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In the seismic analysis and design of the underground structure, the response displacement method, as a pseudostatic method, has
been widely adopted for its solid theoretical background, clear physical concept, and ease of implementation. 1e subgrade
modulus is an essential parameter to the response displacement method, and a few approaches are available to determine its value.
However, the existing methods neglect the interaction between the radial and tangential subgrade modulus and the influence of
actual ground deformation, resulting in an inaccurate estimation. 1is study presents a solution to overcome these defects for the
response displacement method adopted in the transverse seismic analysis of the shield tunnel with a circular cross section. First,
the analytical solutions of subgrade modulus for ground deformation modes described by the Fourier series are derived based on
the theory of elasticity. 1e ratio of the radial displacement to tangential displacement is introduced to create a link between the
radial and tangential subgrade modulus. Based on the solutions of subgrade modulus for different ground deformation modes, the
displacement fitting method is proposed to derive the subgrade modulus corresponding to the actual ground deformation. With
this method, the subgrade modulus would adjust according to the ground displacement. Finally, a case study is conducted to
illustrate the validity of the displacement fitting method.

1. Introduction

During the last decades, progress has been made in studying
seismic design and analysis of underground structures [1, 2].
Various methods related to seismic analysis of underground
structure in transverse direction have been proposed, like the
dynamic time-history analysis method, seismic coefficient
method [3], BARTmethod [4], free field deformation method
[5], and response displacement method [6]. Among these
methods, the response displacement method has been widely
recommended and adopted for its solid theoretical back-
ground, clear physical concept, and ease of implementation
[7–9]. However, the subgrade modulus, an essential pa-
rameter, has not been thoroughly studied, deteriorating the
accuracy of the response displacement method.

Based on the observation of dynamic behaviors of an
underground tank, undersea tunnels, and a rock tunnel
during earthquakes, it has become clear that the deformation
of underground structures is governed by strain in the
surrounding ground. 1e response displacement method
has been proposed based on this observational result [6, 10].
When adopting this method in the transverse seismic
analysis of the shield tunnel, the ground springs are usually
set up to represent the ground. One end of the ground spring
is attached to the tunnel structure, and the ground dis-
placement under the seismic load is applied at the other end
of the ground spring. So, the ground spring stiffness reflects
the deformability of the ground and the ability to transfer the
ground load to the tunnel structure, which makes its value a
critical parameter for the response displacement method.
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1e stiffness of the ground spring depends on the
subgrade modulus, and a few approaches have been pre-
sented to estimate the subgrade modulus. Analytical solu-
tions for the tunnel with a circular cross section are available.
Kawashima [6] offered the solutions of radial and tangential
subgrade modulus for different ground deformation modes.
Using the elastic theory method, Huang and Cao [11] de-
rived the radial subgrade modulus under uniform radial
ground deformation and the tangential subgrade modulus
under oval ground deformation. 1e static finite element
method has also been put forward and recommended to
estimate the subgrademodulus, suitable for the tunnel with a
circular or a rectangular cross section [7]. Li et al. [12]
optimized the strategy by which the unit force acts on the
tunnel perimeter to improve the efficiency of the static finite
element method. It can be found that the prescribed
boundary condition is required for the analytical and nu-
merical approach. However, the actual deformation or stress
at the boundary may not be consistent with the predefined
condition. Besides, the interaction between the radial and
tangential subgrade modulus has not been studied. 1ese
defects may lead to an inaccurate estimation of the subgrade
modulus.

In order to overcome the difficulty in estimating the
subgrade modulus, some improved response displacement
methods have been proposed. Liu et al. [13, 14] introduced
an integral response deformation method in which the
ground is modeled by 2D or 3D finite solid elements. Xu
et al. [15] incorporated substructure analysis method into
the response displacement method and regarded the tunnel
and part of surrounding ground as the research object. In
these methods, the ground is no longer simplified as the
ground spring, which avoids the estimation of subgrade
modulus and makes it suitable for the seismic analysis of
tunnels with complex cross sections, like the horse shape,
arch shape, or composite shape. However, these methods
have complicated analysis procedures. Some essential issues
have not been clarified, like the reasonable dimension of the
substructure, which makes these methods hard to be
adopted in engineering practice.

1is study presents a general solution of the subgrade
modulus for the response displacement method adopted in
the seismic analysis and design of shield tunnels with a
circular cross section. First, the analytical solutions of
subgrade modulus for different ground deformation modes
are obtained based on the theory of elasticity.1en, based on
the solutions of subgrade modulus for ground deformation
modes described by the Fourier series, the displacement
fitting method is introduced to derive the subgrade modulus
according to the actual deformation of the ground. Finally,
the displacement fitting method is applied to a case study to
demonstrate the validity.

