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In this paper, a dynamic model of piecewise nonlinear system with fractional-order time delay is simplified. *e amplitude
frequency response equation of the dynamic model of piecewise nonlinear system with fractional-order time delay under periodic
excitation is obtained by using the average method. It is found that the amplitude of the system changes when the external
excitation frequency changes. At the same time, the amplitude frequency response characteristics of the system under different
time delay parameters, different fractional-order parameters, and coefficient are studied. By analyzing the amplitude frequency
response characteristics, the influence of time delay and fractional-order parameters on the stability of the system is analyzed in
this paper, and the bifurcation equations of the system are studied by using the theory of continuity. *e transition sets under
different piecewise states and the constrained bifurcation behaviors under the corresponding unfolding parameters are obtained.
*e variation of the bifurcation topology of the system with the change of system parameters is given.

1. Introduction

*e existence of time delay behavior is often considered as
the root of complex behavior of dynamic system. In the
system modeling, researchers have studied the periodic
motion and dynamic response of nonlinear systems with
fractional differential delay. Jia and Jiang [1] studied the
synchronization of fractional time-delay chaotic systems and
their application in secure communication. Yang and Liu [2]
studied the main resonance of fractional delay Duffing
system. *e effects of high frequency signal, fractional
damping, and delay parameters on vibration resonance are
obtained by theoretical and numerical simulation. Wen and
Shen [3] studied the influence of fractional delay feedback on
the dynamic characteristics of Duffing system. Zhang et al.
[4] gave a new criterion for oscillation of second-order
forced mixed nonlinear differential equations by using
Riccati transformation. Duan [5] studied the global dy-
namics of a predator-prey model. Because the predator

behavior has a lag effect on the change of its number, the
model is a system of delay differential equations. Finally, the
corresponding numerical simulation is given for the theo-
retical results. Li et al. [6] studied the control synchroni-
zation problem of coronary artery system with input delay
and disturbance. Chai [7] studied the parameter identifi-
cation of a class of general time-delay chaotic systems with
unknown and time-varying parameters.

So far, fractional calculus has been widely concerned by
researchers in different fields. It has been widely studied in
the fields of textile [8], electricity [9], automatic control
theory [10], signal engineering [11], and mechanics [12].
Many chaotic behaviors have been found in fractional-order
systems. In engineering design and application, in order to
make rational use of the dynamic characteristics of nonlinear
system with fractional calculus and avoid its adverse effects
on the system, researchers have carried out a lot of related
research. Ozkan et al. [13] constructed the exact solutions of
nonlinear space-time fractional KP-BBM and obtained
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different types of exact solutions. Chang et al. [14] studied
1 + n-dimensional time-fractional partial differential equa-
tions. Two special forms of nonlinear time-fractional dif-
fusion convection equations are studied by using the Lie
group analysis method. *e invariant solutions and some
exact solutions are obtained. Liu et al. [15] proposed a
numerical method to study fractional-order nonlinear sys-
tems and studied the chaotic set in the system. Shen et al.
[16] studied the dynamic phenomenon of resonance of
Duffing oscillator with fractional order and analyzed the
influence of some parameters on the system. *e dynamic
characteristics of the system are obtained through simula-
tion experiments.

With the rapid development of nonlinear theory and the
gradual deepening of the research on piecewise problems,
the research on nonlinear problems with fractional calculus
and piecewise nonlinear problems is more common. Parisa
et al. [17] proposed a new method for solving fractional
differential equations and gave the error bounds in the sense
of Sobolev norm. *e numerical results show the effec-
tiveness of the method. Geng et al. [18] studied the truncated
Euler–Maruyama (EM) method for stochastic differential
equations with piecewise continuous arguments and con-
sidered the strong convergence theory under local Lipschitz
condition and Khasminskii-type condition. Martin and Basu
[19] analyzed the three-wave and four-wave resonances of
capillary gravity water waves on the free surface of water flow
with piecewise equal vorticity. Ramirez and Alves [20]
studied the bifurcation limit cycles of piecewise non-
Hamiltonian systems with nonlinear switching manifolds.
Liu Fei et al. [21] studied the cyclic response characteristics
of a class of piecewise nonlinear elastic damped double
constraint systems. Yang et al. [22] studied a class of
piecewise smooth integrable non-Hamiltonian systems with
centers. Yu [23] used theMelnikov functionmethod to study
the maximum number of limit cycles bifurcated from the
periodic cycle domain of the nonlinear center of a class of
discontinuous generalized Lienard differential systems.

