI gradient can be calculated with respect to
the S-wave velocity and the density:
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where ∇Evel and ∇Eden are the gradients of the S-wave
velocity and the density, respectively, S represents the
number of shots, T represents the sampling points in the
time domain, σf

xy and σf
zy are the shear stresses of the

forward-propagating wavefields, and σb
xy and σb

zy are the
shear stresses of the backward-propagating wavefields.

Shin et al. [25] promoted the development of the
preconditioned approach in FWI. Due to the narrow fre-
quency band of the observed data, the double scattering,
and other reasons, the gradient amplitude calculated by
(13) and (14) does not scale with the depth increase.
+erefore, the illumination with the depth is lost, and the
parameters related to the medium cannot be updated. +e
HM can clearly predict the above problems because it
contains the curvature information. +e inverse HM, also
known as the preconditioned operator, can be used as a
deconvolution operator to adjust the proportion and
balance the correction terms of the gradient, eliminate the

limited band effect, and enhance illumination for deep
regions. However, the vast dimensions of the inverse HM
make it almost impossible to calculate this matrix with the
current computing power. Nevertheless, we can construct a
pseudo-HM using the reciprocity theorem [14, 25]. In this
study, a new pseudo-HM in Love wave FWI is solved by
referring to the HM calculation method of the inverse
scattering theory [25], which can suppress the artifacts
caused by multiple scattering in the gradient. Based on this,
the form of the pseudo-HM can be expressed as

Hij(m) � zmi
D(m)u(m)􏽨 􏽩

T
zmj

D(m)u(m)􏼔 􏼕􏼒 􏼓;
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(15)

where M is the model parameter space. +is equation is
transformed into a parameterized expression of the S-wave
velocity and the density:
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where Hvel and Hden are the pseudo-HMs of the S-wave
velocity and the density, respectively. +e inverse HM is
diagonally dominant for the high-frequency approximation
[22], and only the diagonal elements must be calculated. In
addition, an adjustment factor is added to avoid the in-
version instability caused by the near-zero value generated
by the geometric diffusion of the wavefield on the diagonal.
+e preconditioned operator is adjusted at the kth iteration
to

H−1
k � diag

1
Hiik

+ εmaximize Hiik
􏼐 􏼑

⎛⎝ ⎞⎠ , (18)

where ε is an empirical parameter. +e algorithm has high
performance when ε � 10− 5–10− 2 after various numerical
tests. Eventually, the preconditioned operator is adjusted by
L2-norm from the cost function gradient at the current
iteration with
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Equation (19) is inserted into (9), resulting in the PCG.

2.4. :e Workflow of the PCG-Based FWI. Combining the
principles of the core part of the Love wave FWI described in
Sections 2.1–2.3, we give the detailed workflow of the PCG-
based Love wave FWI as follows (Figure 1):

(1) An initial velocity model, the trial parameters (e.g.,
record time, maximum iteration number, and
empirical parameter ε), and the iteration termina-
tion criteria are set.

(2) Information about the model velocity is input,
equation (1) is solved to obtain a forward-propa-
gating wavefield, and predicted seismic datasets are
acquired.

(3) +e predicted seismic datasets are matched with the
observed data, the cost function, and the wavefield
residual calculated with equation (3).

(4) A wavefield residual is set as the seismic source, a
backward-propagating residual wavefield is initiated,
and a backward-propagating wavefield is acquired.

(5) Advantage is taken of the calculated forward and
backward propagating wavefields to determine the
gradient with equations (13) and (14), and then the
pseudo-HM is obtained with equations (16) and (17).

(6) Steps (2)–(5) are repeated until the gradient, and the
pseudo-HM are calculated and stacked from all
shots.

(7) A preconditioned operator is calculated with the
calculated stacked pseudo-HM using equations (18)
and (19).

(8) +e calculated stacked gradient and the precondi-
tioned operator are used to determine the scalar
parameters with equations (9) and (10).

(9) +e optimal step size is then calculated with the
parabolic fitting method.

(10) +e velocity model is updated by equation (9) with a
calculated stacked gradient, preconditioned oper-
ator, and optimal step size.

