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To study the nonlinear dynamic characteristics of the dual-mass flywheel (DMF) under the conformal contact action between the
friction damping ring and primary flywheel pressure plate, the contact action model is established and analyzed based onWinkler
model. +rough analysis and calculation, the contact deformation, contact pressure at different contact positions, and equivalent
torsional contact stiffness are obtained. +e nonlinear dynamic analysis model of three-degree-of-freedom (3DOF) which takes
the conformal contact into account and two-degree-of-freedom (2DOF) without considering conformal contact is established.
+e approximate analytical solution of the nonlinear frequency characteristics of the system at steady state is derived. By
comparing with the results obtained from numerical method, the theoretical analysis process is proved to be valid. And it is found
that the overall amplitude and angular displacement transmissibility of the 3DOF model are smaller than the 2DOF model,
especially at resonance frequency. +e effects of the friction damping ring moment inertia, stiffness of DMF, and axial friction
torque on the frequency characteristics of system and angular displacement transmissibility are analyzed. +e forced vibration
response analysis of the 3DOF model is conducted, through which the torsional angle variations of the primary flywheel, friction
damping ring, and secondary flywheel with time are obtained. +e results show that the amplitude of the secondary flywheel is
much smaller than that of the primary flywheel, indicating that the DMF has prominent damping performance.

1. Introduction

Dual-mass flywheel (DMF), which was first proposed by
companies represented by LuK, can efficiently reduce the
torsional vibration and noise, relieve impact, realize the
protection of engine and gearbox against overload, and
enable the engine to operate at lower speeds to reduce fuel
consumption [1–4]. Generally speaking, through reasonable
parameter matching, DMF can make the natural frequency
of the automobile transmission system isolated outside the
frequency corresponding to the normal speed range of the
engine [5]. Owing to these significant advantages, now DMF
is wildly applied in automotive transmission system [6, 7],
and there are many academic researches on the DMF.
Berbyuk [8] studied the feasibility of the application of a

DMF for heavy-duty truck drivetrain system. And the optimized
mass inertia, stiffness, and damping parameters of a DMF
were proved to provide the better attenuation of the torque
oscillations. To make a DMF with three-stage stiffness have
continuous variable stiffness, Song et al. [9] proposed a new
structure improvement by using shape constraints and
compensation principle. References [2, 10] focused on the
measure method of the DMF angular displacement. Tang
et al. [11] investigated the effect of a DMF on the torsional
vibration characteristics of a power-split hybrid powertrain
system. +eodossiades et al. [4] investigated the effect of
DMF on impact-induced clonk noise and its severity
through experimentation. Chen et al. [12] analyzed the
dynamic torsional characteristics of a circumferential arc
spring DMF from theoretical study and experiments. And it
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was found that the torsional stiffness of the DMF varies with
the excitation amplitude and frequency. Güllü et al. [13]
proved that DMF can make the clutching process perform
more smoothly than single-mass flywheel. Li et al. [14]
proposed a radial spring DMF with good nonlinear torsional
stiffness characteristics owing to the moment inertia of the
torsional vibration damper allocated reasonably and the
torsional stiffness of the torsional vibration spring designed
properly. Mao et al. [15] and Zu et al. [16] established the
simulation model of magnetorheological DMF in Amesim
software and analyzed the attenuation of torsional vibration
of transmission system under various working conditions.
Chen et al. [17] built the multidegree powertrain torsional
vibration model which contains magnetorheological fluid
DMF and semiactive fuzzy control model and researched the
torsional vibration damping characteristic of the DMF and
the control system in vehicle powertrain system.

To meet the requirements of small torsional angle and
stiffness at low speed and low torque, and large stiffness and
output torque at high speed and high input torque, DMFs
generally possess nonlinear stiffness characteristics, i.e., its
stiffness will change with the relative angular displacement
of the primary flywheel and the secondary flywheel. Song
et al. [18] proposed the design theory of a two-stage
piecewise variable stiffness DMF, and the torque charac-
teristics and frequency characteristics are analyzed by the-
oretical study and experiments. Wang et al. [19] investigate
the kinetic parameters matching and designing method for a
multistage torsional stiffness DMF based on torsional vi-
bration control by using the numerical analysis methods and
proved by tests on an actual vehicle. Shi et al. [20] proposed
an innovative arrangement of elastic structure applied in
DMF to make this vibration damper have multipiece step
stiffness and conducted the natural characteristic analysis of
the transmission system at driving and idling conditions to
evaluate this DMF vibration control effects. For the DMF
matching under start-up condition, He et al. [21] investi-
gated the influence of a five-stage variable stiffness DMF
kinetic parameter on driveline torsional vibration in engine
start-up process.

In Ref [18], a friction damping ring structure is intro-
duced into DMF to further reduce torsional vibration based
on the equivalent damping effect of the axial friction torque
produced by axial preload. According to the DMF structure,
high conformal contact is formed between the introduced
friction damping ring and the primary flywheel pressure
plate. Usually, contact problem is a complex process in-
volving elastic deformation and other factors, and usually,
multibody system dynamics problems involving contact
have nonlinear characteristics [22]. +e existing literature
has carried out a lot of research on the structure of the DMF,
torsional characteristics, and vibration damping perfor-
mance. But few studies consider the influence of inner part
contact on the dynamic characteristics of DMF in the
previous works.