To sum up, the research on nonlinear systems mainly
includes nonlinear systems with fractional-order delay and

piecewise nonlinear systems with fractional-order delay,
while the research on piecewise nonlinear systems with
fractional-order delay is rare. In this paper, the dynamic
model of a piecewise nonlinear system with fractional-order
time delay is studied. *e amplitude frequency response
equation of the system under periodic excitation is obtained
by using the averaging method. *e amplitude frequency
response characteristics under different time delay param-
eters and fractional-order parameters are discussed. *e
influence of time delay and fractional-order term on the
stability of the system is analyzed.

2. Approximate Analytical Solution

In engineering design and application, there are often
piecewise nonlinear systems with fractional delay. *e
magnetorheological damper is taken as an example; a
magnetorheological damper is composed of piston, cylinder,
magnetorheological fluid, damping-elastic part, and rubber
reset element. When subjected to shear load, the rubber and
magnetorheological damper play a major role in damping.
Rubber is a typical viscoelastic solid, and the fractional-order
model can be used to describe the force of this part. Magnetic
fluid also has viscoelastic properties, which can be described
by the fractional constitutive equation. *erefore, the
magnetorheological damper can be simplified as a dynamic
model of a class of piecewise nonlinear systems with frac-
tional delay shown in Figure 1.

*e dynamic equation of the system is shown as follows:

m €x (t) + k1x(t) + c _x(t) + k2x(t)
3
+

y[x(t), _x(t)] + KD
p
[x(t − τ)] � F cos(ωt),

(1)

where x is the vibration displacement of the mass, F cos(ωt)

is the periodic external excitation, and y[x(t), _x(t)] is the
piecewise nonlinear binding force:

y[x(t), _x(t)] � ybuf[x(t), _x(t)] − c _x(t) − k2x(t)
3
, (2)

where

ybuf[x(t), _x(t)] �

k2x(t)
3

+ c _x(t), −d1 <x< d1,

k1 x(t) − d1( 􏼁 + 2c _x(t) + k2 x(t) − d1( 􏼁
3

+ k2x(t)
3

􏼐 􏼑, d1 ≤x≤d2,

k1 x(t) + d1( 􏼁 + 2c _x(t) + k2 x(t) + d1( 􏼁
3

+ k2x(t)
3

􏼐 􏼑, −d2 ≤x≤ − d1,

k1 x(t) − d1( 􏼁 + 2c _x(t) + k2 x(t) − d1( 􏼁
3

+ k3 x(t) − d2( 􏼁 + k2x(t)
3

􏼐 􏼑, d2 <x,

k1 x(t) + d1( 􏼁 + 2c _x(t) + k2 x(t) + d1( 􏼁
3

+ k3 x(t) + d2( 􏼁 + k2x(t)
3

􏼐 􏼑, x< − d2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In equation (1), m is the mass of the system, k1 is the linear
stiffness coefficient, k2 is the nonlinear stiffness coefficient, c is the
linear viscous damping coefficient, F is the excitation amplitude,
ω is the excitation frequency, KDp

t [x(t − τ)] is the derivative of

x(t) to t, K(K> 0) is the coefficient of the fractional term,
p(0<p< 1) is the order of the fractional term, τ is the delay
coefficient, and d1 and d2 are different segment positions.

