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In this paper, on the basis of taking the von Karman nonlinear factors into consideration, the constitutive equation of the
antisymmetric cross-ply laminated composite was used to calculate the internal force and internal moment of the bistable
structure, and the dynamic equilibrium equation and the compatible equation were constructed, respectively. *e two equations
were combined to establish a nonlinear dynamic model for the antisymmetric cross-ply laminated glass fiber resin bistable shell.
*en, the finite element numerical simulation software ABAQUS was adopted to perform simulation modeling and numerical
analysis on a series of bistable specimens, so as to study the impact of different geometric parameters on the frequencies, mode
shapes, and other vibration characteristics of the antisymmetric laminated fiber resin bistable shell. Galerkin discretization was
conducted on the vibration partial differential equation. Since there are only even-order partial differential terms of deflection w

with respect to x and y in the vibration partial differential equation at this time, the form of series obtained by each term is the
same, which simplifies the discretization of the dynamic equilibrium equation and the compatible equation. Finally, the two
equations after discretization were merged to obtain the three-degree-of-freedom nonlinear ordinary differential equation of the
antisymmetric cross-ply laminated glass fiber resin bistable shell. *e system averaged equation was acquired by perturbation
analysis through a multiscale method, and the periodic solution of the antisymmetric laminated bistable system was studied.
Moreover, the system’s nonlinear dynamic behavior characteristics such as bifurcation and chaos were explored when the main
resonance Ω is close to ω1 and ω2, respectively, and the internal resonance is 1 : 2 : 3.

1. Introduction

A bistable structure is formed by laying multiple layers of
fiber-reinforced materials, which is a composite laminated
structure with two different stable states. Generally, under
the driving of external loads such as mechanical force, smart
materials, and temperature field, it can be changed from one
stable state to the other, and its stable configuration can be
maintained without the need for sustained energy input.
Hyer [1] first discovered that asymmetric laminated cylin-
drical shells have bistable characteristics. In 1996, Daton-
Lovett [2] found that antisymmetric laminated composite
cylindrical shells also present the two stable states of a
cylinder, which attracted considerable attention from many
scholars, and relevant theoretical, numerical, and

experimental studies are successively conducted. Innova-
tively, this paper found the law of deformation cloud dia-
grams of the antisymmetric laminated shallow shell and
cylindrical shell made of T300 and studied the influence of
geometric parameters (e.g., length, initial cross-section ra-
dius, initial central angle, number plies, and ply angle) on the
modal frequency and mode shape of the antisymmetric
laminated cylindrical shell.

*e theoretical study of antisymmetric bistable lami-
nated structures is mainly focused on statics and dynamics.
In statics, Iqbal [3] proposed a simple linear elastic bistable
model based on the classical laminate theory and predicted
the bistable behavior of antisymmetric laminated shells
according to the principle of minimum potential energy.
Galletly and Guest [4,5] successively proposed the beam
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model and the shell model regarding the theoretical model
developed by Iqbal. *e theoretical results are in good
agreement with the finite element simulation results, but
greatly different from the experimental results. Pellegrino
and Guest [6] proposed the double-parameter model by
referring to previous studies. *is model can be used to
calculate and analyze the bistable characteristics of anti-
symmetric and symmetric laminated isotropic cylindrical
shells as well as those with prestress. *e College of Engi-
neering, University of Cambridge successively studied the
bistable characteristics of multistable composite shells with
surface folds [7–10] and isotropic laminated shells with
prestress [11]. Concerning the studies on the nonlinear
dynamics of bistable structures, Zhang and Zheng [12]
adopted the extended high-dimensional Melnikov method
and numerical method and found that the multipulse
double-parameter chaotic motion of asymmetric bistable
laminated square plates will occur under a certain coupling
effect of external excitation and parametric excitation.
Zhang and Liu [13] studied the dynamic jump phenomenon
of asymmetric bistable laminated square plates and its
nonlinear vibration under base excitation from both theo-
retical and experimental aspects. Fei [14] analyzed the jump
behavior of a two-layer orthogonal bistable laminated plate,
while considering factors such as thickness, temperature,
and external excitation of the laminated plate.

For the numerical analysis, the stable state transition of
bistable laminated structures can be caught by the com-
mercial finite element software, so the calculation result is
more intuitive. Also, numerical analysis can be performed
to perfect the theoretical model and predict the bistable
characteristics of the structure, thus providing references
for the experimental study. Iqbal and Pellegrinot [15]
conducted numerical simulation on the bistable behavior
of antisymmetric laminated shells using ABAQUS software
and analyzed the stable state transition of antisymmetric
laminated cylindrical shells and the stress distribution of
the second stable state structure. Huang [16] introduced the
bistable differential system into each cell of the grid and
studied the effect of topology on the stable-state trend of
the network.

In terms of the experimental study, Dano and Hyer [17]
measured the jump loads of the bistable laminated plate by
adjusting the water load, and the experimental measure-
ments are in good agreement with the theoretical calcula-
tions. Potter et al. [18] adopted the loadingmethod similar to
“three-point bending” to induce the jump phenomenon of
the bistable laminated plate and measured the load-dis-
placement curve of the center of the form of the laminated
plate. Daynes and Tawfik [19, 20] adopted similar experi-
mental loading schemes and obtained the jump loads of
orthogonal laminated plates with different geometric di-
mensions and the relations of curvature variation between
two stable states. Etches [21] considered the effect of hu-
midity on the mechanical properties of a bistable laminate
plate and found that the jump load of the asymmetric or-
thogonal bistable laminated plate changes significantly at the
initial stage of the experiment and then gradually levels off.
Dano and Hyer [22] realized the intelligent control of

asymmetric bistable laminated plates by controlling the
temperature of the alloy wires to generate different driving
forces. Schultz et al. [23] utilized a bistable laminated plate
driven by piezoelectric materials to realize the stable state
transition, but there is a big error between experimental and
theoretical results. Tawfik et al. [24] realized the mutual
transition between the two stable states by applying voltage,
and the error between experimental and finite element
simulation results is less than 10%. Giddings et al. [25] used
piezoelectric patches to control the deformation of bistable
laminated plates and studied the relationship between
voltage and deformation, which played a guiding role in the
design and control of the intelligent deformable structure.
Kim et al. [26] realized the mutual conversion of bistable
cantilever beams in two stable states by using MFC and
SMA.