+e present work is devoted to study the nonlinear
dynamic characteristics of DMF with considering the
conformal contact action between the friction damping ring
and the primary flywheel pressure plate. +rough

establishing the contact analysis model based on Winkler
model, the contact deformation and contact pressure at
different contact positions, and the equivalent torsional
contact stiffness generated by the conformal contact can be
obtained.+en, the nonlinear dynamic analysis model of the
DMF is established, and the approximate analytical solution
of the nonlinear frequency characteristics of the system at
steady state is solved by using averaging method. To verify
the validity of the solution process, the results are compared
with the system steady-state response amplitude obtained by
applying the fourth-order Runge–Kutta numerical method
with fixed step. +e steady-state frequency characteristics
and angular displacement transmissibility of the three-de-
gree-of-freedom (3DOF) model which takes conformal
contact into account are compared with the two-degree-of-
freedom (2DOF) model without considering conformal
contact. +e effects of moment inertia ratio, DMF stiffness,
and axial friction torque on the frequency characteristics of
system dynamic response and angular displacement trans-
missibility are demonstrated.

2. DMF Structure

Figure 1 shows the schematic diagram of the DMF structure,
which is mainly composed of six parts. +e spring 3 used for
vibration reduction is fixed between the two flanges of the
primary flywheel 1 through two spring seats 2, and the
friction damping ring 5 is placed between the primary
flywheel pressure plate 6 and the secondary flywheel 4. In the
working process of the DMF, the primary flywheel con-
nected with the engine crankshaft is driven to rotate. +e
primary flywheel compresses the damping springs installed
between the flanges, and the spring seats move the secondary
flywheel. In addition, the axial friction torque between the
primary flywheel and the secondary flywheel is generated by
the preload applied in the axial direction of the friction
damping ring.

3. Conformal Contact Action of the Friction
Damping Ring and Pressure Plate

3.1. Winkler Model. Contact between parts in multibody
system is a common phenomenon.+e analysis and solution
of the contact problems generally involve many factors such
as friction theory, dynamics, elastic deformation, and cal-
culation method. And now it has been a topic of interest to
researchers. As illustrated by Corral in [23], now there are
many contact models, such as Hertz model, Hooke’s model,
and Kelvin–Voigt model, but they generally have specific
applicable characteristics. +e Winkler model can be well
applied to the contact pressure calculation of high conformal
contact problems and wear simulation, which can avoid the
complexity of contact pressure calculation [24, 25]. For
example, Su et al. [26] used Winkler model to calculate joint
reaction and contact pressure, and the result shows that the
contact pressure calculated by this model has a better ac-
curacy than the result computed by Hertz contact theory.
Mukras et al. [27] found that Winkler contact model can
consider the influence of the shape and size of the hinge joint
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better than other models when analyzing the wear of hinged
joints with clearance. Zhu et al. [25] proposed a NLCPmodel
with considering the nonlinear relationship between contact
force and contact deformation based on Winkler contact
model when analyzing the wear of hinged joints with
clearance.

+e Winkler model ignores the shearing action on the
contact surface, and the contact interface is modeled as a
series of springs. As shown in Figure 2, the relationship
between contact pressure and contact deformation (pene-
tration depth) is described as follows:

p � E
∗δ
L

, (1)

where E∗ is the synthesis elastic modulus of the two con-
tacting objects, δ is the deformation, and L is the length
before deformation.

3.2. Contact Deformation. Figure 3(a) shows the initial state
before the deformation; the primary flywheel pressure plate
6 and the friction damping ring 5, and the friction damping
ring 5 and the secondary flywheel 4 are face-to-face contacts.
We establish a rectangular coordinate system Oxy with the
rotation centerO of the DMF as the origin point.+e contact
surface of the pressure plate and the friction damping ring is
an arc with O1 as the center, and the eccentric distance
lOO1 � e.+e contact surface of the friction damping ring and
the secondary flywheel is an arc with O point as the center,
and the interaction between the two can be approximated as
no deformation.

It is assumed that point C is a contact point on the
contact surface between the friction damping ring and the
primary flywheel pressure plate when the DMF works as
shown in Figure 3(b). Under torque action, the angular
displacement of the pressure plate relative to the friction
damping ring is θ, and the interaction line between the
pressure plate and the friction damping ringmoves to the arc

with O2 as the center (solid line II) from the arc with O1 as
the center (dotted line I). At this time, the elastic defor-
mation of the point C at the angle of α with the y-axis is
lCD � δα.

+e arc I takes O1 as the center of the circle, and the
coordinates before the deformation of the contact point C
are (rsinα, e+ rcosα). +e equation of the straight line O1C is
y� xcotα+e.+us, the equations of arc I and II are as follows:

Ι: x
2

+(y − e)
2

� r
2
,

ΙΙ: (x − e sin θ)
2

+(y − e cos θ)
2

� r
2
.

⎧⎨

⎩ (2)

+e coordinates of point D can be obtained by
substituting the equation of lineO1C into the equation of arc
II. +en, the length of CD is obtained:

δα �

�����������������������

r
2

− e
2
(sin(α − θ) − sin α)

2
􏽱

+ e(cos(α − θ) − cos α) − r.
(3)

In order to simplify the analysis and calculation,
equation (3) is regarded as a function of the independent
variable α, and the first three terms are expanded by Taylor
series at α� 0 for approximate calculation:

δα ≈ θe sin α −
θ2

2
e cos α +

e

r
􏼒 􏼓 ≈ θe sin α. (4)

For the actual structure, in equations (3) and (4),
e� 16mm, r� 60mm. When θ� 1° and the angle of contact
area αmax is 50°, the approximate deformation and the actual
deformation are shown in Figure 4. +e small difference
between the approximate deformation and the actual de-
formation indicates that this approximate equivalence is
reasonable.

+e outer arc equation of the friction damping ring is as
follows: x2 + y2 �R2. H is the intersection point of line O1C
and the outer circular arc of the friction damping ring. +e
length of O1H can be calculated and expressed as

lO1H �
xH

sin α
�

�����������

R
2

− e
2sin2 α

􏽱

− e cos α. (5)

Normal thickness of the friction damping ring at point C
before deformation is as follows:

Lα � lCH

� lO1H − r

�

�����������

R
2

− e
2sin2 α

􏽱

− (r + e cos α).