2. Analytical Solutions of SubgradeModulus for
Different Ground Deformation Modes

Figure 1 presents the response displacement method. 1e
seismic response of the ground, including the displacement,
seismic shear stress, and acceleration at various depths, is

first obtained through free-field analysis. 1en, the relative
displacement ∆uh at the tunnel perimeter with respect to the
bottom of the tunnel is applied to the end of the ground
springs; the seismic shear stress and inertia force of the
structure are exerted on the tunnel structure. Ground
springs are set up in both radial and tangential directions to
represent the ground. 1e ground spring stiffness depends
on the subgrade modulus (1). Kawashima [6] suggested the
radial and tangential subgrade modulus solutions (2) for
prescribed ground deformation modes which are described
by the Fourier functions (3). 1e subgrade modulus depends
on into which Fourier function the radial ground defor-
mation would fall. However, the solutions from Kawashima
[6] have the following drawbacks: (1) the subgrade modulus
for uniform tangential movement at the tunnel perimeter is
neglect; (2) the tangential subgrade modulus should not be
supposed to be zero when the deformation parameter m is
equal to 1 (m� 1); (3) the interaction between the radial and
tangential subgrade modulus is not clarified when m> 1.

kspring � kA, (1)

where kspring is the ground spring stiffness, k is the subgrade
modulus, and A is the area of the region the ground spring
represents.

k
(m)
r �

E

1 + vs( 􏼁R
, m � 0,

2E

1 + vs( 􏼁R
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2m + 1 − 2vs(m + 1)
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k
(m)
t �

0, m � 0, 1,

E

1 + vs( 􏼁R
·
m + 2 − 2vs(m + 1)

3 − 4vs

, m≥ 2.
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⎪⎪⎩
(2b)

ur � 􏽢u cos(mθ + φ)(m � 0, 1, . . . , n). (3)

1e analysis model to derive the analytical solutions of
subgrade modulus for different deformationmodes is shown
in Figure 2. 1e shield tunnel with outer radius R1 is as-
sumed to be constructed in a homogeneous isotropic infinite
elastic ground with an elastic modulus of E1 and Poison’s
ratio of ]1.1e prescribed radial and tangential displacement
described by Fourier functions is applied at the tunnel
perimeter. 1e Airy stress function method is adopted to
derive the stress change corresponding to the displacement
at the tunnel perimeter. According to the definition, the
subgrade modulus is the ratio of stress change to the dis-
placement (4). 1e ground deformation modes are divided
into three scenarios according to the deformation parameter
m as listed in Table 1. As the ground displacement at the
tunnel perimeter is predefined, there is no need to consider
the original stress of the ground. 1e following assumptions
are made in the derivation: (1) the ground is in the plane

2 Shock and Vibration



stress state, and the plane stress condition is in a direction
perpendicular to the cross section of the tunnel; (2) there is
no slip at the interface of the ground and tunnel lining; (3)
the stress change and the displacement of the ground at
infinity from the tunnel axis must be zero.

kr �
σr r � R1( 􏼁

ur r � R1( 􏼁
, (4a)

kt �
τ r � R1( 􏼁

uθ r � R1( 􏼁
. (4b)

2.1. Subgrade Modulus for Deformation Mode I. As for the
first case in the deformation mode I, the ground displace-
ment only exits in the radial direction and distributes
uniformly at the tunnel perimeter. According to Timo-
shenko and Goodier [16], the Airy stress function is

φ � A0r
2

+ C0 ln r. (5)

Based on the theory of elasticity [16], the stress change
and the displacement of the ground are given by

σr � 2A0 +
C0

r
2 , (6a)

σθ � 2A0 −
C0

r
2 , (6b)

τrθ � 0, (6c)

ur �
1
E1′

2 1 − ]1′( 􏼁A0r − 1 + ]1′( 􏼁
C0

r
􏼢 􏼣, (6d)

uθ � 0, (6e)

where E1′ � E1/(1 − ]21), ]1′ � ]1/(1 − ]1)
1e following boundary conditions are applied to solve

the constants in (6).

(1) 1e boundary condition of stress at the infinity area
for the ground is

σr(r⟶∞) � 0. (7)

(2) 1e boundary condition of stress at r�R1 for the
ground layer is

σr r � R1( 􏼁 � σN0. (8)

1e constants A0 and C0 can be solved and expressed by
σN0.

A0 � 0, (9a)

C0 � σN0R
2
1. (9b)

According to the definition of subgrade modulus (4), the
radial subgrade modulus is

Radial
ground spring

Tangential
ground spring

Tunnel lining

Ground displacement under seismic load

Relative
displacement

Seismic shear stress

Seismic bedrock interface
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Figure 1: Response displacement method.

Ground
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θ

σθ
σr

τrθ

Figure 2: Analysis model to derive subgrade modulus.

Table 1: Scenarios of ground deformation in the derivation.