In the research of practical engineering application, the
University of Cambridge [15] studied the bistable thin-
walled tube similar to a tape measure and realized the stable
state transition by controlling the energy accumulated in the
folding process, which enables the bistable tap structure to
be used for automatic hinge locks, detectors, expandable
structures, and other aerospace devices. Schlecht [27] ap-
plied the bistable torsional assembly structure to the wing
configuration of unmanned aerial vehicles, which in turn,
can improve the sensitivity of aircraft during rotation be-
cause it requires only a small amount of energy to drive the
wing to deformation. Diaconu and Weaver [28] used a
bistable structure to design a wing model that can meet the
actual conditions and analyzed the application prospect of
such wing as a variant structure. Mattioni [29] made variable
wing structures using bistable structures and used intelligent
components to control their deformation to change the wing
structure. *e bistable structure can serve as both a de-
formable structure and as an energy harvesting structure. By
utilizing the nonlinear vibration in the stable-state jump
process, the bistable structure can be shaped into a
broadband energy harvester [30–32]. *ree bistable struc-
tures have been applied to the piezoelectric energy capture,
which is formed by using the principle of homopolar re-
pulsion of magnetic force [33–38], buckling of the beam, and
thermal stress [39, 40], respectively, and the conversion of
mechanical energy to electrical energy is achieved during
vibration. Yao [41–45] separated the end of the upper pi-
ezoelectric layer from the base layer in the traditional pie-
zoelectric cantilever beam and conducted an experimental
study on broadband energy collection and dynamic response
of the L-shaped piezoelectric cantilever beam. Chen [46, 47]
studied a micro/nanoscale bistable plate electrical-thermal-
mechanical coupling system for energy harvesting and an-
alyzed the voltage-modal frequency response of a nonlinear
system.

2. Dynamic Modeling

*e antisymmetric cross-ply laminated structure is formed
by alternately laying the orthotropic single-layer structure at
an angle of 0∘ and 90∘ between the main direction of the
material and the coordinate axis. *e stiffness coefficient of
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the antisymmetric cross-ply laminated structure has the
following relationship: (Q11)0° � (Q22)90°, (Q22)0° � (Q11)90°,
and Q16 � Q16 � 0. *us, A11 � A22, D11 � D22, and
A16 � A26 � D16 � D26 � B16 � B26 � 0, and it can be
proved that B12 � B66 and B22 � − B11. In this study, four
layers [0°/90°/0°/90°] antisymmetric cross-ply laminated
bistable thin shell was selected as the model, as shown in
Figure 1, and the specific laying mode is shown in Figure 2.
Glass fiber and epoxy resin substrate were used as the
materials for the shell. *e thickness of a single layer is
0.185mm. Other material parameters are displayed in
Table 1.

Based on the classical nonlinear shallow shell theory and
the von Karman large deformation theory, the nonlinear
response of the antisymmetric cross-ply laminated bistable
shallow shell was studied. *e nonlinear geometric equation
of the middle plane of the Donnell cylindrical shell was
applied:
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where u0, v0, and w represent the displacement of the point
on the middle plane of the cylindrical shell in the directions
of x, y, and z and Rx and Ry represent the initial radius of
curvature of the cross-section in the x and y directions of the
cylindrical shell.

Since the main direction of vibration of the shallow shell
is transverse deflection, the inertia in the plane is ignored.
Because of the coupling between the in-plane displacement
and the transverse displacement in the geometric equation, it
is necessary to introduce a compatible equation to form a
complete set of equations. *e compatible equation of the
double-curved shallow shell under plane stress is expressed
as
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*ere are six independent components of internal force
in the theory of shallow shell vibration: Nx, Ny, Nxy, Mx,
My, and Mxy. After the shear force Qx and Qy was elim-
inated, three dynamic equilibrium equations can be
obtained:
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where Q represents the external excitation received by the
shell and c represents the damping coefficient.

*e three components of internal force Nx, Ny, and Nxy

can be connected by the Airy stress function according to
equation (3) in the following way:
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By substituting equation (1) into equation (2), the first
two dynamic equilibrium equations (3a) and (3b) can be
automatically satisfied. *e expressions of the internal force
N and internal moment M of the antisymmetric cross-ply
laminated composite material can be written as
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(5)

It can be seen from the above equation that the anti-
symmetric cross-ply laminated bistable structure has the
coupling between stretching and bending. Combining
equation (4a4b4c) with equation (5), the expression of the
middle plane strain expressed by Pij can be obtained:
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where P11 � A22/A11A22 − A2
12, P12 � A12/A11A22 − A2

12,
P22 � A11/A11A22 − A2

12, and P33 � 1/A66.
By substituting simplified equation (5) of the internal force

and internal moment on the cross section of the antisymmetric
cross-ply thin shell and midsurface strain expression (6a)–(6c)
into dynamic equilibrium equation (3c), we have
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Figure 1: Model of the bistable structure under the action of exciter. (a) First natural equilibrium position. (b) Second natural equilibrium
position.

Figure 2: Schematic diagram of antisymmetrically cross-ply by [0°/90°/0°/90°].

Table 1: S1002 Single-layer material parameters.

E11(GPa) E22(GPa) E12(GPa) E12(GPa) E12(GPa) v12 Ρ Fiber (%)

39 8.4 4.2 4.2 4.2 0.26 1.6 45
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*en, by substituting simplified equation (5) of internal
force and internal moment and the expression of midsurface
strain (6a6b6c) into compatible equation (2), we have
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In the discussion of the mode superposition method, the
solution of a continuous system can be written as a linear
combination of all mode functions. Since the boundary
condition of the model is that the four sides are free, the

center is fixed, the selected shape function does not need to
satisfy any geometric boundary conditions, and the dis-
placement shape function in the direction of z is given by
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where Wij(t) represents generalized coordinates and
wij(x.y) is the mode function of the system, where the
subscript i � 0, 1 . . . , M and j � 0, 1 . . . , N, and all the shape
function terms are the combined operations of nonzero
trigonometric functions, where M � 4I + 1, and M × N is
the number of degrees of freedom selected in the approx-
imation. Since the model built is a shallow shell structure
and the area defined by the transverse displacement
w(x, y, t) and stress function Φ(x, y, t) is the same, it is
assumed that they can be expanded with the same shape
function wij(x, y). Take the mode shape function of the
transverse displacement w and stress function Φ, as shown
below:
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where Wij and Fmn are, respectively, the generalized co-
ordinates of transverse displacement w and stress functions
Φ. First, substituting equation (10a10b) into dynamic
equilibrium equation (7) leads to
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*en, equation (10a10b) was substituted into compatible
equation (8), and we have
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3. Galerkin Discretization

*en, the two equations were discretized by Galerkin so that
the infinite degree of the freedom system can be discretized
into a finite degree of the freedom system. Take αi � (πi)/L,

βj � (πj)/L. Both sides of equilibrium equation (11) were
multiplied by wab(x, y), and they were integrated over the
area to obtain
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Both sides were divided by (ρhL2)/4, and the equilibrium
equation obtained is as follows:
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2
j 􏽚 􏽚 wijwpqwmnds􏼒 􏼓Wij(t)Wpq(t).