*e fractional term is defined by Caputo as follows:
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D
p
[x(t)] �

1
Γ(1 − p)

􏽚
t

0

x(u)

(t − u)
du. (4)

*e dynamic equation of the system is
transformed to obtain the following result:

€x (t) + ω2
0x(t) + εg[x(t), _x(t)] + εμD

p
[x(t − τ)] � εf cos(ωt), (5)

εg[x(t), _x(t)] �

εα _x(t) + εβ2x(t)
3
, −d1 <x< d1,

εβ1 x(t) − d1( 􏼁 + 2εα _x(t) + εβ2 x(t) − d1( 􏼁
3

+ εβ2x(t)
3

􏼐 􏼑, d1 ≤x≤d2,

εβ1 x(t) + d1( 􏼁 + 2εα _x(t) + εβ2 x(t) + d1( 􏼁
3

+ εβ2x(t)
3

􏼐 􏼑, −d2 ≤x≤ − d1,

εβ1 x(t) − d1( 􏼁 + εβ2 x(t) − d1( 􏼁
3

+ εβ3 x(t) − d2( 􏼁 + εβ2x(t)
3

+ 2εα _x(t)􏼐 􏼑, d2 <x,

εβ1 x(t) + d1( 􏼁 + εβ2 x(t) + d1( 􏼁
3

+ εβ3 x(t) + d2( 􏼁 + εβ2x(t)
3

+ 2εα _x(t)􏼐 􏼑, x< − d2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In equations (5) and (6), ω0 �
�����
k1/m

􏽰
, where ω0 are the

natural frequencies of the system, εα � c/m, εβ1 � k1/m,
εβ2 � k2/m, εβ3 � k3/m, εμ � K/m, εf � F/m, and
εg[x(t), _x(t)] � ybuf[x(t), _x(t)], where ε is a number

greater than 0 and far less than 1, so it meets the require-
ments of approximate solution.

*e average method is used to solve equation (5), which
mainly studies the main resonance of the system, namely,
ω2 � ω2

0 + εσ, where σ is the tuning parameter.

€x (t) + ω2
x(t) � ε f cos(ωt) − g[x(t), _x(t)] − μD

p
[x(t − τ)] + σx(t)􏼈 􏼉. (7)

When σ � 0, the derived system of equation (7) is a linear
conservative system.

€x (t) + ω2
x(t) � 0. (8)

*e free vibration solution of the derived system is

x(t) � a cos(ωt + θ),

_x(t) � −aω sin(ωt + θ),

_x(t − τ) � −aω sin(ω(t − τ) + θ),

(9)

where a and θ are functions of time t, respectively. Let
φ � ωt + θ, d1 � a cos φ1, and d2 � a cos φ2.

Considering the change of a and θ, the differential
equation (9) is derived by eliminating the following
equation:

_a cosφ + a _θ sinφ � 0. (10)

Differentiating equation (10) with respect to time and
substituting it into equation (7), we obtain

− _a sinφ + a _θ cosφ �
ε
ω

f cos(ωt) − g[x(t), _x(t)] − μD
p
[x(t − τ)] + σx(t)􏼈 􏼉. (11)

From equations (10) and (11), we obtain

m

d1

d2 d2

KDp[x(t–τ)]

Figure 1: Nonlinear systems with piecewise time delay.
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_a � −
1
ω

P1(a, θ) + P2(a, θ) + P3(a, θ, τ)􏼂 􏼃sinφ,

a _θ �
1
ω

P1(a, θ) + P2(a, θ) + P3(a, θ, τ)􏼂 􏼃cosφ,

(12)

where

P1(a, θ) � ε[f cos(ωt) + σa cosφ],

P2(a, θ) � −εg[a cosφ, −a sinφ],

P3(a, θ) � −εμD
p
[a cos(φ − ωτ)].

(13)

When ε is sufficiently small, a and θ are functions that
change slowly around the constant. *e term to the right of
the equal sign in equation (12) is approximately replaced by
the average value in one period of φ, and it is considered that
a and θ remain unchanged in one period of φ.*e integral of
(12) on [0, t] is obtained as follows:

_a � −
1
ωT

􏽚
T

0
P1(a, θ)sinφdφ −

1
ωT

􏽚
T

0
P2(a, θ)sinφdφ

−
1
ωT

􏽚
T

0
P3(a, θ, τ)sinφdφ � _a1 + _a2 + _a3,

a _θ �
1
ωT

􏽚
T

0
P1(a, θ)cos φdφ +

1
ωT

􏽚
T

0
P2(a, θ)sinφdφ

+
1
ωT

􏽚
T

0
P3(a, θ, τ)cosφdφ � a _θ1 + a _θ2 + a _θ3.

(14)

When the integrand is a periodic function, T � 2π; when
the integrand is an aperiodic function, T �∞. *e results of
(14) are as follows:

_a1 � −
1

ω2π
􏽚
2π

0
ε[f cos(ωt) + σa cosφ]sinφdφ

� −
εf sin θ

2ω
,

a _θ1 � −
1

ω2π
􏽚
2π

0
ε[f cos(ωt) + σa cosφ]cosφdφ

�
ε
2ω

(σa + f cos θ).