(11) It is judged whether the iteration convergence
condition or the maximum iteration number is met.
+e velocity model is output if either criterion is
met; otherwise, Steps (2)–(10) are repeated.

3. Model Tests

+e PCG and the CG are simultaneously applied to the
noise-free and noise-containing tests of the two models to
verify the antinoise capability and the aforementioned ad-
vantages of the PCG over the CG. Because the Love wave is
much more sensitive to the S-wave velocity than to the
density [15], only the S-wave velocity is updated in the
inversion, and the density is not updated. In all tests, the
density of the model is 1800 kg/m3, and the density and the
source wavelet are treated as known quantities. +e coor-
dinates of the first shot and the first receiver are (0m, 0m).
In total, 2000 points are sampled in the time domain with a
sampling interval of 0.0002 s, resulting in a total seismic
record of 0.4 s. +e maximum number of iterations is set to
40. +e iteration is terminated automatically once the de-
cline of the cost function value of the two adjacent iterations
is less than 0.00001 times the initial value (k� 0). To
quantitatively assess the inversion result precision and to
compare the strengths and weaknesses among different
methods, a root-mean-square error (RMSE) with the fol-
lowing form is introduced:

RMSE �
minv − mtrue

����
����2

mtrue
����

����2
, (20)

where minv and mtrue are the inversion results and the true
values of the S-wave velocity model, respectively.
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3.1.Noise-FreeData. +e first test example is a checkerboard
model (Figure 2). +e grid has a size of 41× 101 in the
vertical and horizontal directions with a step size of 0.5 in
either direction. Hence, the actual model size is 30× 40m.
+e checkerboard is composed of 5×10m blocks, and the
S-wave velocity of each block is 300m/s or 500m/s, de-
termined by the different positions (Figure 2(a)). +e S-wave
velocities of 300m/s to 500m/s are very common on a
shallow subsurface. All 21 shots and 101 horizontal-com-
ponent receivers (the white arrows and the solid yellow
circles in Figure 2(a) represent the sources and receivers,
respectively) are deployed on the surface in the x-direction
with intervals of 2.5m and 0.5m.+e initial model is set to a
half-space with the S-wave velocity of 400m/s (Figure 2(b)).
+e checkerboard model causes the transmitted seismic
waves to scatter violently.When the seismic wave propagates
to the boundary of each checkerboard block, the apparent
scattered wave is generated due to the sudden change of the
wave impedance, which can be clearly observed
(Figure 3(a)). Furthermore, the first break Love wave with a
shorter travel time than the scattered waves can also be
observed (Figure 3(a)). +ese two sets of waves occupy most
of the wavefield’s energy (“L” and “S” in Figure 3(a) indicate
these two seismic events). Scattered waves are ubiquitous in
shallow subsurface exploration, such as the existence of
cavities or high-velocity anomalies in the ground.

Because of the insufficient illumination and uneven
energy distribution of the gradient operators, the normalized
descent direction in the first iteration of the CG presents
artifacts near the free surface of the model, and its amplitude
decreases sharply in the deeper medium (Figure 2(c)), which
seriously affects the updating of the deep medium param-
eters and the stability of the inversion process. Because the

PCG calculates the pseudo-HM of the cost function, the
newly calculated descent direction contains the curvature
information and balances the energy of the gradient operator
so that it has the uniform amplitudes of the orders of
magnitude in the shallow and deep parts of the model
(Figure 2(d)). +is improves the inversion accuracy of the
deep medium, which suggests that the PCG can strengthen
the wavefield’s illumination capability and smooth the ar-
tifacts caused by double scattering and source coupling.
Figures 2(e) and 2(f ) present the inversion results of the CG
and the PCG. +e CG can accurately reconstruct shallow
checkerboard blocks and roughly display their boundaries,
yet it cannot reconstruct deep checkerboard blocks
(Figure 2(e)). Figure 3(g) also shows that the waveforms of
inversion results fit poorly with the observed waveforms (the
part with the worst fitting degree is enclosed by a green
square and displayed in a magnified display). In contrast, the
PCG reconstructs the model more precisely (Figure 2(f )),
which is intuitively discernable in the S-wave velocity
profiles in Figures 3(c) and 3(d). It is noted that due to the
issue of the overestimation and underestimation of model
parameters, the final inversion results have an upper bound
of the velocity in the deep layer that is greater than 500m/s.
In comparison, the lower bound of the velocity at the surface
is less than 300m/s (Figures 3(c) and 3(d)). +is is the
phenomefnon of illumination excess, which is caused by
overadjusting the gradient operator by the preconditioned
operator during the iteration. +erefore, a constraint cri-
terion for the model updates should be added in the it-
erative process to solve this issue. In the optimization
process, the PCG has a faster convergence rate than the CG,
and the cost function value and the RMSE are lower
throughout (Figures 3(e) and 3(f )). +e final value of the