(15)

Let the coefficient ahead of F(1)
mn(t) be 1, and the com-

patible equation obtained is

Fmn(t) � G
− 1
mnHmnWmn + G

− 1
mn T

ijpq
mn − 􏽙

ijpq

mn

⎞⎠Wij(t)Wpq(t),⎛⎝

(16)

where Tijpq
mn � λicjλpcqΘijpq

mn , Πijpq
mn � λ2i c2

qΘ
ijpq
mn , Gmn � (L2

/4)[P22λ
4
i + P11c

4
j + (P33 − 2P12)λ

2
i c2

j], Θijpq
mn � 􏽒 􏽒 wijwpq

wmndS, and Hmn � (L2/4)[P12B11λ
4
i − P12B11c

4
j + B11(P22 −

P11)λ
2
i c2

j + (1/Ry)λ2i + (1/Rx)c2j]

Due to the decoupling between the generalized coor-
dinates of the stress function and the generalized coordinates
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of the transverse displacement, the equation set can be
decoupled and the governing motion equation of the
transverse displacement can be given. By substituting

equation (16) into equation (14), the final vibration differ-
ential equation can be obtained:

€Wab (t) + 2ζab,plateωab,plate
_Wab(t) + ω2

abWab(t) + ΓabG
− 1
ab T

ijpq

ab − Πijpq

ab􏼐 􏼑Wij(t)Wpq(t) � Qab, (17)

where ω2
ab � ω2

ab,plate + ΓabG− 1
mnHmn.

Since low-order mode shapes play a major role in vi-
bration, the higher the order, the smaller the role. To fa-
cilitate writing, the displacement wn in the deflection

direction of the plate was rewritten as xn, and the load
excitation Q was replaced by F. *erefore, the first three
modes were selected to obtain the three-degree-of-freedom
ordinary differential governing equations:

€x1 + 2ζ1ω1 _x1 + ω2
1x1 + M1x

2
1 + M2x

2
2 + M3x

2
3 + M4x1x2 + M5x1x3 + Mx2x3 � F1 cos(Ωt), (18a)

€x2 + 2ζ2ω2 _x2 + ω2
2x2+7x

2
1 + M8x

2
2 + M9x

2
3 + M10x1x2 + M11x1x3 + M12x2x3 � F2 cos(Ωt), (18b)

€x3 + 2ζ3ω3 _x3 + ω2
3x3 + M13x

2
1 + M14x

2
2 + M15x

2
3 + M16x1x2 + M17x1x3 + M18x2x3 � F3 cos(Ωt), (18c)

where ζn is the damping parameter of the system, ωn is the
one of the natural frequencies of the system, and Mn is the
coefficient before each quadratic nonlinear term.

4. Linear System

4.1. Numerical Analysis of Vibration Characteristics. After
obtaining the three-degree-of-freedom ordinary differential
equation of the antisymmetric cross-ply bistable thin shell,
Figure 3 shows the mode shapes of the first 9 antisymmetric
cross-ply bistable shallow shell models obtained by the finite
element numerical simulation software ABAQUS. It can be
seen from the figure that each is symmetric or antisymmetric
with respect to the x axis and the y axis.*e first mode shape is
the biaxially antisymmetrical torsion, the secondmode shape is
the biaxially symmetrical bending vibration, and the third
mode shape is the torsional vibration symmetric with respect to
x-axis and antisymmetric with respect to y-axis. Starting from
the fourth order, the mode shapes are all bending-torsional
coupling vibrations. *e fourth mode shape is antisymmetric
with respect to x-axis and symmetric with respect to y-axis, the
fifthmode shape is symmetric with respect to the two axes, and
the sixthmode shape is antisymmetric with respect to the x axis
and symmetric with respect to y axis. *e seventh mode shape
is antisymmetric with respect to the two axes.*e eighth mode
shape is symmetric with respect to the x axis and antisym-
metric with respect to the y axis, and the ninth mode shape is
antisymmetric with respect to the two axes. Higher-ordermode
shapes also satisfy this law.

4.2.2e Impact ofGeometric Parameters on the Frequency and
ModeShapes of theBistableCylindrical Shell. Since the laying
angle of antisymmetrical cross-ply was selected as the al-
ternately layingmode at 0∘ and 90∘, simulationmodeling and
analysis were performed on the first 9 groups of the test
specimen in Table 2. By changing the shell length L, the

initial crosssection radius R1, the initial cross-section center
angle β, and the number of layers n, the impact of different
geometric parameters on the frequency and mode shapes of
the antisymmetric laminated bistable shell was studied.

Figure 4 shows the relationship between different shell
length L and the frequency value ω of the first 14 anti-
symmetric cross-ply laminated cylindrical shell. *e black,
red, and blue lines represent the three situations where
L � 300mm, L � 350mm, and L � 400mm, respectively. It
can be seen from the figure that the frequency value in-
creases with the increase of the order of mode shape and, at
the same time, increase with the decrease of the shell length.
*e frequency values before the 7th mode shape are close,
and the values of the 10th and 11th mode shapes are close to
each other, while the values of other mode shapes are ob-
viously different. *e frequency values of the 8th and 9th
mode shapes of each model are slightly different, and the
curves in the figure tend to be flat. *e frequency values of
the 12th and 13th mode shapes also have the same law. *e
small figure gives the details of the frequency values of the
first 5 models with three shell lengths.

Figures 5 to 7 present the stress cloud of the first 9
mode shapes of the models with three shell lengths ob-
tained by simulation. It can be seen that the main mode
shape at each order of the models with three shell lengths
has changed. In the figure, the distribution law of the stress
on the shell in each mode shape can be observed. *e
magnitude of the stress increases with the changes of blue,
green, yellow, and red. When there are two straight op-
posite sides of the mode shape, the maximum stress is
distributed on the two straight sides of the shell, and the
distribution of minimum values on the shell surface is close
to a regular rectangle; when the four sides of the mode
shape are all curved sides, the maximum values of stress are
distributed on the four corner points, and the distribution
of the minimum values is irregular. Only the second,
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fourth, and fifth mode shapes remain unchanged, while
other mode shapes are different. In the first 6 mode shapes,
bending vibration and torsional vibration appear alter-
nately. Starting from the 7th order, all mode shapes are
bending-torsion coupling vibrations.