Deformation mode Radial and tangential displacement ur, uθ

I (m� 0) ur � ur0
uθ � 0􏼨 and ur � 0

uθ � uθ0
􏼨

II (m� 1) ur � u
sin
r1 cos θ

uθ � u
sin
θ1 sin θ

􏼨

III (m≥ 2) ur � u
sin
rm cos(mθ)

uθ � u
sin
θm sin(mθ)

􏼨
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k
0
r �

E1′

1 + ]1′( 􏼁R1
. (10)

As for the second case in the deformation mode I, the
ground displacement only exits in the tangential direction
and distributes uniformly around the tunnel perimeter.
According to Timoshenko and Goodier [16], the Airy stress
function is

φ � D0θ. (11)

Based on the theory of elasticity [16], the stress change
and the displacement of the ground are given by

σr � 0, (12a)

σθ � 0, (12b)

τrθ �
D0

r
2 , (12c)

ur � 0, (12d)

uθ � −
1 + ]1′( 􏼁

E1′
·
D0

r
, (12e)

where E1′ � E1/(1 − ]21); ]1′ � ]1/(1 − ]1)

1e following boundary condition is applied to solve the
solution of the constant in (12).

(1) 1e boundary condition of stress at r�R1 for the
ground is

τrθ r � R1( 􏼁 � τT0. (13)

1e constants D0 can be solved and expressed by τT0.

D0 � R
2
1τT1. (14)

According to the definition of subgrade modulus (4), the
tangential subgrade modulus is

k
(0)
t � −

E1′

1 + ]1′( 􏼁R1
. (15)

1e negative sign enters the expression since the di-
rection of the resulting displacements is opposite to the sense
of the applied stress[17].

2.2. Subgrade Modulus for Deformation Mode II. Similar to
the solution of subgrade modulus for deformation mode I,
the Airy stress function for the deformation mode II is given
by (16). 1e stress change and the ground displacement are
given by (17):

φ � A1r
− 1

+ C1r ln r + D1r
3

􏼐 􏼑cos θ + B1rθ sin θ, (16)

σr � cos θ − 2A1r
− 3

+
2B1

r
+

C1

r
+ 2D1r􏼒 􏼓, (17a)

σθ � cos θ 2A1r
− 3

+
C1

r
+ 6D1r􏼒 􏼓, (17b)

τrθ � sin θ − 2A1r
− 3

+
C1

r
+ 2D1r􏼒 􏼓, (17c)

ur �
cos θ
E1′

1 + ]1′( 􏼁A1r
− 2

+ 2B1 ln r + 1 − ]1′( 􏼁C1 ln r + 1 − 3]1′( 􏼁D1r
2

􏽨 􏽩 +
1 − ]1′( 􏼁B1 + 2C1

E1′
θ sin θ + K1 sin θ + L1 cos θ,

(17d)

uθ �
sin θ
E1′

1 + ]1′( 􏼁A1r
− 2

− 2 ln r + ]1′( 􏼁B1 + 1 − ]1′( 􏼁(1 − ln r)C1 + 5 + ]1′( 􏼁D1r
2

􏽨 􏽩 + H1r − L1 +
1 − ]1′( 􏼁B1 + 2C1

E1′
􏼢 􏼣sin θ

+ K1 cos θ +
1 − ]1′( 􏼁B1 + 2C1

E1′
θ · cos θ,

(17e)
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where E1′ � E1/(1 − ]21); ]1′ � ]1/(1 − ]1)
1e following boundary conditions are applied to solve

the constants in (17).

(1) 1e boundary condition of stress at infinity area for
the ground is

σr(r⟶∞) � 0. (18)

(2) 1e boundary condition of stress at r�R1 for the
ground is

σr r � R1( 􏼁 � σN1 cos θ, (19a)

τrθ r � R1( 􏼁 � τT1 sin θ. (19b)

(3) 1e ground displacement is symmetrical to the
vertical axis, so, for an arbitrary angle θ1, the fol-
lowing must be satisfied:

ur θ � θ1( 􏼁 � ur θ � − θ1( 􏼁, (20a)

uθ(θ � 0) � 0. (20b)

(4) For an arbitrary angle θ2, the ground displacement
meets the single-valued condition presented by the
following:

ur θ � θ1( 􏼁 � ur θ � θ1 + 2π( 􏼁, (21a)

uθ θ � θ1( 􏼁 � uθ θ � θ1 + 2π( 􏼁. (21b)

So, the coefficients of θ sin θ and θ cos θ in (17) are
required to be zero; that is,

1 − ]1′( 􏼁B1 + 2C1

E1′
� 0. (22)

(5) For this deformation model, the radial displacement
of the ground ur is proportional to the logarithm of
the radial coordinate, as shown by (17). Mathe-
matically, this is a consequence of the infinitely long

tunnel in a semi-infinite space, but it has no physical
meaning [18, 19]. A characteristic dimension R3
should be incorporated into the solution to scale
down the displacements with radial distance [18, 19].
In this solution, the radial displacement at r�R3 is
arbitrarily set to zero; that is,

ur r � R3( 􏼁 � 0. (23)

1e nonzero coefficients, A1, B1, C1 and L1, are
solved by the combination of (18)∼(20) and
(22)∼(23) and are expressed by σN1 and τT1.

