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(is paper takes an asymmetric ball bearing supported rotor
system with the application of a squeeze film damper (SFD)
subjected by unbalanced force and parametric excitation
(varying compliance) as the research object. (e dynamical
behaviours of the system in multimode resonance regions
with the application of the SFD are investigated. In each
resonance region, the amplitude-frequency curves are ob-
tained under conditions of with SFD and without SFD, as
well as the spectrum analysis of the solutions. (rough the
results and comparisons of two cases, the damping effects of
the SFD for each kind of resonance are illustrated. Mean-
while, the parameters of the ball bearing are also considered
and analyzed with the application of SFD; the changing of
the parameters of bearing would lead to the change in
nonlinear dynamical behaviours. (e findings would pro-
vide a theoretical basis for further vibration suppression and
parameters’ optimization of ball bearing supported rotor
structure.

1. Introduction

Because of the high working rotating speed, the rotor
structures in aeroengines [1–3] are supported by rolling
bearings [4–8]. Rolling bearings are a type of main support
for aeroengines and are a key source of vibration (parametric
excitation) in rotor-bearing systems, which create a demand
for vibration analysis and diagnostic techniques under

various operating conditions [9]. Studying the nonlinear
behaviour of the system and identifying the influence of
rolling element bearing parameters on the nonlinear be-
haviours of the rotor system will help to reasonably avoid
system instability, increase the operating life, and improve
the efficiency of mechanical equipment [10]. (us, the
rolling bearing supported rotor systems have drawn many
research interests [11–17].

(e bearing introduced nonlinearity which makes the
research complex. For a nonlinear system, not only the main
resonances of each order could occur but also the nonlinear
resonances, which are more complicated and wider in range,
will appear. (e early research of the nonlinear phenomena
in rolling bearings could be traced back to 80s. Fukuta et al.
[18] found that ball bearing systems have nonlinear dynamic
behaviours such as superharmonic, subharmonic, quasi-
periodic, and chaos-like solutions. Mevel and Guyader
[19, 20] considered that the system entered chaos through
a period-doubling bifurcation and explained the relationship
between chaos motion and the contact failure. (e reso-
nance types of a multi-degree-of-freedom rolling bearing-
rotor system mainly contain (1) prime resonances of each
order, that is, the resonance when the external frequency is
equal to the natural frequency of the system, (2) super-
harmonic or subharmonic resonances, which are caused by
the nonlinear relationship between the excitation and re-
sponse in the nonlinear system, (3) quasi-periodic
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resonances, and (4) combination resonances. (erefore, it is
necessary to add damping structures to suppress the un-
expected resonances. (e squeeze film damper (SFD) is one
of the dampers usually used in aeroengines.

As a support structure with damping function, the SFD
has been widely used in aeroengines due to its small size and
light weight and has even become a standard configuration
in the design. Many researchers focused on the design of
SFD and its application effects to the rotor system. Zhang
et al. [21] presented a multiobjective optimal design method
for a squeeze film damper with centering spring. (e pro-
posed method was able to obtain the optimal design pa-
rameters for a flexible rotor system. Shaik and Dutta [22, 23]
proposed a close form solution to find the nonlinear tuning
parameters of symmetric or asymmetric rotor-squeeze film
damper system. (ey also dealt with the development of
a close form solution to find the stability of flexible sym-
metric horizontal rigid and tuned flexible rotor mounted on
hydrodynamic bearing with squeeze film damper system.
Zheng et al. [24] proposed a controllable clearance squeeze
film damper which used hydraulic pressure to adjust the
radial clearance and established a corresponding test rig. Fan
and Behdinan [25] investigated the effect of a circumferen-
tial central groove on an open-ended squeeze film damper
analytically. Shin et al. [26] treated the unconventional
application of the SFD for the mitigation of Morton effect-
induced vibration. Ma et al. [27] emphasized the compar-
ative analysis of the influence of SFD on the nonlinear
dynamic behaviour of the dual-rotor system supported by
rolling bearings. Chen et al. [28] investigated dynamic
characteristics of the rotor system mounted on aircraft
during maneuvering flights. Iacobellis et al. [29] designed
and built SFD-rotor test rig to study the effect of SFD oil
supply pressure, oil temperature, oil inlet feed number/
orientation, unbalance, and seals on the response of a Jeffcott
rotor. Li et al. [30] manufactured and tested a pair of 3.5 inch
SFD bearings to validate a new squeeze film damper bearing
design.