Figure 8 illustrates the impact of different initial cross
section radius R1 on the frequency ω of the antisymmetric
cross-ply laminated cylindrical shell. *e black, red, and blue
lines, respectively, represent the curves of the frequency values
at the first 14 orders in the three cases where R1 � 75mm,
R1 � 85mm, and R1 � 95mm. It can be seen from the figure
that the frequency value increases with the increase of the
order of mode shape and, at the same time, increases with the
decrease of the initial cross-section radius R1. *e overall
trend in the three cases is similar to that in Figure 3, except

that the frequency value increases slowly at the 8th, 9th, 12th,
and 13th mode shapes, and the frequency values at other
orders show a significant increase. *e small figure displays
the detailed diagram of the frequency values of the first 5
mode shapes. Figures 9 and 10 present the stress cloud of the
first 9 mode shapes when R1 � 75mm and R1 � 85mm
obtained by simulation, and they were compared with the
situation where R1 � 95mm in Figure 4. In the figure, the
stress distribution on the shell in each mode shape can be
found, and the stress distribution law is the same as that
shown in Figures 5–7. Only the 4th, 5th, and 8th mode shapes
remain unchanged, while other mode shapes are different. In
the first 6 mode shapes, bending vibration and torsional
vibration appear alternately. Starting from the 7th mode
shape, all modes are bending-torsion coupling vibrations.
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Figure 3: Diagram of mode shapes at the first nine orders of the antisymmetric bistable laminated shallow shell. (a) ω1 � 14.2Hz.
(b) ω2 � 30.85Hz. (c) ω3 � 42.2Hz. (d) ω4 � 80.4Hz. (e) ω5 � 85.5Hz. (f ) ω6 � 94.9Hz. (g) ω7 � 95.4Hz. (h) ω8 � 158.3Hz.
(i) ω9 � 163.1Hz.

Table 2: Model parameters of the antisymmetric bistable test specimen with different shapes.

Test specimen L (mm) R1 (mm) β(°) n α(°)

1 300
95

180
4

45

2 350
3 400
4

300

75
5 85
6

95

120
7 150
8

180

6
9 8
10 4 30
11 60
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Figure 11 exhibits the relationship between different initial
cross-section central angle β and the frequency value ω. *e
black, red, and blue lines represent the curves of frequency at
the first 14 orders when the central angle β � 120∘, β � 150∘,
and β � 180∘, respectively. *e small figure is the detailed
diagram of the frequency values of the 6th to 9th mode shapes.
It can be seen that the frequency values of the 6th to 9th mode
shapes when β � 150∘ are relatively close, and the curves tend
to be flat. In other cases, the frequency value increases with the
decrease of the central angle. Figures 12 and 13 show the stress

cloud of the first 9 mode shapes under the initial cross-section
center angle β � 120∘ and β � 150∘ obtained by simulation,
respectively. *e distribution rules of the maximum and
minimum stress on the shell surface are the same as those
described above. Only the first, second, fourth, and eighth
mode shapes remain unchanged, while other mode shapes are
quite different. In the first 6 mode shapes, bending vibration
and torsional vibration appear alternately. Starting from the
7th mode shape, all mode shapes are bending and torsion
coupling vibrations.
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Figure 4: Influence of length L on modal frequency ω.
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Figure 5: Diagram of the mode shape at the first eight orders and modal frequency (L� 300mm). (a) ω1 � 14.8Hz. (b) ω2 � 25.5Hz. (c)
ω3 � 34.6Hz. (d) ω4 � 74Hz. (e) ω5 � 82.7Hz. (f ) ω6 � 156Hz. (g) ω7 � 164.2Hz. (h) ω8 � 229.7Hz. (i) ω9 � 230.1Hz.
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Figure 14 describes the impact of different layer thick-
nesses n on the frequency of antisymmetric cross-ply lam-
inated cylindrical shell. *e black, red, and blue lines
represent the curves of frequency at the first 14 orders when
the layer thickness n � 4, n � 6, and n � 8. It can be found
from the figure that the frequency value increases with the

increase of the order of mode and, at the same time, in-
creases with the increase of the layer thickness. *e overall
trend in these three cases is similar to that in the previous
cases, except that the frequency values of the 3rd, 5th, and
9thmode shapes are significantly increased, and the values at
other orders all increase slowly. *e small figure gives the
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Figure 6: Diagram of the mode shape at the first eight orders and modal frequency (L� 350mm). (a) ω1 � 13Hz. (b) ω2 � 25.5Hz.
(c) ω3 � 32.5Hz. (d) ω4 � 74Hz. (e) ω5 � 80.5Hz. (f ) ω6 � 156Hz. (g) ω7 � 162Hz. (h) ω8 � 194.4Hz. (i) ω9 � 195.5Hz.
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Figure 7: Diagram of the mode shape at the first eight orders and modal frequency (L� 400mm). (a) ω1 � 11.6Hz. (b) ω2 � 25.5Hz.
(c) ω3 � 31Hz. (d) ω4 � 74Hz. (e) ω5 � 79.1Hz. (f ) ω6 � 156.1Hz. (g) ω7 � 160.6Hz. (h) ω8 � 168.2Hz. (i) ω9 � 170.9Hz.

10 Shock and Vibration



detailed diagram of the frequency values of first 5 mode
shapes. Figures 15 and 16 are the stress cloud of the first 9
mode shapes when n � 6 and n � 8 obtained by the simu-
lation and were compared with the situation in Figure 5
where n � 4. In the figure, the stress distribution on the shell
in each mode shape can be seen, and the stress distribution

law is the same as that shown in Figures 5–7. Only the first,
second, fourth, and eighth mode shapes remain unchanged,
while other mode shapes are different. Bending vibration
and torsional vibration appear alternately in the first 6 mode
shapes. Starting from the 7th mode shape, the mode shapes
are all bending-torsion coupling vibrations.
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Figure 9: Diagram of the mode shape at the first eight orders and modal frequency (R1� 75mm). (a) ω1 � 19.6Hz. (b) ω2 � 41.4Hz.
(c) ω3 � 51.1Hz. (d) ω4 � 120.4Hz. (e) ω5 � 129.3Hz. (f ) ω6 � 254Hz. (g) ω7 � 254.8Hz. (h) ω8 � 257.8Hz. (i) ω9 � 262.8Hz.
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Figure 10: Diagram of the mode shape at the first eight orders and modal frequency (R1� 85mm). (a) ω1 � 17Hz. (b) ω2 � 32Hz.
(c) ω3 � 41.6Hz. (d) ω4 � 93.6Hz. (e) ω5 � 102.4Hz. (f ) ω6 � 197.6Hz. (g) ω7 � 205.6Hz. (h) ω8 � 240.9Hz. (i) ω9 � 243.3Hz.
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Figure 11: Influence of initial central angle β on modal frequency ω.
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Figure 12: Diagram of the mode shape at the first eight orders and modal frequency (α� 120°). (a) ω1 � 22.5Hz. (b) ω2 � 62.7Hz.
(c) ω3 � 73.4Hz. (d) ω4 � 112Hz. (e) ω5 � 121Hz. (f ) ω6 � 228Hz. (g) ω7 � 235.7Hz. (h) ω8 � 376.5Hz. (i) ω9 � 377.3Hz.
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Figure 13: Diagram of the mode shape at the first eight orders and modal frequency (α�150°). (a) ω1 � 18Hz. (b) ω2 � 38.3Hz.
(c) ω3 � 48.2Hz. (d) ω4 � 112Hz. (e) ω5 � 121Hz. (f ) ω6 � 228Hz. (g) ω7 � 231.3Hz. (h) ω8 � 232.7Hz. (i) ω9 � 240.9Hz.
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5. Nonlinear System

5.1. Perturbation Analysis When the Main ResonanceΩ ≈ ω1

5.1.1. Noninternal Resonance Situation. According to the
frequency of the linear system, there is a 1 : 2 : 3 internal
resonance relationship between the natural frequencies of

the first three orders in the bistable system. On the premise
that the main resonance Ω is close to ω1, internal resonance
situation and noninternal resonance situation were dis-
cussed separately.