(6)

3.3. Torque Generated by Conformal Contact Action. As
shown in Figure 5(a), suppose the contact pressure at point
D on the contact surface is pα and the unit contact area is A,
the contact force Fα at the contact point can be expressed as

Fα � pαA � E
∗δα
Lα

rh dα, (7)

where dα is a small arc degree and h is axial contact length.
+e torque generated by force Fα is as follows:

ω

1 2 3 4 5 6

Figure 1: Structural diagram of the DMF: 1: primary flywheel; 2:
spring seat; 3: spring; 4: secondary flywheel; 5: friction damping
ring; 6: primary flywheel pressure plate.
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Figure 2: Winkler model.
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Figure 3: Contact deformation of the friction damping ring. (a) Initial state. (b) Contact deformation after a relative angle θ.
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Tα � FαlOE � Fαe sin α. (8)

According to equations (1)–(4) and (6)–(8), the total
torque produced by the contact action of the friction
damping ring and the primary flywheel pressure plate can be
obtained:

Td � 􏽚 Tα � Kcθ, (9)

where Kc is the conformal contact stiffness between the
friction damping ring and the primary flywheel pressure
plate, and it is expressed as

Kc � E
∗
rhe

2
􏽚

sin2 α
�����������
R
2

− e
2sin2 α

􏽰
− (r + e cos α)

dα. (10)

+e relationship between the contact stiffness and the
angle of the contact region αmax is shown in Figure 5(b). It
can be seen that Kc increases nonlinearly with the increase of
the contact angle αmax, and Kc is about 20000N·m/rad when
αmax � 50°.

4. Dynamic Analysis Model of DMF

4.1. Dynamic Model. For the cyclical change of the engine
cylinder pressure and the inertial force generated by the
reciprocating motion of the crank link mechanism in in-
ternal combustion engines, the output torque from the
engine changes continuously, which can be generally
expressed as [19, 28]:

Te � T0 + 􏽘
∞

c�0.5
Tc sin cωt + ψr( 􏼁, (11)

where T0 is the average torque caused by cylinder pressure in
a cycle, c represents the harmonic number, c � 1/2, 1, 3/2, 2,
. . ., Tc is the amplitude of torque at harmonic number c, ω is
the angular velocity of crankshaft, and ψc is the initial phase

at harmonic number c. Assume the external excitation on
the primary flywheel is in a harmonic change form:
Te �Tpsinωt.

Compared with the DMF, the moment inertia of vehicle
subsystem behind clutch-driven plate and wheel is very large.
+erefore, the wheel and vehicle subsystem is assumed to be
rigid [29, 30]. As shown in Figure 6(a), 3DOF torsional vi-
bration analysis model is established to study the DMF dy-
namic characteristics according to vehicle powertrain system,
where θ1 is the angular displacement of the primary flywheel,
θ2 is the angular displacement of the friction damping ring, θ3
is the angular displacement of the secondary flywheel, J1 is the
equivalent moment inertia of the primary flywheel and its
front parts, J2 is the moment inertia of the friction damping
ring around the rotation centerO, J3 is the equivalentmoment
inertia of the secondary flywheel and clutch-driven plate, cs is
the damping between the primary flywheel and the secondary
flywheel, kg and cg are the equivalent stiffness and damping
associated with the automotive driveline, Ts is the torque
acting through the springs between the primary flywheel and
the secondary flywheel, Td(θ1, θ2) is the contact torque of the
friction damping ring and the primary flywheel pressure plate,
and Mf is the axial friction torque between the single friction
damping ring (there are three uniformly arranged friction
damping rings in total) and second flywheel, which is pro-
duced by the axial preload. In addition, the 2DOF model
shown in Figure 6(b) is also established without considering
the contact influence between the friction damping ring and
the primary flywheel pressure plate.

As shown in Figure 6(c), the stiffness of the DMF is
divided into two stages: k1 at small angular displacements
and k2 at large angular displacements, namely

k �
k1, if − β≤ θ≤ β,

k2, else,
􏼨 (12)

where θ� θ1 − θ3, β is the relative angular displacement when
the stiffness begins to change.
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Figure 5: Contact force analysis. (a) Contact force. (b) Contact stiffness with different contact angle αmax.
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+en, the torque Ts produced by the damping springs
between the primary flywheel and the secondary flywheel is
expressed as

Ts �

k1θ, if − β≤ θ ≤ β,

k2(θ − β) + k1β, ifθ> β,

k2(θ + β) − k1β, else.

⎧⎪⎪⎨

⎪⎪⎩
(13)

Suppose θ has the form θ �AcosΘ under the engine
sinusoidal torque excitation, where A is amplitude,
Θ�ωt+ψ, ψ is the phase angle.

When A≥β, Ts is expanded by Fourier series as

Ts �

k1 +
1
π

k2 − k1( 􏼁 2φ0 − sin 2φ0( 􏼁􏼒 􏼓cos Θ +
1
π

k2 − k1( 􏼁×

􏽘

∞

m�1

1
m
sin 2 mΘ0 −

1
m + 1

sin(2m + 2)Θ0􏼒 􏼓
cos(2m + 1)Θ

2m + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A, (14)

where Θ0 � arccosβ/A.
Let Ts � (k1 + 1/π(k2 − k1)(2Θ0 − sin 2Θ0))A cos Θ

and ke � k1 + 1/π(k2 − k1)(2Θ0 − sin 2Θ0).