Observed datasets

Input the initial model Output the inversion results

Calculate wavefield residuals
and cost function

Predicted datasets

Calculate back-propagation
wavefield residuals

Calculate the superposition
gradient operator

Calculate the superposition
pseudo-HM

Calculate the pre-
conditioned operator

Calculate the optimal step
size

Update model 

Calculate scalar parameters

Meet
termination

criteria

Figure 1: +e workflow of the PCG-based FWI implementation.
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normalized cost function value (misfit) of the two algo-
rithms is close to 0 (Table 1), and the waveforms of the
observed data and the inversion results are nearly identical
(Figure 3(h)). However, there are still some differences
between the reconstructed model and the true model, and
the final RMSE values of the PCG and the CG are 0.1169
and 0.16, respectively (Table 1). It is suspected that the
reason for this phenomenon is either that the initial model
is too poor and it is not in the neighborhood of the optimal
global solution, there is cycle-skipping, or there are nu-
merical errors.

In order to further illustrate the advantages of the PCG
in enhancing the illumination capability and improving the
imaging accuracy of deep media, the second test example is a
deeper model containing a complex high-velocity anomaly
and a fault (Figure 4). +e grid in this model has a size of
81× 101 in the vertical and horizontal directions with a step
length of 0.5m in either direction, resulting in an actual
model size of 40× 50m. +e model has three layers: the first
layer has a velocity of 300m/s, the second layer has a velocity
of 400m/s and a “boot-like” high-velocity anomaly, and the
third layer has a velocity of 500m/s and a fault (Figure 4(a)).
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Figure 2: Noise-free data test for the checkerboard model. (a) +e true model. +e white arrows and the solid yellow circles represent the
positions of the shots and the receivers. (b) +e initial model. (c-d) +e normalized descent directions of the CG and the PCG in the first
iteration. (e-f)+e inversion results of CG and the PCG.+e black dotted lines represent the boundary where the S-wave velocity changes in
the true model.
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Figure 3: Continued.
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Table 1: Comparative evaluation of the CG and PCG performances in the checkerboard model noise-free test.

Optimization algorithm Total iterations Normalized final misfit value Initial value of RMSE Final value of RMSE
CG 40 0.0480 0.2493 0.1535
PCG 40 0.0275 0.2493 0.1169
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Figure 3: Normalized seismograms and evaluation curves for the checkerboardmodel test. (a)+e normalized seismograms of shot 11 from
the true model. “L” and “S” indicate the first break Love wave and scattered wave events, respectively. (b) Comparison between the observed
(red) and forward (blue) waveforms of shot 1 for the true and initial model. (c-d) +e S-wave velocity vertical profiles of the true model,
initial model, and inversion results of the PCG and CG at distance� 5m and distance� 25m, respectively. (e) Normalized misfits of PCG
and CG versus iteration number. (f ) +e RMSE for the inversion results and the true value of the PCG and CG versus the iteration number.
(g) Comparison between the observed (red) and forward (blue) waveforms of shot 1 of the CG inversion results. (h) Comparison between
the observed (red) and forward (blue) waveforms of shot 1 of the PCG inversion results.
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All 11 shots and 101 horizontal-component receivers (the
white arrows and solid yellow circles in Figure 4(a) represent
sources and receivers, respectively) are deployed on the
surface in the x-direction with intervals of 5m and 0.5m,
respectively. +e initial model without information about
the anomalies is set as a gradient model with 40 layers, with a
thickness of 1m per layer and a velocity of 300m/s for the
first layer, and the velocity gradient is 5m/s (Figure 4(b)). To
eliminate the large amplitude of the gradient due to the
seismic source coupling effect at a free surface in the CG, the
gradient is preprocessed by setting the gradient to zero at the
grids that are at the free surface and one line below [35],
making our demonstration more convincing. Some of the
reflected waves produced by changes in the wave impedance
can be observed (“R” in Figure 5(a) indicates the seismic
event).