From the existing work, the complexity of the response of
rolling bearings, the damping effect of squeeze film dampers,
and the nonlinear stiffness imposed on the nonlinear
damping system all need further study. To further investigate
the dynamical behaviours and achieve better or desired
performances of the rotor systems with SFD, so as to provide
a theoretical basis for the corresponding vibration reduction
design strategy, the design of the parameters of the SFD need
focused attention. (erefore, this work will focus on the
dynamic analysis of the ball bearing supported rotor system
with the application of the SFD and their parameter analysis.
(e paper is organized as follows. In Section 2, a ball bearing-
rotor system model with SFD installed is established. (e
detailed modeling processes of the bearing and oil force are
described. In Section 3, the dynamic analysis of the ball
bearing-rotor system with or without SFD is conducted. In
Section 4, parameters’ analysis of the ball bearing act on the
dynamic behaviour is given out. Section 5 discusses the
comparison results, and Section 6 concludes the whole work.

2. Modeling of the Rotor System with SFD

Figure 1 shows a schematic diagram of a Jeffcott rotor system
supported by ball bearings. (e left and right ends have
different ball bearing support schemes, respectively, as the
left end is connected to the foundation with a spring and the
right end is directly connected to the foundation without
elastic structure. So, the degree of freedom of the outer ring
of the left bearing must be considered while the right one can
be ignored.

Considering the gravity, unbalanced force, gyroscopic
effect, and bearing force, the dynamic model of the rotor
support structure shown in Figure 1 can be established into
form

MX
..

+(C +ΩG)X
.

+ KX + Fn � Fu + Fg, (1)

where X � [x, y, θx, θy, xa, ya, xb, yb, xo, yo]T is displace-
ment coordinate vector, in which x and y are disc dis-
placements along the x-axis and y-axis, respectively, θx and
θy are disc rotating angles along the x-axis and y-axis,
respectively, xa and ya represent the displacements of the
equivalent mass at the left end journal, xb and yb represent
the displacements of the equivalent mass at the right end,
and xo and yo represent the displacements of the outer ring
of the bearing mounted at the left. M, C, G, and K are
corresponding mass matrix, damping matrix, gyro matrix,
and stiffness matrix, whose expressions can be found in
appendix.
Fn � [0, 0, 0, 0, Fbx1, Fby1, Fbx2, Fby2, Fcx − Fbx1, Fcy − Fby1]

T

is the bearing force vector, Fu � [mδΩ2 cos Ωt,

mδΩ2 sin Ωt, 0, 0, 0, 0, 0, 0, 0, 0]T is unbalanced force vector,
and Fg � [0, −mg, 0, 0, 0, −mag, 0, −mbg, 0, −mog]T is grav-
ity vector. Ω is rotating frequency which determines the
frequency of the unbalanced force.

(e bearing force model adopted in this work is a two-
degree-of-freedom ball bearing model, including nonlinear
Hertzian contact force, clearance, and variable stiffness
characteristics. Assuming that the initial positions of the
bearing balls at both ends are the same, the position of the
ball i at time t can be expressed as

θi �
2π(i − 1)

Nb

+Ωct, (2)

where Nb is the number of the rolling balls and
Ωc � ri/(ri + ro) ·Ω, in which, ri is the radius of the inner
ring and ro is the radius of the outer ring.

(en, the bearing force of the left end can be expressed as

Fbx1

Fby1

⎡⎣ ⎤⎦ � Cb
i�1

Nb

δ1iH δ1i ( 
3/2 cos θ1i

sin θ1i

 , (3)

where δ1i � (xa − xo)cos θi + (ya − yo)sin θi − δ0, Cb is the
Hertz contact stiffness, H[·] is Heaviside function, and δ0 is
the radial clearance of bearing.

Meanwhile, the bearing force of the right end can be
expressed as
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Fbx2

Fby2

⎡⎣ ⎤⎦ � Cb
i�1

Nb

δ2iH δ2i ( 
3/2 cos θ2i

sin θ2i

 , (4)

where δ2i � xb cos θi + yb sin θi − δ0.
(e oil film force adopts a short bearing approximate

model, and the expression is

Fcx � Fr

xo

r
− Fτ

yo

r
,

Fcy � Fr

yo

r
+ Fτ

xo

r
,

(5)

where

Fr �
μRL

3

cl
3

I
02
3 _r + I

11
3 r _ψ 

,

Fτ �
μRL

3

cl
3

I
11
3 _r + I

20
3 r _ψ 

,

(6)

where r is the radial displacement of the journal center at
each support, and its expression is

r �

������

x
2
o + y

2
o



, (7)

ψ is the whirl angle of each journal, and the expression is

ψ � arctan
yo

xo

 , (8)

μ is the viscosity coefficient of the lubricating oil at each
journal, R is the radius of each journal bearing, L is the
length of each damper.