+e dynamic equations of the 3DOF system are illus-
trated as

J1
€θ1 + 3Kc θ1 − θ2( 􏼁 + ke θ1 − θ3( 􏼁 + cs

_θ1 − _θ3􏼐 􏼑 � Tp sin ωt

J2
€θ2 + Mfsgn _θ2 − _θ3􏼐 􏼑 � Kc θ1 − θ2( 􏼁

J3
€θ3 + kgθ3 + cg

_θ3 � ke θ1 − θ3( 􏼁 + cs
_θ1 − _θ3􏼐 􏼑 + 3Mfsgn _θ2 − _θ3􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, (15)

where

ke �

k1, if A< β,

k1 +
1
π

k2 − k1( 􏼁 2Θ0 − sin 2Θ0( 􏼁, if A≥ β,

⎧⎪⎪⎨

⎪⎪⎩
(16)

+e dynamic equations of the 2DOF system are given as

J€θ1 + ke θ1 − θ3( 􏼁 + cs
_θ1 − _θ3􏼐 􏼑 � Tp sin ωt − 3Mfsgn _θ1 − _θ3􏼐 􏼑,

J3
€θ3 + kgθ3 + cg

_θ3 � ke θ1 − θ3( 􏼁 + cs
_θ1 − _θ3􏼐 􏼑 + 3Mfsgn _θ1 − _θ3􏼐 􏼑,

⎧⎪⎨

⎪⎩
(17)
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Figure 6: DMF analysis model. (a) 3DOF model. (b) 2DOF model. (c) Piecewise variable stiffness of the damping spring.
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where J� J1 + 3J2.

4.2. Approximate Analytical Solution of theNonlinearDynamics
Equations. It is known that approximate analytical or
semianalytical solutions can be formulated by using the
methods of either Krylov–Bogoliubov, Galerkin, Ritz, av-
eraging, harmonic balance, or multiple scales.+emethod of
averaging is valid in the first approximation and can be used
to examine the stability behavior. +e main idea of the
method of averaging is that the derivatives of the amplitude

and initial phase of the nonlinear vibration system are
regarded as a slowly varying function of time and replaced by
the average value of one cycle.

In this work, the method of averaging is used to solve the
nonlinear dynamics equations. According to the nonlinear
vibration analysis of multiple degrees-of-freedom systems in
reference [31], the damping force, axial friction torque, and
input excitation in equation (15) are multiplied by a small
parameter ε; then, equation (15) is deformed as follows:

€θ1 � −
1
J1

3Kc + ke( 􏼁θ1 + 3
1
J1

Kcθ2 +
1
J1

keθ3 + ε
1
J1

Tp sin ωt − cs
_θ1 − _θ3􏼐 􏼑􏼐 􏼑,

€θ2 �
1
J2

Kcθ1 −
1
J2

Kcθ2 − ε
1
J2

Mfsgn _θ2 − _θ3􏼐 􏼑,

€θ3 �
1
J3

keθ1 −
1
J3

ke + kg􏼐 􏼑θ3 + ε
1
J3

cs
_θ1 − _θ3􏼐 􏼑 − cg

_θ3 + 3Mfsgn _θ2 − _θ3􏼐 􏼑􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Let θ1 � x1,
_θ1 � x2, θ2 � x3,

_θ2 � x4, θ3 � x5,
_θ3 � x6,

a1 � (3Kc + ke)/J1, a2 � 3Kc/J1, a3 � ke/J1, a4 � Kc/J2,
a5 � ke/J3, a6 � (ke + kg)/J3, and when ε� 0, equation (18)
can be written as

_x1 � x2,

_x2 � − a1x1 + a2x3 + a3x5,

_x3 � x4,

_x4 � a4x1 − a4x3,

_x5 � x6,

_x6 � a5x1 − a6x5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

From equation (19), the natural frequency ωni(i� 1∼3)
can be determined by the following formula

a1 − ωni
2

􏼐 􏼑 a4 − ωni
2

􏼐 􏼑 a6 − ωni
2

􏼐 􏼑

− a2a4 a6 − ωni
2

􏼐 􏼑 − a3a5 a4 − ωni
2

􏼐 􏼑 � 0.
(20)

Since the parameters a1, a3, a5, and a6 contain ke, the
natural frequency ωni is also a nonlinear function of Ai.
Taking the following transformation,

xs � 􏽘
3

i�1
AiGsi φi( 􏼁, s � 1, 2, 3, 4, 5, 6, (21)

where Ai is amplitude and φi is phase, and both are time
functions, and Gsi is a transformation function.

Inserting equation (21) into equation (18), we get

􏽘

3

i�1

dAi

dt
Gsi φi( 􏼁 − 􏽘

3

i�1
AiG
∗
si φi( 􏼁

dφi

dt
− ωni􏼠 􏼡 � εFs, (22)

where

F1 � 0,

F2 �
Tp sin ωt − cs

_θ1 − _θ3􏼐 􏼑􏼐 􏼑

J1
,

F3 � 0,

F4 �
− Mf

J2sgn _θ2 − _θ3􏼐 􏼑
,

F5 � 0,

F6 �
cs

_θ1 − _θ3􏼐 􏼑 − cg
_θ3 + 3Mfsgn _θ2 − _θ3􏼐 􏼑􏼐 􏼑

J3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Shock and Vibration 7



A set of fundamental solution of equation (19) is given as

G1i � cos ωnit,

G
∗
1i � sin ωnit

G2i � − ωni sin ωnit,

G
∗
2i � ωni cos ωnit

G3i �
a4

a4 − ω2
ni

cos ωnit,

G
∗
3i �

a4

a4 − ω2
ni

sin ωnit

G4i � −
a4ωni

a4 − ω2
ni

sin ωnit, G
∗
4i

�
a4ωni

a4 − ω2
ni

cos ωnit

G5i �
a5

a6 − ω2
ni

cos ωnit,

G
∗
5i �

a5

a6 − ω2
ni

sin ωnit

G6i � −
a5ωni

a6 − ω2
ni

sin ωnit,

G
∗
6i �

a5ωni

a6 − ω2
ni

cos ωnit.