+e CG inversion results precisely reconstruct the
shallow morphology and display part of the high-velocity
anomalies, yet they cannot be used to rebuild the fault
structure (Figure 4(c)). +e waveforms of the inversion
results are basically fitted to the observed waveforms.
However, the waveforms of the reflected wave are poorly
matched (Figure 5(g), the poorly matched parts have been
circled and enlarged in green squares). In contrast, the PCG
inversion results reconstruct the anomalies and structures
more precisely and clearly delineate the boundaries
(Figure 4(d)), and the final RMSE value reaches 0.0320
(Figure 5(f) and Table 2). Both parameter overestimation and
underestimation still exist (Figures 5(c) and 5(d)). Because the
updating of the shallow part of the model contributes greatly
to the function value, the convergence rate of the CG is similar
to that of the PCG in the first ten iterations (gradient zeroing
near the free surface plays a role). Later, due to the insufficient
updating of the deep medium parameters, the CG stops the
optimization. Because the PCG makes it possible for the deep
medium parameters to be updated due to better illumination
capability at depth, the cost function value continues to

decline. +e final value is 0.0064, which is less than 1/9 of that
in the CG (Figure 5(e) and Table 2). +e waveforms of the
inversion results match well with the observed waveforms
(Figure 5(h)). +is comparison also confirms the importance
of the HM for improving the inversion precision and proves
that the PCG is exceptionally effective. In this research, we
suggest using the preconditioned gradient-based algorithm
such as the PCG in FWI.

3.2. Noise-Containing Data. We apply the PCG to the
second test example described above, but 20% and 50%
Gaussian white noise is added to the observed data
(Figures 6(a) and 6(b)) to verify the strong antinoise ca-
pability of the preconditioned gradient-based algorithm.+e
initial model is the same as that in the noise-free test
(Figure 4(b)).+e inversion results are shown in Figures 6(c)
and 6(d). Even if the observed data contain noise, good
inversion results can still be obtained, with which the high-
velocity anomaly and the fault can be reconstructed
(Figures 6(c) and 6(d)). Because the noise-containing
waveforms cannot match the noise-free waveforms, in
contrast to the value of the normalized cost function con-
verging close to almost 0 in the noise-free test, the nor-
malized cost function values of the noise test (Figure 7(a))
converge to 0.6725 and 0.8784 when the noise levels are 20%
and 50%, respectively (Table 3). +e inversion accuracy
decreases with the increment of the noise level. However,
when 50% noise is included in the observed data, the PCG
final RMSE value is still lower and the inversion accuracy is
even higher than that of the noise-free CG inversion
(Figure 7(b) and Table 3). Additionally, the higher the noise
level is, the more serious the parameter overestimation is
(Figures 7(c) and 7(d)), which may be caused by the
boundary effect. +e noise-containing data test shows that
the preconditioned gradient-based algorithm has high sta-
bility even if the observed data are contaminated by noise.
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Figure 4: Noise-free data test of the complex structure model. (a)+e truemodel.+e white arrows and the solid yellow circles represent the
positions of the shots and the receivers. (b) +e initial model. (c-d) +e inversion results of the CG and the PCG. +e black dotted lines
represent the boundary where the S-wave velocity changes in the true model.
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Figure 5: Normalized seismograms and evaluation curves for the complex structure model test. (a) +e normalized seismograms of shot 6
from the true model. “R” indicates the reflected Love wave. (b) Comparison between the observed (red) and forward (blue) waveforms of the
true and initial model. (c-d) +e 1D S-wave velocity vertical profiles of the true model, initial model, and inversion results of the PCG and
CG at distance� 10m and distance� 35m, respectively. (e) Normalized misfits of the PCG and CG versus iteration number. (f ) +e RMSE
between the inversion results and the true values of the PCG and CG versus the iteration number. (g) Comparison between the observed
(red) and forward (blue) waveforms of shot 1 of the CG inversion results. (h) Comparison between the observed (red) and forward (blue)
waveforms of shot 1 of the PCG inversion results.