A1 � −
1
8

1 − ]1′( 􏼁R
3
1σN1 + 3 + ]1′( 􏼁R

3
1τT1􏽨 􏽩, (24a)

B1 �
σN1 − τT1( 􏼁R1

2
,

(24b)

C1 � −
1 − ]1′( 􏼁R1

4
σN1 − τT1( 􏼁, (24c)

L1E1′ � − 1 + ]1′( 􏼁A1R
− 2
3 + 2B1 ln R3 + 1 − ]1′( 􏼁C1 ln R3􏽨 􏽩,

(24d)

D1 � K1 � H1 � 0. (24e)

So, the boundary condition of ground displacement
at r�R1 is

ur r � R1( 􏼁 � u
sin
r1 cos θ � α11σN1 + α12τT1( 􏼁 · cos θ,

(25a)

uθ r � R1( 􏼁 � u
sin
θ1 sin θ � β11σN1 + β12τT1( 􏼁 · sin θ,

(25b)

where

α11 �
1
E1′

−
1 + ]1′( 􏼁 1 − ]1′( 􏼁 R

− 2
1 − R

− 2
3􏼐 􏼑R

3
1

8
+ ln R1 − ln R3( 􏼁R1 −

1 − ]1′( 􏼁
2 ln R1 − ln R3( 􏼁R1

4
⎡⎣ ⎤⎦,

α12 � −
cos θ
E1′

1 + ]1′( 􏼁 R
− 2
1 − R

− 2
3􏼐 􏼑 +

8 − 2 1 − ]1′( 􏼁
2

3 + ]1′
ln R1 − ln R3( 􏼁R

− 2
1

⎡⎣ ⎤⎦
3 + ]1′
8

R
3
1,

β11 �
1
E1′

−
1 + ]1′( 􏼁 1 − ]1′( 􏼁 R

− 2
1 + R

− 2
3􏼐 􏼑R

3
1

8
− ln R1 + ]1′ − ln R3( 􏼁R1 −

1 − ]1′( 􏼁
2 1 − ln R1 + ln R3( 􏼁R1

4
⎡⎣ ⎤⎦,

β12 � −
1
E1′

1 + ]1′( 􏼁 R
− 2
1 + R

− 2
3􏼐 􏼑 −

8 ln R1 + ]1′ − ln R3( 􏼁R
− 2
1

3 + ]1′( 􏼁
−
2 1 − ]1′( 􏼁

2 1 − ln R1 + ln R3( 􏼁R
− 2
1

3 + ]1′
⎡⎣ ⎤⎦

3 + ]1′
8

R
3
1.

(26)
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(6) 1e ratio of usin
r1 to usin

θ1 is introduced to create a link
between the radial and tangential subgrade modulus;
that is,

u
cos
r1

u
sin
θ1

� Ω1. (27)

With (25) and (27), the radial and tangential subgrade
modulus can be expressed as follows:

k
(1)
r �

− α12 + β12Ω1
α11 − α12 + β12Ω1( 􏼁 + α12 α11 − β11Ω11( 􏼁

, (28a)

k
(1)
t �

α11 − β11Ω1
β11 − α12 + β12Ω1( 􏼁 + β12 α11 − β11Ω1( 􏼁

. (28b)

2.3. Subgrade Modulus for Deformation Mode III. Similar to
the previously mentioned derivation, the Airy stress func-
tion for the deformation mode III is given by (29), and the
stress change and the displacement of the ground are given
by (30):

φ � Amr
− m

+ Bmr
m

+ Cmr
2− m

+ Dmr
2+m

􏼐 􏼑cos(mθ), (29)

σr � cos(mθ) − m(m + 1)Amr
− m− 2

− m(m − 1)mr
m− 2

− (m + 2)(m − 1)Cmr
− m

− (m − 2)(m + 1)Dmr
m

􏽨 􏽩, (30a)

σθ � cos(mθ) m(m + 1)Amr
− m− 2

+ m(m − 1)Bmr
m− 2

+(m − 2)(m − 1)Cmr
− m

+(m + 2)(m + 1)Dmr
m

􏽨 􏽩, (30b)

τrθ � sin(mθ) − m(m + 1)Amr
− m− 2

+ m(m − 1)Bmr
m− 2

+ m(1 − m)Cmr
− m

+ m(m + 1)Dmr
m

􏽨 􏽩, (30c)

ur �
cos(mθ)

E1′
m 1 + ]1′( 􏼁Amr

− m− 1
− m 1 + ]1′( 􏼁Bmr

m− 1
+ m + 2 +(m − 2)]1′􏼂 􏼃Cmr

− m+1
− m − 2 +(m + 2)]1′􏼂 􏼃Dmr

m+1
􏽮 􏽯,

(30d)

uθ �
sin(mθ)

E1′
m 1 + ]1′( 􏼁Amr

− m− 1
+ m 1 + ]1′( 􏼁Bmr

m− 1
+ m − 4 + m]1′( 􏼁Cmr

− m+1
+ m + 4 + m]1′( 􏼁Dmr

m+1
􏽨 􏽩, (30e)

where E1′ � E1/(1 − ]21); ]1′ � ]1/(1 − ]1) .
1e following boundary conditions are applied to solve

the constants in (30).