(24)

+e adjoint equation of equation (19) is as follows:
_X1 � a1X2 − a4X4 − a5X6,

_X2 � − X1,

_X3 � − a2X2 + a4X4,

_X4 � − X3,

_X5 � − a3X2 + a6X6,

_X6 � − X5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Also, a set of fundamental solutions of equation (25) can
be obtained as follows:

H1i � cos ωnit,

H
∗
1i � sin λit

H2i � −
1
ωni

sin ωnit,

H
∗
2i �

1
ωni

cos ωnit

H3i �
a2

a4 − ω2
ni􏼐 􏼑

cos ωnit,

H
∗
3i �

a2

a4 − ωni
2

􏼐 􏼑
sin ωnit

H4i � −
a2

a4 − ωni
2

􏼐 􏼑

1
ωni

sin ωnit,

H
∗
4i � −

a2

a4 − ωni
2

􏼐 􏼑

1
ωni

cos ωnit

H5i �
a3

a6 − ωni
2

􏼐 􏼑
cos ωnit,

H
∗
5i �

a3

a6 − ωni
2

􏼐 􏼑
sin ωnit

H6i � −
a3

a6 − ωni
2

􏼐 􏼑

1
ωni

sin ωnit,

H
∗
6i � −

a3

a6 − ωni
2

􏼐 􏼑

1
ωni

cos ωnit.

(26)

+ere is a relationship between formulas (24) and (26):

􏽘
s

G
∗

si φi( 􏼁H
∗
si φi( 􏼁 � 􏽘

s

Gsi φi( 􏼁Hsi φi( 􏼁

� 1 +
a2a4

a4 − ωni
2

􏼐 􏼑
2 +

a3a5

a6 − ωni
2

􏼐 􏼑
2

� Δi.

(27)

Multiplying equation (22) by Hsi(φi) and H∗si(φi), re-
spectively, we obtain

dAi

dt
�

ε
Δi

􏽘
s

FsHsi φi( 􏼁 � εϕi Ai,φi( 􏼁,

dφi

dt
� ωni −

ε
ΔiAi

􏽘
s

FsH
∗
si φi( 􏼁 � ωni − εϕ∗i Ai,φi( 􏼁.

(28)

For Ai and φi, we take the following transformation:

Ai � yi + εUi t, yi, ϑi( 􏼁,

φi � ωt + ϑi + εVi t, yi, ϑi( 􏼁.
(29)

When studying the system main resonance vibration,
take λi–ω as the same order infinitesimal as ε, and require the
derivative of new variables yi, ϑi as follows:

dyi

dt
� εYi yi, ϑi( 􏼁 + ε2Y∗i t, yi, ϑi, ε( 􏼁,

dϑi

dt
� εZi yi, ϑi( 􏼁 + ε2Z∗i t, yi, ϑi, ε( 􏼁.

(30)

For equations (29) and (30), Yi and Zi do not contain
periodic functions of time t, and Ui, Vi, Y∗i , and Z∗i are the
functions of ϑi and t with period 2π.

8 Shock and Vibration



Substituting equation (30) into equation (29) and letting
the first-order coefficient of ε be equal, we get

Yi +
dUi

dt
� ϕi,

Zi +
dVi

dt
� − ϕ∗i .

(31)

In order tomake the functions Yi and Yi not contain time
t, put

Yi �
1
2π

􏽚
2π

0
ϕidψ,

Zi � ωni − ω −
1
2π

􏽚
2π

0
ϕ∗i dψ.

(32)

In equation (30), we take the first-order square coeffi-
cient of ε, and let the right end be equal to zero. Because the

first-order resonant amplitude is much larger than the
second-order and third-order amplitudes, the first-order
resonant frequency characteristics are mainly analyzed here.
+e first-order approximate analytical solution is set as
θ1 � A1 cos(ωt + φ1), θ2 � a4/a4 − ω2

n1A1 cos(ωt + φ1), θ3 �

a5/a6 − ω2
n1A1 cos(ωt + φ1). After a series of calculation, the

following function is obtained:

dA1

dt
� ε −

1
2J1ωn1Δ1

Tp cos φ1 −
1

2πΔ1
S1A1 + S2( 􏼁􏼠 􏼡,

dφ1

dt
� ωn1 − ω + ε

1
2J1ωn1Δ1A1

Tp sin φ1􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where

S1 �
a3

J3 a6 − ω2
n1􏼐 􏼑

−
1
J1

⎛⎝ ⎞⎠
a5

a6 − ω2
n1

− 1􏼠 􏼡csπ +
a3a5

J3 a6 − ω2
n1􏼐 􏼑

2cgπ,

S2 �
3a3

J3 a6 − ω2
n1􏼐 􏼑ωn1

−
a2

J2 a4 − ω2
n1􏼐 􏼑ωn1

⎛⎝ ⎞⎠4Mfsgn
a5

a6 − ω2
n1

−
a4

a4 − ω2
n1

􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

+e steady-state solution can be found by setting
dA/dt � 0, dφ/dt � 0. +e relationship between the system

excitation frequency ω and the amplitude A1 and phase φ1
can be obtained.