I
lm
n � 

θ2

θ1

sinlθ cosmθ
(1 + r cos θ/cl)

3 dθ, (9)

is the Sommerfeld coefficient.
Defining the dimensionless time as τ � Ωt and di-

mensionless displacement vector Q � EX, in which

E � 1/cdiag(1, 1, l, l, 1, 1, 1, 1, 1, 1); equation (1) can be
transformed into

Q″ +(C + G)Q′ + KQ + Fn � Fu + Fg, (10)

where C �1/ΩEM−1CE−1 is dimensionless damping matrix,
G � EM

−1GE−1 is the dimensionless gyro matrix,
K �1/Ω2EM−1KE−1 is the dimensionless stiffness matrix,
Fn � 1/Ω2EM−1Fn is the dimensionless bearing force vector,
Fu � 1/Ω2EM−1Fu is the dimensionless unbalanced force
vector, and Fg � 1/Ω2EM−1Fg is the dimensionless gravity
vector. (e superscript prime denotes the derivative with
respect of dimensionless time. (e values of the system
parameters are listed in Table 1. It should be mentioned that,
as the stiffness is time varying, the mean of the response
valves are used here as

kxx �
1
N


i�1

N zFx

zx
(iΔτ),

kyy �
1
N


i�1

N zFy

zy
(iΔτ),

(11)

where N � T/Δτ is the number of discrete points.

3. Dynamical Analysis with the
Application of SFD

3.1. Main Resonance and Quasi-Periodic Motion. In this
section, the amplitude-frequency characteristics of the struc-
ture are going to be investigated. A dimensionless excitation
frequency defined as λ � Ω/300 is introduced for further
analysis. Figure 2 gives the amplitude-frequency curves of the
responses of the disc in horizontal direction with different
parameters described by the governing equations of 1 with or
without SFD. Obviously, the SFD plays a significant role in
reducing the amplitude in the first-order main resonance re-
gion of the system. Accordingly, the resonance band as well as
jump-bistable region reduces with the application of the SFD.

l1

SFD

y

c

ka

ka

l2

θx

θy

x

Figure 1: Schematic diagram of a Jeffcott rotor.
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Figure 3 gives the amplitude-frequency curves in the
frequency region which is from λ � 1.5 to λ � 7.0. (e blue
dashed line in Figure 3 indicates the amplitude-frequency
curve when the SFD is not applied. Quasi-periodic solutions
exist in the third-order resonance region of λ � 5.96 and the
region from λ � 2.0 to λ � 4.0, which covers the second-
order main resonance region. (e thick solid line indicates
the amplitude-frequency response after adding the SFD.
Although being suppressed, the quasi-periodic solutions
which are located on the third-order resonance region still
have large amplitudes. (e spectrum is shown in
Figures 3(b) and 3(c), where the quasi-periodic response of
λ � 6.09 not only corresponds to the first-order resonance
λf � 0.93 but also to the second-order resonance of
λf � 2.68, by introducing a definition of an absolute quasi-
periodic frequency λf � λ · ω, where ω is the frequency of
the response.

In the quasi-periodic motion, from λ � 2.0 to λ � 4.0, the
damping effect of the SFD is significant. (e large and
continuous quasiperiodic motion is reduced to a relatively
independent area with a small amplitude. For the horizontal
direction of the disc, there is a relatively smooth area be-
tween the first-order and third-order resonance regions. In
addition, in the second-order resonance region (λ � 2.6 to
2.76), a cross structure with soft and hard characteristics
coexisting appears.

Figure 4 gives amplitude-frequency curves of response
of the left-end journal in horizontal direction in the same
frequency region as Figure 3(a). (ere are obvious reso-
nance peaks in this region, as well as some jump phe-
nomena. (e frequency spectrum analysis is performed
around the second-order main resonance (λ � 2.67). (e
leftmost resonant peak in Figure 4 is near λ � 1.88, and the

corresponding frequency component is shown in
Figure 5(a). (e dominant frequency is 1/2 VC frequency.
Figure 5(b) corresponds to the second-order resonance
frequency at λ � 2.67. It can be seen that the second-order
resonance area is periodic motion and there is jump be-
haviour. In addition, there are obvious jump phenomena in
the region from λ � 5.25 to 5.6. Taking the two solutions at
λ � 5.42, the spectrums are shown in Figures 5(c) and 5(d).
(e run-down curve is a periodic motion, while the run-up
curve has subharmonic frequency component. (erefore,
the resonance peak is the subharmonic resonance peak of
the second-order natural frequency. Compared with the
results under the condition of no SFD, subharmonic res-
onance of the second-order frequency also occurs, in-
dicating that this is a phenomenon caused by the
nonlinearity of the bearing.