Table 2: Comparative evaluation of the CG and PCG performances in the complex structure model noise-free test.

Optimization algorithm Total iterations Normalized final misfit value Initial value of RMSE Final value of RMSE
CG 10 0.0587 0.1022 0.0644
PCG 40 0.0064 0.1022 0.0320
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Figure 6: Normalized seismograms and inversion results based on the PCG in the noise-containing test of the complex structure model.
(a-b) Normalized seismograms with 20% and 50% Gaussian white noise for shot 6 from the true model. (c-d) +e inversion results for the
normalized seismograms with 20% and 50% Gaussian white noise.
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4. Discussion and Conclusion

With reference to the theory of inverse scattering, we develop
a new pseudo-HM-based preconditioned approach for the 2D
FWI of a Love wave to make full use of the wavefield in-
formation contained in the HM but not contained in the
gradient. In this novel method, the stress components of the
Love wave wavefield are used to construct a pseudo-inverse
HM to filter, balance, and regularize the gradient.+is reduces
the influence of the wavefield propagation effects, including
the double scattering, transmission, and geometric diffusion
on the gradient, in order to improve the inversion results. In
addition, because this method is independent of each com-
ponent of the backward-propagating wavefield, it will not
affect the focus of the data residual for the model pertur-
bation, and the method will ensure that the gradient is not
distorted.+e stress components required by our newmethod
have been obtained in the necessary forward simulation
during each iteration, so the method does not have extra
calculation costs and it ensures the calculation efficiency. +e
synthesis tests show that our new method can significantly
accelerate the convergence rate, suppress the artifacts near the
surface, and improve the model reconstruction accuracy,
especially in the deep region of themodel that is more affected
by the defocus effect and geometric spreading. Furthermore,

the PCG also has a strong antinoise ability that is very im-
portant for processing field datasets, and we believe that the
pseudo-inverse HM plays a key role in this. However, the
pseudo-inverse HM overcompensates for the gradient in
some cases, resulting in overillumination of the wavefield and
overestimation of the parameters, especially near the surface
and in the deep region of the model. +erefore, the confining
criterion of the model update must be added in the iterative
optimization, which requires further study. In addition, only
the ability of the PCG to resist Gaussian white noise is tested
in the synthetic tests, but some special noises such as traffic
and electromagnetic noise may exist in the actual situation.
+is still requires further testing and discussion. At the end,
similar to the application of the PCG to the Love wave FWI
described in this paper, a similar method can be applied to a
Rayleigh wave and other body waves. It should be noted that
the specific form of the proposed pseudo-HM is not invariable
for different types of waves, and specific derivation and
construction should be carried out according to different
wave equations in combination with equation (15).

Data Availability

+e data and the code in this paper can be obtained by
contacting the corresponding author.
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Figure 7: Evaluation curves for the complex structure model noise-containing test. (a) Normalized misfits for the CG when the seis-
mograms contain no noise and for the PCG when the seismograms contain no noise, 20% noise, and 50% noise versus the iteration number.
(b)+e RMSE for the CG when the seismograms contain no noise and for the PCG when the seismograms contain no noise, 20% noise, and
50% noise versus the iteration number. (c-d)+e 1D S-wave velocity vertical profiles of the true model, initial model, and inversion results at
distance� 10m and distance� 35m.

Table 3: Comparative evaluation of the PCG performance for seismograms with 20% and 50% Gaussian white noise in the complex
structure model noise-containing test.

Noise level (%) Total iterations Normalized final misfit value Initial value of RMSE Final value of RMSE
20 38 0.6725 0.1022 0.0379
50 29 0.8784 0.1022 0.0459
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