First, regarding noninternal resonance situation, the
solvability condition (the condition for eliminating the long-
term term) is
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Figure 14: Influence of ply thickness n on modal frequency ω.
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Figure 15: Diagram of the mode shape at the first eight orders and modal frequency (n� 6). (a) ω1 � 22.2Hz. (b) ω2 � 39.2Hz.
(c) ω3 � 52.5Hz. (d) ω4 � 113.6Hz. (e) ω5 � 126.3Hz. (f ) ω6 � 239.5Hz. (g) ω7 � 251.2Hz. (h) ω8 � 289.5Hz. (i) ω9 � 292.9Hz.
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2iω1 Af
′ + μ1A1􏼐 􏼑 �

1
2
f1e

iσ1T1 , (19a)

A2′ + μ2A2 � 0, (19b)

A3′ + μ3A3 � 0, (19c)

where A1′ is the derivative of A1 about T1 and σ1 is the tuning
parameter.

*e steady-state response that can be obtained is

x1 �
F1 sin Ωt − c0( 􏼁

2εω1

������

μ21 + σ21
􏽱 + Ο(ε), (20a)

x2 � 0, (20b)

x2 � 0, (20c)

where c0 � arctan(σ1/μ1). *erefore, in the case where there
is no internal resonance, any nonlinear term will not pro-
duce a long-term term, and its first approximation is not
affected by the nonlinear term; thus, it is actually the solution
to the corresponding linear problem.

5.1.2. Internal Resonance Situation. When there is a 1 : 2 : 3
internal resonance, let Ω � ω1 + εσ1, ω2 � 2ω1 + εσ2, and
ω3 � 3ω1 + εσ3, where σ1, σ2, and σ3 are the tuning pa-
rameters, and the solvability condition is

− 2iω1 A1′ + μ1A1( 􏼁 − m4A1A2e
iσ2T1 − m6A2A3e

i σ3− σ2( )T1 +
f1

2
e

iσ1T1 � 0, (21a)

− 2iω2 A2′ + μ2A2( 􏼁 − m7A
2
1e

− iσ2T1 − m11A2A3e
i σ3− σ2( )T1 � 0, (21b)

− 2iω3 A3′ + μ3A3( 􏼁 − m16A1A2e
i σ2− σ3( )T1 � 0. (21c)

At this time, the symbol was introduced, let
An � (aneiθn )/2, and the result was divided into a real part
and an imaginary part, and we have
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Figure 16: Diagram of the mode shape at the first eight orders and modal frequency (n� 8). (a) ω1 � 29.6Hz. (b) ω2 � 52.6Hz.
(c) ω3 � 70.3Hz. (d) ω4 � 152.6Hz. (e) ω5 � 169.3Hz. (f ) ω6 � 321.7Hz. (g) ω7 � 337Hz. (h) ω8 � 342.1Hz. (i) ω9 � 345.1Hz.
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a1′ � − μ1a1 −
m4a1a2

4ω1
sin c2 −

m6a2a3

4ω1
sin c2 +

f1

2ω1
sin c3, (22a)

a1θ1′ �
m4a1a2

4ω1
cos c2 +

m6a2a3

4ω1
cos c2 −

f1

2ω1
cos c3, (22b)

a2′ � − μ2a2 +
m7a

2
1

4ω2
sin c2 −

m11a1a3

4ω2
sin c2, (22c)

a2θ2′ �
m7a

2
1

4ω2
cos c1 +

m11a1a3

4ω2
cos c2, (22d)

a3′ � − μ3a3 +
m16a1a2

4ω3
sin c1, (22e)

a3θ3′ �
m16a1a2

4ω3
cos c2, (22f)

where

c1 � θ2 − 2θ1 + σ2T1, (23a)

c2 � θ3 − θ2 − θ1 + σ3 − σ2( 􏼁T1, (23b)

c3 � σ1T1 − θ1. (23c)

Equations (22a)–(22f) shows that the phase modulation
between response and excitation begins to change, which is
not available in linear systems. *e aforementioned phase
modulation change is important since it limits the amplitude
of the response to a finite value. θ1 and θ2 were eliminated to
obtain the average equation under polar coordinates:

D1a1 � − μ1a1 −
m4a1a2

4ω1
sin c2 −

m6a2a3

4ω1
sin c2 +

f1

2ω1
sin c3, (24a)

a1D1c1 �
1
2

m7a
2
1

2ω2
−

m4a
2
2

ω1
􏼠 􏼡cos c1 +

a3

2
m11a1

2ω2
−

m6a
2
2

ω1a1
􏼠 􏼡cos c2 +

f1a2

ω1a1
cos c3, (24b)

D1a2 � − μ2a2 +
m7a

2
1

4ω2
sin c1 −

m11a1a3

4ω2
sin c2, (24c)

a2D1c2 � σ3 − σ2( 􏼁a2 −
1
4

m7a
2
1

ω2
+

m4a
2
2

ω1
􏼠 􏼡cos c1 +

f1a2

2ω1a1
cos c3

−
a3

4
m11a1

ω2
+

m6a
2
2

ω1a1
−

m16a1a3

ω3
􏼠 􏼡cos c2,

(24d)

D1a3 � − μ3a3 +
m16a1a2

4ω3
sin c1, (24e)

a3D1c3 � σ1a1 −
m4a1a2

4ω1
cos c1 −

m6a2a3

4ω1
cos c2 +

f1

2ω1
cos c3. (24f)

Let A1 � x1 + ix2, A2 � x3 + ix4, and A4 � x5 + ix6. *e
average equation under rectangular coordinates is as follows:

_x1 � − μ1x1 +
m4

2ω1
x2x3 − x1x4( 􏼁 +

m6

2ω1
x4x5 − x3x6( 􏼁, (25a)

_x2 � − μ1x2 +
m4

2ω1
x1x3 + x2x4( 􏼁 +

m6

2ω1
x3x5 + x4x6( 􏼁 −

f1

4ω1
, (25b)

_x3 � − μ2x3 −
m7

ω2
x1x2 +

m11

2ω2
x1x6 − x2x5( 􏼁, (25c)

_x4 � − μ2x4 −
m7

2ω2
x
2
1 − x

2
2􏼐 􏼑 +

m11

2ω2
x1x5 + x2x6( 􏼁, (25d)
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_x5 � − μ3x5 −
m16