Corresponding to the peaks of the amplitude-frequency
curves at λ � 2.05, λ � 2.86, λ � 2.97, and λ � 3.58 in Fig-
ure 4, the spectrums are shown in Figure 6. Besides the
excitation frequency and the VC frequency, there are un-
conventional frequency components. (ese components are
quasi-periodic motions, and the corresponding absolute
quasi-periodic frequencies are (a) λf � 2.677, (b) λf � 2.688,
(c) λf � 2.682, and (d) λf � 0.918. (e first three relate to
the second-order main resonance.

3.2. VC Frequency Resonance and Its 1/2 Subresonance.
Figure 7 shows the amplitude-frequency curves during the
VC frequency resonance region with different numbers of
balls when the SFD is implemented. With the same damper
configuration, the vertical resonance peak no longer shows
the jump phenomenon of the soft stiffness characteristics as
indicated in [10], but the horizontal direction still maintains
the cross structure of the coexisting of the soft and the hard
stiffness characteristics. (is means that the strong coupling
between two directions is not easy to dissipate the vibration
energy. (e SFD has no obvious effect on the amplitude and
resonance zone. (is is because, under the small amplitude
vibration case, the nonlinear damping characteristics is not
easy to exert its vibration. Meanwhile, different numbers of
balls does not lead the vibration characteristics change,
compared to no SFD cases.

In Figure 8, the influence of the SFD on the 1/2 sub-
harmonic VC frequency resonance is illustrated by the re-
duction or disappearance of the hysteresis areas. When
Nb � 13, the 1/2 subharmonic VC frequency resonance
disappears. Basically, the SFD does not change the sub-
harmonic resonance range of the original system. In addi-
tion, compared to [10], when Nb � 8, the quasi-period with
large amplitude near λ � 6.78 disappears after adding the
SFD. (at means the 1/2 subharmonic resonance of the VC
frequency can be eliminated by adjusting the number of
balls. In case that the quasi-period exists, the SFD could
improve the jump phenomenon in the subharmonic reso-
nance region of the VC frequency, but its amplitude sup-
pression effect is limited.

Table 1: (e values of the parameters.

Parameters Values
Rotor parameters
m 120 kg
ma 12 kg
mb 18 kg
krr 7.4 × 107 N/m
krφ and kφr 2.77 × 107 N/m
kφφ 6.15 × 107 N/m
ka 1.0 × 107 N/m
c1 266Ns/m
c2 and c3 99.6Ns/m
c4 221Ns/m
l1 0.8m
l2 1.25m
Jd 2.5 kg·m2

Jp 2.5 kg·m2

δ 1.67× 10−6 m
Bearing parameters
ri 39.6mm
ro 70.4mm
mo 0.965 kg
Cb 1.0 × 109 N/m3/2
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4. Parameter Analysis of the Ball Bearing with
the Application of SFD

When Nb � 9, the amplitude-frequency curve of the disc in
horizontal direction is shown in Figure 9(a). (e second-

order resonance shows the cross structure which means the
coexistence of soft and hard stiffnesses. (e spectrum of the
run-up curve contains double frequency component, while
the run-down curve has only periodic-1 response, as shown
in Figures 9(b) and 9(c). (e results are same as those when
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Figure 2: (e amplitude-frequency curves in first-order primary resonance region.
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curves, (b) spectrum at λ � 6.09, and (c) spectrum at λ � 6.38 (blue dot line means no SFD installed, solid line means the SFD is mounted,
blue means run-up process, and brown means run-down process).
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no SFD is mounted. (us, the nonlinear characteristics are
introduced by ball bearing support structure and do not
been suppressed by the SFD.