(15)

Let us calculate _a3and a _θ3 first. Using formula (3), we
obtain

D
p
t sin(ωt) � ωp sin ωt +

απ
2

􏼒 􏼓,

D
p
t cos(ωt) � ωp cos ωt +

απ
2

􏼒 􏼓.

_a3 � − lim
T⟶∞

1
ωT

􏽚
T

0
P2(a, θ, τ)sinφdφ

� lim
T⟶∞

εμ
ωT

􏽚
T

0
D

p
[a cos(φ − ωτ)]sinφdφ

�
εμaωp− 1

2
sin

pπ
2

− ωτ􏼒 􏼓,

a _θ3 � − lim
T⟶∞

1
ωT

􏽚
T

0
P2(a, θ, τ)cosφdφ

� lim
T⟶∞

εμ
ωT

􏽚
T

0
−D

p
[a cos(φ − ωτ)]cosφdφ

� −
εμaωp− 1

2
cos

pπ
2

− ωτ􏼒 􏼓.

(16)

Next, we calculate _a2and a _θ2:

_a2 � −
1

ω2π
􏽚
2π

0
−εg(a cosφ, −aω sinφ)sinφdφ

� Φ(a,ω),

a _θ2 �
1

ω2π
􏽚
2π

0
−εg(a cosφ, −aω sinφ)cosφdφ

� Λ(a,ω).

(17)

In conclusion,

_a � −
εf sin θ

2ω
+Φ(a,ω) +

εμaωp− 1

2
sin

pπ
2

− ωτ􏼒 􏼓,

a _θ �
ε
2ω

(σa + f cos θ) + Λ(a,ω) −
εμaωp− 1

2
cos

pπ
2

− ωτ􏼒 􏼓.

(18)

Equation (18) is the approximate analytical solution of
the system.

Let _a � 0 and _θ � 0 study the steady-state solution of the
system:
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0 � −
F sin θ
2ωm

+Φ(a,ω) +
Kaωp− 1

2m
sin

pπ
2

− ωτ􏼒 􏼓,

0 �
a

2ω
−

k1a

2ωm
+

F cos θ
2ωm

+ Λ(a,ω) −
Kaωp− 1

2m
cos

pπ
2

− ωτ􏼒 􏼓.

(19)
When the magnitude and frequency of the excitation are

determined, the phase trajectory in the moving phase plane
can be determined by equation (19). When the numerator
and denominator of equation (19) are zero at the same time,
the singularity (as, θs) corresponding to the steady-state
response of the system can be obtained, and the amplitude
frequency characteristics of the system under the action of
external periodic excitation can be derived by eliminating θs.
2ωmΦ(a,ω) + Kaωp sin

pπ
2

− ωτ􏼒 􏼓􏼔 􏼕
2

+ −k1a + mω2
a + 2ωmΛ(a,ω) − Kaωp cos

pπ
2

− ωτ􏼒 􏼓􏼔 􏼕
2

� F
2
.

(20)

3. StudyonPeriodicResponseCharacteristics of
Nonlinear System

Select a set of system parameters: m � 1, k1 � 1, k2 � 1,
k3 � 50, c � 0.15, K1 � 0.5, p � 0.2, d1 � 0.2, d2 � 1, F � 1,
and τ � 0.1. According to equation (20), the amplitude
frequency relationship of the system can be analyzed.

As can be seen from Figure 2, when the external exci-
tation frequency changes, the amplitude of the system
changes. *e amplitude frequency curve presents a smooth
curve at d1 � 0.2. At the segment point d2 � 1, there is a
break and a jump phenomenon. After passing through the
critical position d2 � 1, it is smooth again.