2ω3
x2x3 + x1x4( 􏼁, (25e)

_x6 � − μ3x6 +
m16

2ω3
x1x3 − x2x4( 􏼁. (25f)

5.2. Dynamic Analysis of Bifurcation and Chaos When the
Main Resonance Ω ≈ ω1. Based on rectangular coordinate
average equations (25a)–(25f) of the bistable system under
1 : 2 : 3 internal resonance andmain resonance, the nonlinear
dynamic behavior characteristics of the bistable system with
the change of external excitation were analyzed by numerical
methods. First, the initial conditions were defined as
x1 � 0.11, x2 � 0.39, x3 � 0.21, x4 � 0.19, x5 � 0.11, and
x6 � 0.22, and other parameters were set to be μ1 � 0.1,
μ2 � 0.12, μ3 � 0.5, m4 � 16.4, m6 � 14.5, m7 � 10,
m11 � 9.1, and m16 � 7. In rectangular coordinate average
equation (25a), f1 is the parameter related to the external
excitation. Here, f1 was selected as the control parameter to
study the nonlinear dynamic characteristics of the system
affected by the external excitation.

Figure 17 is the bifurcation diagram of the second and
third mode shapes of the antisymmetric cross-ply bistable
system.*e abscissa axis represents the changes of f1 related
to the external excitation, and the ordinate axis represents
the changes of x3 and x5 related to the second-order and
third-order amplitudes of the system. As the external ex-
citation expands, the bifurcation diagram of the system
shows obvious up-and-down vibrations, indicating that the
nonlinear dynamic behavior of the antisymmetric cross-ply
laminated bistable cylindrical shell has the basic charac-
teristics of the bistable state. In the interval f1 ∈ [0, 2], the
bistable structure is in a period-doubling state. In the in-
terval f1 ∈ [2, 80], the bistable structure is in chaotic mo-
tion, with the amplitude constantly expanding.

Figure 18 is the maximum Lyapunov exponent diagram
of the antisymmetric cross-ply laminated bistable system.
*e abscissa axis represents the changes of f1 related to
external excitation, and the ordinate axis represents the
maximum Lyapunov exponent. It can be seen from the
figure that, in the interval f1 ∈ [0, 2], the maximum Lya-
punov exponent is less than zero. In the interval f1 ∈ [2, 80],
the maximum Lyapunov exponent is always greater than
zero, indicating that the bistable structure has been in a state
of chaos. Based on the selected value of f1, the waveform
diagram, phase diagram, Poincaré cross-section diagram,
and frequency spectrum diagram of the system under dif-
ferent external excitation values are displayed.

Figures 19 to 22 are the phase diagram, time history
diagram, Poincaré cross-section diagram, and frequency
spectrum diagram of the corresponding system motion
when the parameter values of the external excitation f1 are
different. In each figure, (a) and (b), respectively, show the
three-dimensional phase diagram in the space (x4, x5, x6)

and the time history diagram in (t, x5). (c) and (d), re-
spectively, show the three-dimensional phase diagram in
space (x1, x2, x3) and the second mode shape phase diagram
on the two-dimensional plane (x3, x4). (e) and (f),

respectively, show the Poincaré cross-section and frequency
spectrum on the two-dimensional plane (x1, x2).

When f1 � 1, it can be seen from Figure 19 that a pe-
riodic phenomenon occurs in the system. It can be found
from the figure that a single closed loop appears in the two-
dimensional and three-dimensional phase diagrams of the
system, the waveform diagram shows obvious periodic
characteristics, a mapping point appears in the Poincaré
mapping, and there is a main frequency component in the
spectrogram. Moreover, the largest Lyapunov exponent is
close to zero. *ese characteristics indicate that the system
has periodic movement at this time.

When f1 � 20, it can be seen from Figure 20 that an
almost periodic phenomenon occurs in the system. It can be
found from the figure that the two-dimensional and three-
dimensional phase diagrams of the system show dense
circular orbits, dense mapping points appear in the Poincaré
map, the spectrogram is a discrete spectrum, and the
maximum Lyapunov exponent is close to zero. *ese
characteristics reveal that the system has almost periodic
motion at this time.

Figure 21 shows the motion characteristics of the system
when f1 � 40. *e phase diagram of the system is messy,
dense, and clearly bounded. *ere are continuous spectra in
the spectrogram, countless mapping points appear in the
Poincaré map, and the maximum Lyapunov exponent is
greater than zero. *ese features demonstrate that chaotic
movement occurs in the system at this time.

Figure 22 shows the motion characteristics of the system
when f1 � 60. *e phase diagram trajectory of the system is
messy, dense, and clearly bounded. *e waveform diagram
shows that the system motion has random characteristics.
Continuous spectra appear in the spectrogram, and there are
countless mapping points in the Poincaré map. Meanwhile,
the maximum Lyapunov exponent is greater than zero.
*ese features indicate that chaotic motion occurs in the
system at this time.

5.3. Perturbation Analysis When the Main ResonanceΩ ≈ ω2

5.3.1. Noninternal Resonance Situation. First, regarding the
situation of noninternal resonance, the solvability condition
(the condition for eliminating the long-term term) is

2iω1 A1′ + μ1A1( 􏼁 � 0, (26a)

2iω2 A2′ + μ2A2( 􏼁 �
f2

2
e

iσ1T1 , (26b)

2iω3 A3′ + μ3A3( 􏼁 � 0. (26c)

*e resulting solution expression is
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portrait on the plane. (e) *e Poincaré map. (f ) *e frequency spectrum f1 � 40.

-5

5

0

-10

10

0

-2

0

2

x4 x5

x6

(a)

-5

0

5

1998.5 1999 1999.5

x5

t

(b)

Figure 22: Continued.

Shock and Vibration 21



A1 �
1
2
a1e

− μ1T1+iθ1 , (27a)

A2 �
1
2
a2e

− μ2T1+iθ2 −
if2e

iσ1T1

4ω2 μ2 + iσ1( 􏼁
, (27b)

A3 �
1
2
a3e

− μ3T1+iθ3 . (27c)

When t⟶∞ and T1⟶∞, we have
A1⟶ 0, (28a)

A2⟶
if2e

iσ1T1

4ω2 μ2 + iσ1( 􏼁
, (28b)

A3⟶ 0. (28c)

*erefore, in the case where there is no internal reso-
nance, any nonlinear term will not produce a long-term
term, and its first-order approximation is not affected by the
nonlinear term; thus, it is actually the solution of the cor-
responding linear problem.