ω �

�������������������������������������������������

ωn1
2

− 2
δe

A1
􏼠 􏼡

2

±

���������������������������������

Tp

Δ1J1A1
􏼠 􏼡

2

+ 4
δe

A1
􏼠 􏼡

2 δe

A1
􏼠 􏼡

2

− ωn1
2⎛⎝ ⎞⎠

􏽶
􏽴

􏽶
􏽵
􏽴

,

φ1 � arctan
ω2

− ωn1
2

􏼐 􏼑A1

2δeω
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

where

δe � −
1

2πΔ1
S1A1 + S2( 􏼁. (36)

For the 2DOF model, according to equation (17), the
first-order natural frequency of the corresponding linear
systems can be given by:

ωn1′ �

����������������������������
1
2

b1 + b3 −

���������������

b1 − b3( 􏼁
2

+ 4b1b2

􏽱

􏼒 􏼓

􏽲

, (37)

where b1 � ke/J, b2 � ke/J3, b3 � (ke + kg)/J3.
Similarly, the first approximate analytical solution of the

2DOF model system can be written as θ1 � A1′ sin(ωt + φ1′),
θ3 � (b1 − ωn1′

2/b1)A1′ cos(ωt + φ1′), and the relationship
between ω and amplitude A1′, and phase φ1′ in the first
approximate analytical solution are deduced

ω �

����������������������������������������������

ωn1′
2

− 2
δe
′

A1′
􏼠 􏼡

2

±

������������������������������

Tp

A1′J
􏼠 􏼡

2

+ 4
δe
′

A1′
􏼠 􏼡

2 δe
′

A1′
􏼠 􏼡

2

− ωn1′
2⎛⎝ ⎞⎠

􏽶
􏽴

􏽶
􏽵
􏽴

φ1′ � arctan
ω2

− ωn1′
2

􏼐 􏼑A1′

2δe
′ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (38)
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where

δe
′ � −

1
2πΔ1′

Q1A1′ + Q2( 􏼁

·

Q1 �
b1 − ω2′

n1􏼒 􏼓
2

b1b2J3
cg −

b1 − ωn1′
2

b2J3
−
1
J

⎛⎝ ⎞⎠
ωn1′

2

b1
cs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠π,

Q2 � −
12
ωn1′

b1 − ωn1′
2

b2J3
−
1
J

⎛⎝ ⎞⎠Mf.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Equations (35) and (38) are the nonlinear relationship
between the excitation frequency and amplitude and initial
phase, which can be solved by numerical method to obtain
the corresponding amplitude-frequency characteristics and
phase-frequency characteristics.

For rotor systems, angular displacement transmissibility is
one of the important indexes of vibration reduction perfor-
mance. +e torsional angle amplitude ratio of the secondary
flywheel and the primary flywheel Tr and Tr

′ is the angular
displacement transmissibility of the 3DOF model and the
2DOF model, respectively, which can be expressed as

Tr �
a5

a6 − ω2
n1

,

Tr
′ �

b1 − ωn1′
2

b1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

We define the moment inertia ratio λ� J2/J1, and the
main parameters of the DMF are as follows: r� 60mm,
R� 92.5mm, J1 � 0.15 kg·m2, λ� 0.02, J3 � 0.055 kg·m2,
l� 70.9mm, e� 16mm, Kc � 20000N·m/rad, h� 10mm,
kg � 501N·m/°, β� 16°, k1 � 9.22N·m/°, k2 � 23.67N·m/°, and
Mf � 2N·m. +e synthesis elastic modulus E∗ can be cal-
culated with the material properties of the primary flywheel
pressure plate and friction damping ring shown in Table 1.

To verify the correctness of the solution method in
Section 3.2, the Runge–Kutta numerical method is applied to
obtain the amplitude-frequency characteristics of the pri-
mary flywheel angular displacement of the 3DOF model and
2DOF when Tp � 100N·m. As shown in Figure 7(a), the
numerical results agree with the current analytical results
well at different frequencies, which indicates that the cal-
culation and analysis of the averaging method are accurate
and valid. +e commonly used speed of the vehicle engine is
800–4000 rpm, corresponding to the angular frequency
range of 83.8–418.9 rad/s. From equation (20), the first-
order and second-order resonant frequencies of the system
are about 57 rad/s and 728 rad/s, respectively, while the
third-order resonant frequency is higher, so the resonant
frequency range of the system can avoid in the frequency
range of the engine torque variation. In addition, through
numerical analysis, it is found that the response amplitude of
the second-order and third-order resonant frequencies is
also much smaller than that of the first-order resonant

frequency. +erefore, we mainly analyze the first-order
resonant frequency characteristics without considering the
second-order and third-order resonant frequency charac-
teristics in Section 3.2.

+e first-order resonance amplitude-frequency charac-
teristics of the 2DOF model and 3DOF model under dif-
ferent excitation torque amplitudes Tp are shown in
Figure 7(b). It can be seen that the larger the excitation
torque, the larger the overall response amplitude and the
wider the resonance frequency band. Under the same ex-
citation frequency, the amplitude of the 3DOF model is
smaller than that of the 2DOF model, especially nearby the
resonant frequency.+emaximum value of the 3DOFmodel
is 10.2°, 20.7°, and 28.7° when Tp � 40N·m, 80N·m, and
120N·m, respectively, while the maximum value of the
2DOFmodel is 10.9°, 21.6°, and 30.2°. Since the 3DOFmodel
takes into account the elastic deformation under the contact
action of the structure, it is more closer to the actual situ-
ation. Next, the frequency characteristics, angular dis-
placement transmissibility, and forced vibration of the
3DOF model are mainly analyzed.