Figure 3 shows that the response amplitude of the time-
delayed system lags behind that of the system without time
delay. *e increase of fractional delay term increases the
response time of the system, resulting in the delay of am-
plitude frequency response of the system.

3.1. Time Delay Analysis. Change the value of system delay,
and then analyze the change of amplitude frequency re-
sponse curve. *e result of amplitude frequency response
curve is shown in Figure 4.

It can be seen from Figure 4 that when the time delay of the
system is small (as shown in Figures 4(a) and 4(b)), with the
increase of time delay, the amplitude of amplitude frequency
response curve gradually increases and the degree of nonlinear
bending increases. When the time delay of the system is large
(as shown in Figures 4(c) and 4(d)), the topological structure of
the amplitude frequency response curve will change. At the
segment point d2 � 1, the degree of refraction increases and an
independent loop appears in the high frequency region. With
the increase of time delay, the number of independent loops in
the same frequency range increases.

3.2. Analysis of the Variation of Coefficients and Orders of
Fractional Differential Terms. When the delay parameter is
small, the influence of the coefficient and order of the

fractional differential term on the amplitude frequency re-
sponse curve of the system is shown in Figures 5 and 6.

According to Figure 5, the amplitude frequency response
curve of the system changes obviously with the change of the
order of the fractional differential term. When the fractional
order is small, the fractional-order term is close to the linear
stiffness term. However, with the increase of the order of the
fractional differential term, the fractional term gradually
turns into a linear damping term. *erefore, with the in-
crease of the order of the fractional differential term, the
peak value of the amplitude frequency response curve
gradually decreases and the jump at the segment point d2 �

1 gradually disappears.
It can be seen from Figure 6 that when K1 takes a fixed

value, the order p of the fractional differential term has a great
influence on the amplitude-frequency response curve. When p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

Figure 2: System amplitude frequency response curve and its
partial enlargement.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

Contains the fractional differential terms
No fractional-order differential terms 

Figure 3: Comparison diagram of amplitude frequency response
curves of systems with and without time delay and its local en-
largement diagram.
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is small, the peak value of the amplitude-frequency response
curve increases with the increase of the order coefficient K1 of
the fractional differential term. At the segmentation point d2 �

1, the deformation gradually increases, and the bending degree
of the curve at the segmentation point d1 � 0.2 gradually
increases. When p is larger, the peak value of the amplitude-
frequency curve decreases with the increase of the fractional
differential coefficientK1. At the segmentation point d2 � 1, the
degree of deformation decreases or even completely disappears.

4. Bifurcation Response Characteristics

According to the singularity theory, the transition set divides
the unfolding parameter space into several subregions. *e
bifurcation behavior in each region is persistent. *e

bifurcation diagram is topologically equivalent, but the
system response has different robustness with the change of
unfolding parameters. *e bifurcation behavior on the
transfer set is nonpersistent and is in the critical state of
bifurcation topology change.

From the amplitude frequency equation of the system,
the bifurcation equation of the system under three constraint
conditions can be obtained.

(1) When 0< a<d1,

Λ(a,ω) � −
3
4

k2a
3
,

Φ(a,ω) � cωa.

(21)

*e bifurcation equation of the system is as follows:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

τ=0
τ=0.1

τ=0.2
τ=0.3

(a)

1.9 2 2.1 2.2 2.3 2.4 2.51.8
ω

0.9

0.95

1

1.05

1.1

1.15

a

τ=0
τ=0.1

τ=0.2
τ=0.3

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

τ=2

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

τ=4

(d)

Figure 4: Amplitude frequency response curve with time lag and its partial enlargement. (a) *e amplitude frequency response curve
changes with time delay (τ � 0, τ � 0.1, τ � 0.2, and τ � 0.3). (b) Partial enlarged drawing (τ � 0, τ � 0.1, τ � 0.2, τ � 0.3). (c) *e amplitude
frequency response curve changes with time delay (τ � 2). (d) *e amplitude frequency response curve changes with time delay (τ � 4).
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a
6

+ χ1a
4

+ χ2a
2

+ b � 0, (22)

where χ1 � λ1/λ, χ2 � λ2/λ, and b � λ3/λ, in which

λ �
9
4

k
2
2m

2ω2
,

λ1 � 3k2mω k1 − mω2
+ Kωp cos

pπ
2

− τω􏼒 􏼓􏼒 􏼓,

λ2 � 2cmω2
+ Kωp sin

pπ
2

− τω􏼒 􏼓􏼒 􏼓
2
,

λ3 � k1 − mω2
+ Kωp cos

pπ
2

− τω􏼒 􏼓􏼒 􏼓
2

− F
2
.