5.3.2. Internal Resonance Situation. When there is a 1 : 2 : 3
internal resonance, let Ω � ω2 + εσ1, ω2 � 2ω1 + εσ2, and
ω3 � 2ω1 + εσ3, where σ1, σ2, and σ3 are the tuning pa-
rameters, and the solvability condition is

− 2iω1 A1′ + μ1A1( 􏼁 − m4A1A2e
iσ2T1 − m6A2A3e

i σ3− σ2( )T1 � 0, (29a)

− 2iω2 A2′ + μ2A2( 􏼁 − m7A
2
1e

− iσ2T1 − m11A1A3e
i σ3− σ2( )T1 +

f2

2
e

iσ1T1 � 0, (29b)
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Figure 22: *e chaotic motion when f1 � 60. (a) *e 3D phase portrait. (b) *e time history. (c) *e 3D phase portrait. (d) *e phase
portrait on the plane. (e) *e Poincaré map. (f ) *e frequency spectrum.
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− 2iω3 A3′ + μ3A3( 􏼁 − m16A1A2e
i σ2− σ3( )T1 � 0. (29c)

At this time, the symbol was introduced, let
An � (aneiθn )/2, and we have

An
′ �

1
2
an
′eiθn +

i

2
anθn
′eiθn , (30a)

An �
1
2
ane

− iθn . (30b)

*e result was divided into a real part and an imaginary
part:

a1′ � − μ1a1 −
m4a1a2

4ω1
sin c1 −

m6a2a3

4ω1
sin c2, (31a)

a1θ1′ �
m4a1a2

4ω1
cos c1 +

m6a2a3

4ω1
cos c2, (31b)

a2′ � − μ2a2 +
m7a

2
1

4ω2
sin c1 −

m11a1a3

4ω2
sin c2 +

f2

2ω2
sin c3, (31c)

a2θ2′ �
m7a

2
1

4ω2
cos c1 +

m11a1a3

4ω2
cos c2 −

f2

2ω2
cos c3, (31d)

a3′ � − μ2a2 +
m7a

2
1

4ω2
sin c1 −

m11a1a3

4ω2
sin c2 +

f2

2ω2
sin c3,

� − μ3a3 +
m16a1a2

4ω3
sin c2,

(31e)

a3θ3′ �
m16a1a2

4ω3
cos c2, (31f)

where

c1 � θ2 − 2θ1 + σ2T1, (32a)

c2 � θ3 − θ2 − θ1 + σ3 − σ2( 􏼁T1, (32b)

c3 � σ2T1 − θ2. (32c)

*e phase modulation between response and excitation
begins to change, which is not available in linear systems.
*e aforementioned phase modulation change is important
since it limits the amplitude of the response to a finite value.
θ1 and θ2 were eliminated to obtain the average equation
under polar coordinates:

D1a1 � − μ1a1 −
m4a1a2

4ω1
sin c1 −

m6a2a3

4ω1
sin c2, (33a)

D1c1 � σ2 +
m7a

2
1

4ω2
cos c1 +

m11a1a3

4ω2
cos c2 −

f2

2ω2a2
cos c3, (33b)

D1a2 � − μ2a2 +
m7a

2
1

4ω2
sin c1 −

m11a1a3

4ω2
sin c2 +

f2

2ω2
sin c3, (33c)

Shock and Vibration 23



D1c2 � σ3 − σ2( 􏼁a2 −
1
4

m4a
2
2

ω1
+

m7a
2
1

ω2
􏼠 􏼡cos c1

−
1
4

m6a
2
2a3

ω1a1
+

m11a1a3

ω2
+

m16a1a2

ω3
􏼠 􏼡cos c2 +

f2

2ω2
c3,

(33d)

D1a3 � − μ3a3 +
m16a1a2

4ω3
sin c2, (33e)

D1c3 � σ1 −
m7a

2
1

4ω2a2
cos c1 −

m11a1a3

4ω2a2
cos c2 +

f2

2ω2a2
cos c3. (33f)

Let A1 � x1 + ix2, A2 � x3 + ix4, and A3 � x5 + ix6. *e
average equation under rectangular coordinates was ob-
tained, as follows:

_x1 � − μ1x1 −
m4

2ω1
x1x4 − x2x3( 􏼁 −

m6

2ω1
x3x6 − x4x5( 􏼁, (34a)

_x2 � − μ1x2 +
m4

2ω1
x1x3 + x2x4( 􏼁 +

m6

2ω1
x3x5 + x4x6( 􏼁,

(34b)

_x3 � − μ2x3 −
m7

ω2
x1x2 +

m11

2ω2
x1x6 − x2x5( 􏼁, (34c)

_x4 � − μ2x4 +
m7

2ω2
x
2
1 − x

2
2􏼐 􏼑 +

m11

2ω2
x1x5 + x2x6( 􏼁 −

f2

4ω2
,

(34d)

_x5 � − μ3x5 −
m16

2ω3
x2x3 + x1x4( 􏼁, (34e)

_x6 � − μ3x6 +
m16

2ω3
x1x3 − x2x4( 􏼁. (34f)

5.4. Dynamic Analysis of Bifurcation and Chaos When the
Main Resonance Ω ≈ ω2. Next, based on rectangular coor-
dinate average equation (34a34b34c34d34e34f) of the
bistable system under 1 : 2 : 3 internal resonance and main
resonance, numerical methods were used to analyze the
nonlinear dynamic behavior characteristics of the bistable
system with the change of external excitation. First, the
initial conditions were defined as x1 � 0.11, x2 � 0.39,
x3 � 0.21, x4 � 0.19, x5 � 0.11, and x6 � 0.22, and the values
of other parameters are μ1 � 0.1, μ2 � 0.012, μ3 � 0.05,
m4 � 16.4, m6 � 14.5, m7 � 10, m11 � 9.1, and m16 � 7. In
rectangular coordinate average equation
(34a34b34c34d34e34f), f2 is the parameter related to the
external excitation. Here, f2 was selected as the control
parameter to study the nonlinear dynamic characteristics of
the system affected by the external excitation.

Figure 23(a) is the bifurcation diagram of the first mode
shape of the antisymmetric cross-ply bistable system. *e
abscissa axis represents the changes of f2 related to external
excitation, and the ordinate axis represents the changes of x1
related to the first-order amplitude of the system. As the

external excitation increases, the bifurcation diagram of the
system shows obvious upper and lower areas, which indi-
cates that the nonlinear dynamic behavior of the antisym-
metric laminated bistable cylindrical shell has the basic
characteristics of the bistable state. In the interval
f2 ∈ [0, 1.2], the bistable structure has been in a monostable
state and transforms between two steady states. In the in-
terval f2 ∈ [1.2, 4], the bistable structure continues to
transform between two steady states, with the amplitude
continuously expanding. Figure 23(b) is a bifurcation dia-
gram of the second mode shape of the antisymmetric cross-
ply laminated bistable system. *e abscissa axis represents
the changes of f2 related to external excitation, and the
ordinate axis represents the changes of x3 related to the
second-order amplitude of the system. With the increase of
the external excitation, the bifurcation diagram of this
system does not have obvious upper and lower areas. In the
interval f2 ∈ [0, 4], the bistable structure is always in the
chaotic state of the two steady states up and down near the
equilibrium point.