(1) 1e boundary condition of stress at infinity area for
the ground is

σr(r⟶∞) � 0. (31)

(2) 1e boundary condition of stress for the ground at
r�R1 is

σr r � R1( 􏼁 � σNm · cos(mθ), (32a)

τrθ r � R1( 􏼁 � τTm · sin(mθ). (32b)

1e nonzero coefficients, Am and Cm, are solved by
the combination of (31) and (32) and are expressed
by σNm and τTm.

Am �
R

m+2
1

2(m + 1)
σNm − τT1 −

2
m
τTm􏼒 􏼓, (33a)

Cm � −
R

m
1

2(m − 1)
σNm − τTm( 􏼁, (33b)

Bm � Dm � 0. (33c)

So, the boundary condition of ground displacement
at r�R1 is

ur r � R1( 􏼁 � u
sin
rm cos(mθ)

� α21σNm + α22τTm( 􏼁 · cos(mθ),
(34a)

uθ r � R1( 􏼁 � u
sin
θm sin(mθ)

� β21σNm + β22τTm( 􏼁 · sin(mθ),
(34b)
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where

α21 �
1
E1′

m 1 + ]1′( 􏼁

2(m + 1)
−

(m + 2) +(m − 2)]1′
2(m − 1)

􏼢 􏼣R1,

α22 �
1
E1′

−
(m + 2) 1 + ]1′( 􏼁

2(m + 1)
+

(m + 2) +(m − 2)]1′
2(m − 1)

􏼢 􏼣R1,

β21 �
1
E1′

m 1 + ]1′( 􏼁

2(m + 1)
−

(m − 4) + m]1′
2(m − 1)

􏼢 􏼣R1,

β22 �
1
E1′

−
(m + 2) 1 + ]1′( 􏼁

2(m + 1)
+

(m − 4) + m]1′
2(m − 1)

􏼢 􏼣R1.

(35)
(3) 1e ratio of usin

rm to usin
θm is introduced to create a link

between the radial and tangential subgrade modulus;
that is,

u
cos
rm

u
sin
θm

� Ωm. (36)

With (34) and (36), the radial and tangential subgrade
modulus can be expressed as (28):

k
m
r �

− α22 + β22Ωm

α21 − α22 + β2Ωm( 􏼁 + α22 α21 − β21Ωm( 􏼁
, (37a)

k
m
t �

α21 − β21Ωm

β21 − α22 + β22Ωm( 􏼁 + β22 α21 − β21Ωm( 􏼁
. (37b)

1e analytical solutions of radial and tangential subgrade
modulus in the previously mentioned derivation are sum-
marized in (38). It can be seen from this equation that the
radial and tangential subgrade modulus are independent
when m� 0, and the link between the radial and tangential
subgrade modulus is built by introducing parametersΩ1 and
Ωm when m> 1. 1is analytical solution overcomes the
defects in the solutions offered by Kawashima [6].

k
(m)
r �

E1′

1 + ]1′( 􏼁R1
, m � 0,

− α12 + β12Ω1
α11 − α12 + β12Ω1( 􏼁 + α12 α11 − β11Ω1( 􏼁

, m � 1,

− α22 + β22Ωm

α21 − α22 + β22Ωm( 􏼁 + α22 α21 − β21Ωm( 􏼁
, m≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38a)

k
(m)
t �

−
E1′

1 + ]1′( 􏼁R1
, m � 0,

α11 − β11Ω1
β11 − α12 + β12Ω1( 􏼁 + β12 α11 − β11Ω1( 􏼁

, m � 1,

α21 − β21Ωm

β21 − α22 + β22Ωm( 􏼁 + β22 α21 − β21Ωm( 􏼁
, m≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38b)

3. Solution of Subgrade Modulus Based on
Displacement Fitting Method

1e analytical solution of subgrade modulus deduced in the
previous section is based on the fixed ground deformation
modes. When this solution is adopted in the response
displacementmethod, an error is likely to occur in the results
as the ground deformation from the analysis result may not
fall into the deformation shape upon which the subgrade
modulus is derived. 1is conflict can be eliminated by
employing the displacement fitting method. According to
this method, the calculated ground displacement in the
response displacement method is fitted by the Fourier
functions (39). Hence, the ground displacement is decom-
posed to a series of simple deformation modes. 1e ground
stress change introduced by the ground displacement is the
sum of the products of the displacement and the corre-
sponding subgrade modulus for each deformation mode
(40). So, the subgrade modulus can be updated based on the
definition (41), and the ground deformation can be recal-
culated with the newly estimated subgrade modulus. With
an iterative process, the value of subgrade modulus will
become more accurate, corresponding to actual ground
deformation. 1e calculation flowchart of the displacement
fitting method is shown in Figure 3.