(23)

Equation (22) is the universal unfolding of normal form
a6 + b � 0. *e codimension is 2. Take b as bifurcation
parameter and χ1 and χ2 as unfolding parameter. *e
transition set is composed of bifurcation point set, delay
point set, and hyperbolic limit point set.

*e set of bifurcation points is empty.
*e delay point set is calculated asHR � 3χ22/χ21−􏼈 χ2 � 0}

and HI � χ1d2
1 + 2χ2 � 0􏼈 􏼉.

*e hyperbolic limit point set is calculated as DLR �

4χ22/χ
2
1 − χ2 � 0􏼈 􏼉 and DLI � d1

1 + χ1d2
1 + χ2 � 0􏼈 􏼉.

*e migration set is Σ � B∪HR ∪HI ∪DLR ∪DLI. *e
transition set and bifurcation diagram are shown in Figure 7.

By calculation, the bifurcation point set of the system is
an empty set, so the transition set includes the time delay set

p=0.1
p=0.5

p=0.9
p=1.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a

1 2 3 4 50
ω

Figure 5: Amplitude frequency response curve with the order of fractional differential term.
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ω

(a)
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1 2 3 4 50
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(b)

Figure 6: Amplitude frequency response curve with the coefficient of fractional differential term: (a) p � 0.1 and (b) p � 0.9.
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and hyperbolic limit point set. As shown in Figure 7(a), the
transition set divides the plane into 10 regions. In order to
facilitate observation, the fine part of the transition set is
locally enlarged. *e bifurcation diagrams corresponding to
each region and the transition set are shown in Figures 7(b)
and 7(c), and the bifurcation diagrams are abundant.

Different bifurcation modes reflect the dynamic behavior of
the system without any parameters, so when 0< a <d1, the
dynamic behavior can be controlled by changing the
parametersχ1 and χ2.

(2) When d1 ≤ a≤ d2,

Λ(a,ω) � −
1
4π

3k2πa
3

+ 18k2φ1a
3

− 4k1a sin 2φ1 + 8k1φ1a − 14k2a
3 sin 2φ1 −

1
2
k2a

3 sin 4φ1 + 12k2φ1a
3 cos 2φ1􏼒 􏼓,

Φ(a,ω) �
1
π

2cωaφ1 − cωa sin 2φ1 + cωπa( 􏼁.

(24)

*e bifurcation equation of the system is
a
6

+ χ1′a
4

+ χ2′a
2

+ b′ � 0, (25)
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Figure 7: (a) Transition set and (b, c) bifurcation diagrams of the system.
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where χ1′ � λ1′/λ′, χ2′ � λ2′/λ′, and b′ � λ3′/λ′, in which

λ′ � 4m
2ω2 0.75k2 + 1.43φ1k2 − 1.12k2 sin 2φ1 + 0.95φ1k2 cos 2φ1( 􏼁

2
􏽮 􏽯,

λ1′ � 4mω 0.75k2 + 1.43φ1k2 − 1.12k2 sin 2φ1 + 0.95φ1k2 cos 2φ1( 􏼁 k1 − 1mω2
+ Kωp cos

pπ
2

− τω􏼒 􏼓􏼒

− 2mω 0.32k1 sin 2φ2 − 0.64φ1k1 + 0.12k2 sin 4φ1( 􏼁􏼓,

λ2′ � k1 − mω2
+ Kωp cos

pπ
2

− τω􏼒 􏼓 − 2mω 0.32k1 sin 2φ2 − 0.64φ1k1 + 0.12k2 sin 4φ1( 􏼁􏼒 􏼓
2

+ 2mω cω + 0.64cφ1ω − 0.32cω sin 2φ1( 􏼁( 􏼁 + Kωp sin
pπ
2

− τω􏼒 􏼓􏼒 􏼓
2
,

λ3′ � −F
2
.