Figure 24 is the maximum Lyapunov exponent diagram
of the antisymmetric cross-ply laminated bistable system.
*e abscissa axis represents the changes of f2 related to
external excitation, and the ordinate axis represents the
maximum Lyapunov exponent. It can be seen from the
figure that, in the interval f2 ∈ [0, 4], the maximum Lya-
punov exponent is always greater than zero, indicating that
the bistable structure has been in a state of chaos. Based on
the selected value of f2, the waveform diagram, phase di-
agram, Poincaré cross-section diagram, and frequency
spectrum diagram of the system are given below.

Figures 25 to 28 are the phase diagram, time history
diagram, Poincaré cross-section diagram, and frequency
spectrum diagram of the corresponding system motion
when the parameter values of external excitation f2 are
different. In each figure, (a) and (b), respectively, show the
three-dimensional phase diagram in the space (x1, x2, x3)

and the time history diagram in (t, x3). (c) and (d), re-
spectively, show the three-dimensional phase diagram in
space (x4, x5, x6) and the second mode shape phase diagram
on the two-dimensional plane (x3, x4). (e) and (f), re-
spectively, show the Poincaré cross-section and spectrogram
on a two-dimensional plane (x1, x2).

When f2 � 0.4, it can be seen from Figure 25 that a
periodic phenomenon occurs in the system. *ere are
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Figure 23: Bifurcation diagram of the antisymmetric cross-ply bistable system. (a) First-order modal. (b) Second-order modal.
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-0.1

0

-1.5

-1

0.5
-0.1

0

0.1

0.1

x3

x1 x2

(a)

-0.1
800 850 900 950 1000

-0.05

0

0.05

0.1

t

x3

(b)

Figure 26: Continued.

26 Shock and Vibration



-0.5

0

0.5 -0.4

-0.3

-0.2

0.05

0

-0.05

x6

x4 x5

(c)

-0.6

-0.4

-0.15 -0.1 -0.05 0.050 0.1 0.15

-0.2

0.2

0

0.4

0.6

x3

x4

(d)

-0.1
-0.59 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53

-0.05

0

0.05

0.1

x1

x2

(e)

0
0 2 4 6 8

1.5

1

0.5

2

2.5

3

Frequency

A
m
pl
itu

de

(f )

Figure 26: *e quasi-periodic motion when f2 � 1.2. (a) *e 3D phase portrait. (b) *e time history. (c) *e 3D phase portrait. (d) *e
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multiple closed loops in the two-dimensional and three-
dimensional phase diagrams of the system, the waveform
diagram has obvious periodic characteristics, multiple
mapping points appear in the Poincaré map, and there are
multiple main frequency components in the spectrogram. In
addition, the maximum Lyapunov exponent is close to zero.
*ese characteristics reveal that the system has periodic
movement at this time.

When f2 � 1.2, it can be seen from Figure 26 that an
almost periodic phenomenon occurs in the system. *e two-
dimensional and three-dimensional phase diagrams of the
system showdense circular orbits, densemapping points appear
in the Poincaré map, the spectrogram is a discrete spectrum,
and the maximum Lyapunov exponent is close to zero. Based
on the characteristics shown in the figure, it can be confirmed
that the system has almost periodic motion at this time.

Figure 27 shows the motion characteristics of the system
when f2 � 2. *e phase diagram of the system is messy,
dense, and clearly bounded. *ere are continuous spectra in
the spectrogram, countless mapping points appear in the
Poincaré map, and the maximum Lyapunov exponent is

greater than zero. *ese features indicate that chaotic
movement occurs in the system.

Figure 28 shows the motion characteristics of the system
when f2 � 3. *e phase diagram of the system is messy,
dense, and clearly bounded. *e waveform diagram shows
that the system motion has random characteristics. Con-
tinuous spectra appear in the spectrogram, and there are
countless mapping points in the Poincaré map. *e maxi-
mum Lyapunov exponent exceeds zero.*ese characteristics
indicate that chaotic motion occurs in the system at this
time.

6. Conclusion

First, the relevant vibration characteristics of the anti-
symmetric cross-ply laminated bistable shallow shell
were studied. *e finite element software ABAQUS was
used to perform numerical simulation on the linear
model to explore the influence of different geometric
parameters on the vibration characteristics such as fre-
quency and main mode shapes. It can be found that the
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Figure 28:*e chaotic motion whenf2 � 3. (a)*e 3D phase portrait. (b)*e time history. (c)*e 3D phase portrait. (d)*e phase portrait
on the plane. (e) *e Poincaré map. (f ) *e frequency spectrum.
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frequency value increases with the decrease of the model
size and increases with the increase of the structure
thickness and the laying angle, exhibiting stepped growth
overall. *e main mode shape of models in each group is
similar overall, with little change. *e distribution of
stress on the shell structure is regular. When there are two
straight opposite sides of the mode shape, the maximum
values of stress are distributed on the two straight sides of
the shell, and the distribution of the minimum values on
the shell surface is close to a regular rectangle; when all
the four sides of the mode shape are curved, the maxi-
mum stress is distributed at the four corner points, and
the distribution of the minimum values is irregular.
Besides, bending vibration and torsional vibration appear
alternately in the first 6 mode shapes, and from the 7th
order, the mode shapes are all coupled bending and
torsion vibrations.

Secondly, the dynamic equilibrium equation and the
compatible equation were simultaneously established to build
a low-order nonlinear dynamic model for the antisymmetric
cross-ply laminated bistable shallow shell. Perturbation
analysis was conducted on the three-degree-of-freedom
nonlinear ordinary differential equation of the antisymmetric
laminated bistable cylindrical shallow shell under steady-state
excitation through the multiscale method, and the average
equations in the six-dimensional polar coordinate form and
the rectangular coordinate form under 1 : 2 : 3 internal
resonance and the combination of the two different main
resonances were obtained.*e impact of excitation amplitude
on the bifurcation behavior of the systemwas studied, and the
following conclusions were drawn: first, from the bifurcation
diagram of the system, it can be seen that there are typical
nonlinear phenomena such as period doubling and chaos in
the bistable system. Based on the fixed parameter value, two-
dimensional and three-dimensional phase diagrams, time
history diagram, frequency spectrum, Poincaré mapping, and
maximum Lyapunov exponent were used to analyze the
specific motion state of the system and to explain that the
external excitation has a significant impact on the dynamic
characteristics of the bistable model. In the case where two
main resonances exist and have similar parameters, there are
huge differences in the variation law of the nonlinear dynamic
behavior characteristics of the antisymmetric cross-ply
bistable system. With the increase of damping coefficient,
tuning parameters, and excitation amplitude, the system
presents complex nonlinear dynamic behavior, and several
typical phenomena were found, such as the alternate
occurrence of period-doubling bifurcation and chaos.
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