ur � u
sin
rm sin(mθ),

uθ � u
cos
θm cos(mθ),

⎧⎪⎨

⎪⎩
(42)

ur
′ � u

sin
rm cos(mθ),

uθ′ � − u
cos
θm sin(mθ),

⎧⎨

⎩ (43)

Ω′ � −
u
sin
r1

u
cos
θ1

, (44a)

Ωm
′ � −

u
sin
rm

u
cos
θm

. (44b)

1e km cos
r and km sin

t in (40) are the km
r and km

t in (36),
respectively.1e km sin

r and km cos
t can also be derived based

on (38). 1e radial and tangential displacement corre-
sponding to the km sin

r and km cos
t are given by (42). By

rotating this deformation shape π/(2m) degree, it turns out
to be (43), which is consistent with the deformation mode
listed in Table 1. At the same time, the parameterΩ1 andΩm

are replaced by Ω′ and Ωm
′ in (44), respectively. 1e initial

subgrade modulus is suggested to take subgrade modulus
whenm� 0 in (36) to avoid determining the value ofΩ1 and
Ωm.

ur � ur0 + 􏽘
n

m�1
u
cos
rm cos mθ + u

sin
rm sin mθ􏼐 􏼑, (39a)

uθ � uθ0 + 􏽘
n

m�1
u
sin
θm sin mθ + u

cos
θm cos mθ􏼐 􏼑, (39b)
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σr
′ � k

0
rur0 + 􏽘

n

m�1
k

m cos
r u

cos
rm cos mθ + k

m sin
r u

sin
rm sin mθ􏼐 􏼑,

(40a)

τ′ � k
0
t ut0 + 􏽘

n

m�1
k

m sin
t u

sin
θm sin mθ + k

m cos
t u

cos
θm cos mθ􏼐 􏼑,

(40b)

kr
′ �

σr
′

ur

�
k
0
rur0 + 􏽐

n
m�1 k

m cos
r u

cos
rm cos mθ + k

m sin
r u

sin
rm sin mθ􏼐 􏼑

ur0 + 􏽐
n
m�1 u

sin
rm cosmθ + u

cos
rm sin mθ􏼐 􏼑

,

(41a)

kt
′ �

τ′
uθ

�
k
0
t ut0 + 􏽐

n
m�1 k

m sin
t u

sin
θm sin mθ + k

m cos
t u

cos
θm cos mθ􏼐 􏼑

uθ0 + 􏽐
n
m�1 u

sin
θm sinmθ + u

cos
θm cosmθ􏼐 􏼑

.

(41b)

4. Application to a Design Case

4.1. Project Overview. A design case has been chosen to
illustrate the validity of the displacement fitting method for
the response displacement method. 1is case study is based
on the Longquan tunnel belonging to the water diversion
project in central Yunnan. 1e detailed information of the
ground adopted in this study is listed in Table 2.1e tunnel is
buried in the gravelly soil layer and has a cover depth of
35.6m. 1e estimated peak ground acceleration for the
region of Longquan tunnel site is 0.2 g for a 10% probability
of exceedance in 50 years as stated in the report of seismic
ground motion parameter zonation [20]. According to the
seismic ground motion parameters zonation map of China,
the tunnel site has a seismic intensity of VIII degree [21].

1is tunnel is built with the shield tunnel method and
adopts the segmental lining as the tunnel structure. 1e
segmental ring has an outer radius R1 of 3.1m, a thickness of
0.3m, and a width B of 1.2m. Six segments, including three
standard segments (block B1, B2, and B3), two adjacent
segments (block L1 and L2), and one key segment (block F),
compose the segmental ring. Two aligned steel bolts connect
every two adjacent segments in one segmental ring at the
longitudinal joint. 1e segmental rings are attached with
sixteen bolts at the circumferential joint. 1e detailed layout
of the segmental ring is shown in Figure 4. All the segments
were precast with the reinforced high-performance concrete
with a grade of C50.

4.2. Seismic Response of the Site. 1e seismic response of the
site is obtained based on an equivalent linear analysis
performed using DEEPSOIL software [22]. Variation of
normalized shear modulus reduction (G/Gmax) and ma-
terial damping (%) with cyclic shear strain for each ground
layer are given by the field survey and are shown in Figure 5.
1e seismic bedrock interface is set to 70.0m below the
ground surface and loaded with an artificial seismic wave
with the peak acceleration 0.25 g for a 5% probability of 50-
year exceedance (Figure 6). 1e site response along the
height of the tunnel is shown in Figure 7 when the maximum
relative displacement between the tunnel vault and bottom is
achieved.