+e effects of the moment inertia ratio λ, DMF stiffness
ke, and contact stiffness Kc on the natural frequency of the
3DOF model can be analyzed, respectively from equation
(20), as shown in Figure 8. When λ changes from 0 to 0.1, as
shown in Figure 8(a), the first-order natural frequency
changes from 58.8 rad/s to 51.6 rad/s, the third-order natural
frequency changes from 36520.3 rad/s to 1316.8 rad/s, while
the second-order natural frequency basically maintains at
729.1 rad/s. +erefore, J2 has a great influence on the first-
order and third-order natural frequencies but little influence
on the second-order natural frequencies. Figure 8(b)
demonstrates that when the torsional stiffness ke changes
from 0N·m/° to 30N·m/°, the first-order natural frequency
ωn1 changes from 0 to 100.9 rad/s, and the second-order and
third-order natural frequencies are about 729.1 rad/s and
2658.3 rad/s, respectively. +erefore, ke mainly affects the
first-order natural frequency and has little influence on the
second- and third-order natural frequencies. Besides, from
Figure 8(c), it can be concluded that the contact stiffness Kc
mainly affects the third-order natural frequency and has
little effect on the first-order and second-order natural
frequency.

5. Steady-State Response
Frequency Characteristics

Based on the above analysis and considering that the axial
friction torque has the damping equivalent effect to decrease
the vibration, the influence of the moment inertia of the
friction damping ring J2, the DMF stiffness (k1 and k2), and
the axial friction torque Mf on the nonlinear amplitude-
frequency characteristics of the 3DOF model is to study
below.

When the other parameters remain unchanged and the
moment inertia ratio λ is given as 0.01, 0.02, 0.1, and 0.5, the
first-order amplitude-frequency characteristic curves are
shown in Figure 9(a). With the increase of λ, the first-order
resonant frequency becomes small, and the overall
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Table 1: Material properties.

Properties/bodies Primary flywheel pressure plate Friction damping ring
Material Steel Pa66
Elastic modulus (GPa) 206 8.3
Poisson ratio 0.3 0.28
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Figure 7: Amplitude-frequency characteristics of the primary flywheel angular displacement. (a) Comparison of the numerical method
result and the analytical result of the 3DOF model and 2DOF model when Tp � 100N·m. (b) Comparison of the 3DOF model and 2DOF
model with different Tp.
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Figure 8: Continued.
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Figure 8: Influence of λ, ke and Kc on the natural frequency of the 3DOF model. (a) Influence of λ. (b) Influence of ke. (c) Influence of Kc.
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Figure 9: Amplitude-frequency characteristics of the primary flywheel angular displacement. (a) Influence of λ. (b) Influence of k1.
(c) Influence of k2. (d) Influence of Mf.
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amplitude nearby resonant frequency will increase.+erefore,
the moment inertia of the friction damping ring J2 in-
creases, the frequency of the resonance region will be
significantly decreased, but the amplitude will also be
significantly increased.

When k1 is taken as 5N·m/°, 10N·m/°, 15N·m/°, and
20N·m/°, respectively, the amplitude-frequency character-
istic curves are shown in Figure 9(b). It can be found that
with the increase of k1, the corresponding amplitude-fre-
quency characteristic curve moves to the right, namely the
resonance frequency increases, but the response amplitude
at the resonance frequency will decrease.

In Figure 9(c), the amplitude-frequency characteristic
curve is given when k2 is 10N·m/°, 15N·m/°, 20N·m/°, and
25N·m/°, respectively. It can be concluded that the second-
stage stiffness k2 of the DMF has a great influence on the
amplitude-frequency characteristics of the resonance region.
With the increase of k2, the overall amplitude decreases, and
the amplitude-frequency characteristic curve moves to the
right, namely the resonant frequency increases. +e main
reason is that when A≥β, with the increase of k2, the
equivalent stiffness ke of the system increases, and the first-
order natural frequency increases simultaneously, as shown
in Figure 8(a).

Figure 9(d) shows the amplitude-frequency character-
istics when the axial friction torqueMf equals 0N·m, 3N·m,
6N·m, and 10N·m, respectively. +e resonance regions
corresponding to different axial friction torque Mf are ba-
sically the same, but the amplitudes at the same frequency
are different. With the increase of Mf, the overall amplitude
decreases, especially the peak value at the resonance fre-
quency decreases significantly, and the resonance frequency
band becomes narrow. +erefore, increasing the axial fric-
tion torque is beneficial to reduce the vibration of the system
near the resonant frequency. But, because the friction be-
tween the parts will cause energy dissipation, excessive axial
friction torque will increase fuel consumption and aggravate
the wear and service life of the parts in the normal driving
process of the vehicle.

6. Angular Displacement
Transfer Characteristics

Figure 10 shows the angular displacement transmissibility
near the first-order resonance frequency region when
Tp � 100N·m. +e comparison of the angular displacement
transmissibility of the 3DOF model and the 2DOF model is
depicted in Figure 10(a). It can be seen that with the increase
of frequency, the transmissibility first keeps about 0.018.
When the frequency gradually approaches the resonance
frequency, it increases to the maximum value and finally
decreases to a stable value of about 0.018 with the continuous
increase of frequency. Compared to the 2DOF model, the
angular displacement transmissibility of the 3DOF model is
less in the frequency region of 30–70 rad/s. +e maximum
transmissibility is about 0.026 and 0.025 for 2DOF model
and 3DOF model, respectively.

Figure 10(b) shows the angular displacement trans-
missibility under different moment inertia ratios λ. With the

increase of λ, the angular displacement transmissibility curve
moves to the left, and the peak value of the transmissibility
becomes higher. But the angular displacement transmissi-
bility far from the resonance frequency region is similar.

Angular displacement transmissibility with different
first-stage stiffness k1 of the DMF is shown in Figure 10(c).
+e maximum angular displacement transmissibility is at
the resonant frequency. +e parameter of k1 has a great
influence on transmissibility. +e larger k1 is, the higher the
transmissibility is, but the smoother the change process of
the transmissibility is.

Figure 10(d) shows the angular displacement trans-
missibility when the second-stage stiffness k2 of the DMF is
given different value. In the frequency region 30–70 rad/s,
the angular displacement transmissibility corresponding for
different k2 varies greatly. With the increase of k2, the an-
gular displacement transmissibility and the frequency cor-
responding to the maximum transmissibility become larger.
When the frequency is far away from the resonance fre-
quency region, the angular displacement transmissibility
with different k2 is basically the same, which is about 0.018,
and the larger the k2 is, the faster the transmissibility changes
with frequency.