(26)

It is similar to Case 1, but they still have different bi-
furcation characteristics due to different unfolding param-
eters. According to the singularity theory, equation (25) is
the universal unfolding of normal form a6 + b′ � 0, the
codimension is 2, b′ is the bifurcation parameter, and χ1′ and
χ2′ are the unfolding parameters.

*e set of bifurcation points is empty.
*e delay point set is calculated as HR � (3χ′22 /􏽮 χ′21 ) − χ2′ �

0} and HI � χ1′(d3
2 − d3

1) + 2χ2′􏼈 (d2 − d1) � 0}.
*e hyperbolic limit point set is calculated as DLR �

(4χ′22 /χ
′2
1 ) − χ2′ � 0􏽮 􏽯 and DLI � d5

2 − d5
1 + 4χ1′(d3

2 − d3
1) + χ2′􏼈

(d2 − d1) � 0}.
*e migration set is Σ � B∪HR ∪HI ∪DLR ∪DLI. *e

transition set and bifurcation diagrams are shown in
Figure 8.

By calculation, the bifurcation point set of the system is
an empty set, so the transition set includes the time delay set
and hyperbolic limit point set. As shown in Figure 8(a), the
transition set divides the plane into 12 regions. In order to
facilitate observation, the fine part of the transition set is
locally enlarged. *e bifurcation diagrams corresponding to
each region and the transition set are shown in Figures 8(b)
and 8(c), and the bifurcation diagrams are abundant. Dif-
ferent bifurcation modes reflect the dynamic behavior of the
system without any parameters, so when d1< a < d2, the
dynamic behavior can be controlled by changing the pa-
rameters χ1′ and χ2′ .

(3) When a> d2, the bifurcation equation (29) can be
obtained from the amplitude frequency curve equation of
the system. *e calculated values of Λ(a,ω) and Φ(a,ω) in
Case 3 are shown in equations (27) and (28):

Λ(a,ω) � −
1
π

6k2φ1 cos φ
2
1 − 5k2 sin φ1 cos φ1 + 3k2φ1 − k2

3
2
φ1 −

3
4
π + sin 2φ1 +

1
8
sin 4φ1􏼒 􏼓􏼒 􏼓􏼒 􏼓a

3

+ −
1
π

2k3φ22 + 2k1φ1 − 2k3 cos φ2 sin φ2 − 2k1 cos φ1 sin φ1( 􏼁􏼒 􏼓a,

(27)

Φ(a,ω) �
a

π
4cωφ2 − 2cω sin 2φ2 + 4cωφ1 − 4cωφ2 − 2cω sin 2φ1 + 2cω sin 2φ2 + cωπ − 2cωφ1 + cω sin 2φ1( 􏼁. (28)

*e bifurcation equation of the system is as follows:
a
6

+ χ1″a
4

+ χ2″a
2

+ b″ � 0, (29)
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where χ1″ � λ1″/λ″, χ2″ � λ1″/λ″, and b″ � λ3″/λ″, in which

λ′′ � 0.41m
2ω2

3k2φ1 − 4k2 0.375φ1 + 0.25 sin 2φ1 + 0.03 sin 4φ1 − 0.59( 􏼁

+ 6k2φ1cos2φ1 − 5.0∗ k2∗ cos φ1 sin φ1

⎛⎝ ⎞⎠

2

,

λ1″ � 1.27mω

k1 − 1mω2
+ 0.64mω 2k3φ2 + 2k1φ1 − 2k1 cos φ1 sin φ1 − 2k3 cos φ2 sin φ2( 􏼁

+ Kωp cos
pπ
2

− τω􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3k2φ1 − 4k2 0.375φ1 + 0.25 sin 2φ1 + 0.03125 sin 4φ1 − 0.59( 􏼁 + 6k2φ1cos
2φ1 − 5k2 cos φ1 sin φ1􏼐 􏼑,