4.3. Beam-SpringModel. 1e beam-spring model adopted to
simulate the segmental lining in this study is shown in
Figure 8. To consider the coupling effect between segmental
rings when the staggered assemble strategy is adopted, this
model contains three segmental rings, where the middle one
with the entire width of segment B is the target ring. In
comparison, the other two rings have a half width of the
segment. Beam elements with stiffness equal to the segments
are adopted to simulate the segments, and the bending
stiffness is EcI for the middle ring and EcI/2 for the other two.
1e mechanical behaviors of the segment joint include
compression along the tangential direction, shear along the

Initial subgrade modulus

Response displacement method

No

Yes

Response displacement method

Iteration
termination conditions 

Subgrade modulus consistent with
ground deformation 

Fitting displacement with Fourier
functions 

Calculate the stress change corresponding
to the displacemnt 

Recalculate the subgrade modulus

ur0, uθ0, ur1cos,..., urmcos, ur1sin,..., urmsin

uθ1
sin,..., uθmsin, uθ1

cos,..., uθmcos, Ω1,...Ωm, Ω1′,...Ωm′

σr′, τ′

kt′=
τ′
uθ

kr′=
σr′
ur

,

Figure 3: Flowchart for displacement fitting method.
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radial direction, and rotation around the joint, which are
simulated by axial, radial, and rotational springs with the
stiffness of kA, kR, and kθ, respectively. 1e stiffness of the

axial and radial springs has a negligible effect on segmental
lining behaviors [23]. In this study, the axial and radial
spring stiffness kA and kR are empirically set to ten times the
compression stiffness and shear stiffness of segments, re-
spectively. 1e rotation stiffness of the segment joint kθ is
nonlinear and depends on the axial force and rotation angle.
A simplified bilinear relationship proposed by Janssen [24] is
adopted (45). Shear springs are set up along radial and
tangential directions to transmit forces between adjacent
rings under the coupling effect. All the joint parameters are
summarized in Table 3. Both radial and tangential ground
springs are set up. 1e ground spring stiffness is estimated
using (1) and the displacement fittingmethod.where Ec is the

Table 2: Properties of the ground layers.

(1) artificial fill (2) sand gravel (3) clay (4) gravelly soil (5) gravel
1ickness h/m 10.3 7.6 5.4 31.6 15.1
Density ρ/kg/m3 1810 2060 1860 1910 2150
Shear wave velocity Vs/m/s 158.0 219.3 215.2 240.6 302.6
Poisson’s ratio ] 0.31 0.33 0.37 0.32 0.33
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Figure 4: Layout of the segmental ring.
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elastic modulus of concrete and is 34.5×103MPa, N is the
axial force under static load from ground and is set to
2150 kN/m, M is bending moment at the joint, and h′ is the
effective joint height and is 0.3m in this study.

φ �

12M

Ech′
2, M≤

Nh′
6

,

8N

9 2M/Nh′ − 1( 􏼁
2
Ech′

, M>
Nh′
6

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

4.4. Results and Discussion. 1e initial radial and tangential
subgrade modulus is set according to (38) when m� 0. 1e
characteristic dimension R3 is three times R1. 1is case study

also conducted the analysis in which the subgrade modulus
is set according to Kawashima [6] to investigate the error
induced when determining subgrade modulus based on
fixed ground deformation modes.

4.4.1. Iteration Process. In total, ten iterative steps are
conducted for this case, in which the parameter n in (39) is
set to 3. Figure 9 presents the fitting results in the first and
tenth steps. It can be found that the Fourier functions with
n� 3 are enough to describe the deformation shape of the
ground. Besides, the coefficient of determination (R2) for the
fitting functions is 1.00 in each step.

1e convergence of the error between two successive
steps is shown in Figure 10. 1e relative error for bending
moment M, radial displacement ur, and radial subgrade
modulus kr at 30° of the target segmental ring are plotted
against the step number. 1e relative error decreases fast
during the iteration procedure. In the third step, the relative
error has fallen below 1.05×10− 2, acceptable in engineering
practice. If the iteration termination condition is that the
relative error of M is less than 0.1%, only five iterative steps
are needed.1e relative error indicates that the displacement
fitting method efficiently determines the subgrade modulus
according to the ground displacement for the response
displacement method.

Segment Segment

Segment joint
Ring
joint

Segment

Segment Ring joint

Segment
joint

Ground
spring

Ring joint

Segment joint

kSR

kST

kA

kR

kθ

Figure 8: Beam-spring model.

Table 3: Parameters of the joints in the beam-spring model.