Figure 10(e) shows the angular displacement trans-
missibility with different axial friction torques Mf. In the
resonance frequency range, the larger the Mf is, the smaller
the angular displacement transmissibility is. And the angular
displacement transmissibility is almost the same at far away
from resonance frequency, which is about 0.018.

7. Forced Vibration Response

According to the torsional vibration differential equation
(15), the forced vibration response of the system of the 3DOF
model is analyzed by using the fourth-order Runge–Kutta
numerical method. +e first-order nonlinear resonance
frequency of the system is about 64.5 rad/s. Let the ampli-
tude of the input excitation torque be 100N·m, the excitation
frequency be 100 rad/s, and all of the initial angular dis-
placements and angular velocities be zeros. +e dynamic
response of the primary flywheel, friction damping ring, and
the second flywheel are shown in Figure 11(a). +e am-
plitude of the angular displacement of the primary flywheel
is close to the angular displacement of the friction damping
ring, which is about 5° and basically the same as the ap-
proximate solution result. Figure 11(b) shows the variation
of the relative angular displacement between the friction
damping ring and the primary flywheel, which presents a
complex variation. +e maximum relative angular dis-
placement is about 0.02°, and the corresponding maximum
torque caused by conformal contact is 6.98N·m. +erefore,
the contact elastic deformation and stress on the contact
region of the friction damping ring and the primary flywheel
pressure plate are also changed with time under the variable
torque excitation during the working process.

When the excitation frequency equals to the first-order
nonlinear resonance frequency 64.5 rad/s, and the initial
angular displacement and angular velocity are all zeros, the
dynamic responses of the 3DOF are shown in Figure 12(a). It
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Figure 10: Variation of angular displacement transmissibility Tr with frequency. (a) Comparison of 3DOF model and 2DOF model.
(b) Influence of λ. (c) Influence of k1. (d) Influence of (k)2. (e) Influence of Mf.
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can be seen that the primary flywheel, the friction damping
ring, and the secondary flywheel have large amplitudes for
the system resonates. +e change of the angular displace-
ment of the friction damping ring and the primary flywheel
is still relatively close, and the amplitudes of both are about
25.2°. +e maximum relative angular displacement shown in
Figure 12(b) is about 0.04°, and the correspondingmaximum
torque caused by conformal contact is 13.96N·m. Compared
with the primary flywheel, the amplitude of the secondary
flywheel is also smaller, which is basically the same as the
results of the averaging method. Figures 11 and 12 show that
the angular displacement amplitude of the secondary fly-
wheel is obviously smaller than that of the primary flywheel
after the damping effect of the DMF, indicating that the
DMF has very excellent damping performance.

8. Conclusions

In order to study the nonlinear dynamic characteristics of the
DMF under the conformal contact action between the friction
damping ring and the primary flywheel pressure plate, a
conformal contact analysis model based on the Winkler model
is established. +e contact deformation, contact pressure at
different contact positions, and equivalent torsional contact
stiffness are analyzed. +en, two nonlinear dynamic analysis
models of the DMF are established, and the averaging method
is used to derive the approximate analytical solution of the
nonlinear frequency characteristics of the system at steady state.
+e theoretical analysis process is proved to be valid by
comparing with the response amplitude of the system at steady
state analyzed by applying Runge–Kutta numerical method. It
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is found that the structural conformal contact has a certain
influence on the nonlinear dynamic characteristics of the
system. +e overall amplitude and angular displacement
transmissibility of the 3DOF model considering the conformal
contact effect are smaller than the 2DOF model, especially at
resonance frequency. Besides, the 3DOFwhich considering the
conformal contact of the friction ring is more in line with the
actual situation. When J2 is small, the result of 2DOF model is
close to 3DOFmodel. Andwith the increase of J2, the difference
between the 2DOFmodel and 3DOFmodel results will become
larger.

+e influences of the moment inertia ratio λ, DMF stiff-
ness, and axial friction torque Mf on the dynamic response
frequency characteristics and angular displacement transmis-
sibility of the 3DOF model are analyzed. +e results indicate
that the first-order natural frequency concerned in this study is
mainly affected by the friction damping ring moment inertia J2
and DMF stiffness ke. +e frequency of the resonance region
will be significantly decreased with the increase of the friction
damping ring moment inertia J2, but the amplitude of the
system vibration will also turn larger. When the first-stage
stiffness of the DMF k1 increases, the resonance frequency will
increase, but the response amplitude at the resonance fre-
quency decreases.+e overall amplitude decreases significantly,
but the resonant frequency increases with the increase of the
second-stage stiffness of the DMF k2. +e increase of the axial
friction torque Mf will make the overall amplitude decrease.

+e angular displacement transmissibility reaches the
maximum at the resonance frequency. In the resonance fre-
quency region, the increase of λ or k2 and the decrease of Mf
make the angular displacement transmissibility become larger.
At the frequency away from resonance frequency region, the
effect of each one of λ, k2, andMf parameters on transmissibility
is small. +e parameter of k1 has a great influence on the
transmissibility: the larger k1 is, the higher the transmissibility is.

For the variation of the relative angular displacement
between the friction damping ring and the primary flywheel
pressure plate, the contact elastic deformation and stress on
the contact region of the friction damping ring and the
primary flywheel pressure plate are changing with time
under the variable torque excitation during the working
process. +e angular displacement amplitude of the sec-
ondary flywheel is obviously smaller than that of the primary
flywheel after the damping effect of the DMF, indicating that
the DMF has very excellent damping performance.
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