λ2″ � k1 − mω2
+ 0.64mω 2k3φ2 + 2k1φ1 − 2k1 cos φ1 sin φ1 − 2k3 cos φ2 sin φ2( 􏼁 + Kωp cos

pπ
2

− τω􏼒 􏼓􏼒 􏼓
2
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Figure 8: (a) Transition set and (b, c) bifurcation diagrams of the system.
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+ 0.64mω
4cω 0.25 sin 2φ1 − 0.5φ1 + 0.79( 􏼁 + 8cω 0.5φ2 − 0.25 sin 2φ2( 􏼁

+ 8cω 0.5φ1 − 0.5φ2 − 0.25 sin 2φ1 + 0.25 sin 2φ2( 􏼁
􏼠 􏼡 + Kωp sin

pπ
2

− τω􏼒 􏼓􏼠 􏼡

2

,

λ3″ � −F
2
.

(30)

In Case 3, the transition set of the system is calculated by
using the same form of bifurcation equation with χ″1 and χ″2
as the unfolding parameters and b″ as the bifurcation
parameters.

*e set of bifurcation points is empty.
*e delay point set is calculated as

HR � 3χ″22 /χ″22 − χ2″ � 0􏽮 􏽯 and HI � χ1″d2
1 + 2χ2″ � 0􏼈 􏼉.

*e hyperbolic limit point set is calculated as DLR �

4χ″22 /χ″22 − χ2″ � 0􏽮 􏽯 and DLI is an empty set.
*e migration set is Σ � B∪HR ∪HI ∪DLR ∪DLI. *e

transition set and bifurcation diagrams are shown in
Figure 9.

By calculation, the bifurcation point set of the system is
an empty set, so the transition set includes the time delay set
and hyperbolic limit point set. As shown in Figure 9(a), the
transition set divides the plane into 8 regions. In order to
facilitate observation, the fine part of the transition set is
locally enlarged. *e bifurcation diagrams corresponding to
each region and the transition set are shown in Figures 9(b)
and 9(c), and the bifurcation diagrams are abundant. Dif-
ferent bifurcation modes reflect the dynamic behavior of the
system without any parameters, so when a > d2, the dynamic
behavior can be controlled by changing the parameters χ1″
and χ2″.
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Figure 9: (a) Transition set and (b, c) bifurcation diagrams of the system.
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*e bifurcation behavior under different constraints is
obtained according to the transfer set of the system in three
cases.

5. Conclusion

A piecewise nonlinear dynamic model with nonlinear
stiffness, damping, and fractional order is proposed for
magnetorheological damper. *e average method is used to
approximate the periodic response of the system. *e am-
plitude frequency response curve of the system is obtained.
When the external excitation frequency changes, the am-
plitude of the system changes, showing a multisolution
phenomenon. *e difference of amplitude frequency re-
sponse curves between systems with and without time delay
is analyzed and compared. It is concluded that the increase
of time delay will increase the response time of the system
and change the amplitude frequency response curve of the
system. *e influence of different time delays on the system
is studied.*e results show that when the time delay is small,
the amplitude of amplitude frequency response curve in-
creases with the increase of time delay. When the time delay
is large, the topological structure of amplitude frequency
response curve will change. In the second segment, the
degree of refraction increases and an independent loop
appears in the high frequency region. *e influence of the
order of fractional differential term on the system is ana-
lyzed. With the increase of the order of fractional differential
term, the peak value of amplitude frequency response curve
decreases gradually. In this paper, the influence of fractional
differential coefficients on the system is studied. When the
order of the fractional differential term is large, the peak
value of the amplitude frequency response curve increases
with the increase of the order coefficient of the fractional
differential term. When the order of the fractional differ-
ential term is larger, the peak value of the amplitude fre-
quency curve decreases with the increase of the order
coefficient of the fractional differential term. At the second
segment, the degree of refraction decreases or even disap-
pears completely. By using singularity theory, the bifurcation
equations of the system varying with the amplitude of ex-
ternal excitation under three kinds of constraints are ob-
tained. With the change of system parameters, the
bifurcation topology of the system is given.
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