Stiffness of the joints Value

Segment joints Axial stiffness kA/kN/m 1.04×108

Radial stiffness kR/kN/m 4.31× 107

Ring joints Radial shear stiffness kSR/kN/m 1.00×105

Tangential shear stiffness kST/kN/m 1.00×105
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4.4.2. Subgrade Modulus Corresponding to the Ground
Deformation. Fitting results for the displacement parame-
ters in (37) (Table 4) reveal that the deformation mode with
m� 2 is the dominant mode. 1e deformation mode with
m� 1 or m� 3 also influences the ground deformation
shape. So, a single deformation mode does not describe the
actual ground deformation shape accurately.

1e radial and tangential subgrade modulus corre-
sponding to actual ground deformation is shown in Figure 9.
Four singular points occur for the radial and tangential

subgrade modulus, where the ground displacement is close
to zero. 1e subgrade modulus changes violently near the
singular points, which has a negligible effect on tunnel lining
due to the small magnitude of the displacement. 1e radial
and tangential subgrade modulus no longer distribute
uniformly around the tunnel despite the variation near the
singular points. Both the radial and tangential subgrade
modulus gradually increase from tunnel vault to bottom.
Comparing the subgrade modulus estimated by the dis-
placement fitting method with the solutions from
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Table 4: Fitting results for the displacement parameters (units: mm).

ur0 ucos
r1 usin

r1 ucos
r2 usin

r2 ucos
r3 usin

r3
− 1.51E− 04 7.03E− 04 2.84E− 02 2.01E− 03 − 8.02E− 01 − 2.16E− 02 5.78E− 02
uθ0 usin

θ1 ucos
θ1 usin

θ2 ucos
θ2 usin

θ3 ucos
θ3

− 2.90E− 03 − 6.49E− 04 2.41E− 02 − 9.69E− 04 − 3.77E− 01 6.73E− 03 1.89E− 02
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Figure 11: Subgrade modulus. (a) Radial subgrade modulus; (b) tangential subgrade modulus.
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Kawashima [6] (Figure 11), there lies an apparent difference
between them. 1e relationship for the subgrade modulus is
k(1)

r > k(2)
r > kr > k(0)

r and k
(2)
t > kt > k

(1)
t � k

(0)
t .

4.4.3. Internal Forces and Displacement of Tunnel Lining.
1e internal forces and displacement of the tunnel lining
based on subgrade modulus for fixed deformation modes
and actual deformation shape are presented in Figures 12
and 13. Table 5 lists the maximum and minimum values

of internal forces and displacement. 1e percentage in
Table 5 is the increase by comparing the results based on
subgrade modulus for fixed deformation modes with
those based on the displacement fitting method. It can be
figured out that the seismic response of the segmental
lining diverges when determining the subgrade modulus
according to different approaches. 1e internal forces
and displacement resulting from subgrade modulus for
m � 2 are closest to those adopting the displacement
fitting method and share the same distribution
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Figure 12: Results of internal forces. (a) Bending moment M; (b) axial force N; (c) shear force Q.
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characteristic. However, the discrepancy in the results is
notable. For example, the minimum axial force Nmin
obtained based on the displacement fitting method is
11.4% smaller than that adopting subgrade modulus for
m � 2. What is more, when the subgrade modulus is
determined according to the fixed deformation mode
with m � 0 or 1, the tangential subgrade modulus is ig-
nored, leading to a different axial force distribution
(Figure 12(b)) and integral structure rotation
(Figure 13(b)). It can be concluded that when the sub-
grade modulus is determined based on a fixed defor-
mation mode, the error will inevitably arise. 1e
displacement fitting method offers the subgrade modulus
corresponding to the actual ground deformation, which
helps avoid evaluating the rationality of the results with
subgrade modulus derived upon fixed deformation
modes.

5. Conclusions

1is study presents a solution to determine the subgrade
modulus in the response displacement method adopted in
the transverse seismic analysis of the shield tunnel with a
circular cross section. Analytical solutions of subgrade
modulus under different deformation modes are firstly
deduced based on the theory of elasticity. 1e displacement
fitting method is introduced to derive the subgrade modulus
corresponding to ground displacement, and this method is
applied to a design case. Some conclusions can be drawn as
follows.

(1) 1e subgrade modulus for the fixed deformation
modes described by the Fourier series is independent
of θ.1e radial and tangential subgrade modulus are
independent when the deformation parameter m is
equal to zero (m� 0). For these deformation modes
with m> 1, the interaction between the radial and
tangential subgrade modulus should be considered.
By introducing parameter Ω1 or Ωm, the link is built
between the radial and tangential subgrade modulus.

(2) 1e subgrade modulus is no longer constant around
the tunnel when the ground deformation contains a
series of deformationmodes described by the Fourier
series.

(3) 1e displacement fitting method is proved to be
efficient in deriving the subgrade modulus corre-
sponding to the ground deformation and helps avoid
the error introduced by determining subgrade
modulus based on a fixed deformation mode.
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