It is noting that, in Figure 9(a), there is a jump region
between λ � 5.51 and 5.64. In the region, corresponding to
λ � 5.6, the frequency spectrum of run-up and run-down
curves are shown in Figures 10(a) and 10(b). (e adjacent
region of λ � 5.7 to 6.0 also merges jump behaviour. (e
spectrums of run-up and run-down curves at λ � 5.85 are
shown in Figures 10(c) and 10(d). Furthermore, taking the
response at λ � 5.69, the frequency spectrum shows periodic
motion (Figure 10(e)). (erefore, it can be concluded that

the two regions are independent to each other. (e former is
the 1/2 subharmonic vibration caused by the second-order
natural frequency region. And, the latter is the 1/2 sub-
harmonic vibration caused by the third-order main resonance
of the system. From λ � 6.0 to 6.3, period-1 and its 1/2
subharmonic components coexist. (en, the quasiperiodic
motionmerges, which is shown in Figure 10(f). Corresponding
to the frequency λf � 0.910, it locates on the first-order main
resonance frequency region. Meanwhile, other quasi-periodic
responses’ frequencies could be calculated as λf � 2.754,
λf � 0.927, and λf � 0.943, which correspond to the first and
second natural frequencies of the system, respectively.
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Figure 11 shows the amplitude-frequency curve of the
disc in horizontal direction when Nb � 10. Its main char-
acteristics, including crossover characteristic in the second-
order resonance, the subharmonic resonance of the VC
frequency, the subharmonic response of the third-order
main frequency, and the quasi-periodic motion corre-
sponding to the third-order main resonance, are the same as
those of the case of Nb � 9. However, in this case, the
subharmonic resonance region corresponding to the sec-
ond-order resonance has been merged into the subharmonic
response region of the third-order main resonance. In ad-
dition, near λ � 5.18, the frequencies of run-up and run-

down curves are all quasi-periodic, which is not consistent
with other cases. It can be seen that this is due to the
coupling effect of the SFD and the bearing. (e stability
condition at this frequency is destroyed, which leads the
instability interval expanding. (e quasi-periodic regions
and frequencies are λ � 1.74 and λf � 2.84, λ � 3.39 and
λf � 0.952, λ � 3.78 and λf � 0.946, and λ � 5.18 and
λf � 0.948.

Figure 12 shows the amplitude-frequency curves of the
disc in horizontal direction with Nb varies from 11 to 13. As
the number of balls increases, the jump phenomenon of the
second-order main resonance weakens and disappears, and
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Figure 7: (e amplitude-frequency curves in VC frequency resonance region, where ° indicates run-up and × indicates run-down.
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the corresponding quasi-periodic area also decreases and
disappears. In general, compared with the system with even
number of balls, the quasi-period areas are less than those
when the number of balls is odd.(e quasiperiodic areas and
corresponding frequencies of the system are listed in Table 2.

For horizontal comparisons, Figure 13 plots the am-
plitude-frequency curve of the left end journal in horizontal
direction when Nb � 9 to 13. (e change process of the
quasi-periodic motion frequencies with the increase of the
number of balls can be clearly seen.
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Figure 9: (e amplitude-frequency curves and spectrums of responses of disc in horizontal direction when Nb � 9. (a) (e amplitude-
frequency curves, (b) λ � 2.87 (run-up), and (c) λ � 2.87 (run-down) (blue line means run-up process and brown line means run-down
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5. Discussion

(rough the previous analysis, we can see that, in the area
whose corresponding frequency is smaller than first-order
natural frequency which is normalized to 1, as the number of
balls increases, the VC frequency peak generally decreases,
and the stability of the system with odd-numbered balls is
slightly better than that with even-numbered balls. (e
subresonance of VC frequency corresponds to the first-order
natural frequency which is suppressed. In this way, with the
application of the SFD, the main resonance peaks of each
order can be reduced. (e peak and area of the quasi-period

motion can also be reduced. In this process, the SFD and the
bearing have a coupling effect in certain intervals, which will
increase the instability region. (erefore, it is necessary to
adjust the damper parameters to further control the vi-
bration of the system because the outer ring of the bearing
could offset against the effects of gravity and bearing forces.
Meanwhile, to increase the damping by reducing the gap is
likely to cause rubbing at the journal. (erefore, it is much
more safe to adjust the length or viscosity.

Figure 14 shows the amplitude-frequency curves of the
disc and the left journal in horizontal direction when Nb �

13 and L � 16 mm. (e first-order main resonance peak no
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Figure 10: Spectrums of the responses at (a) λ � 5.6 (run-up), (b) λ � 5.6 (run-down), (c) λ � 5.85 (run-up), (d) λ � 5.85 (run-down), (e)
λ � 5.69, and (f) λ � 6.48 when Nb � 9.
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longer has the phenomenon of hysteresis jump. Comparing
to Figure 12(c), it can be seen that the quasi-periodic motion
is suppressed, and the amplitude-frequency response forms
a wide range between the first-order main resonance region
and the third-order main resonance region. For the journal,
only in the second-order main resonance region can there be
an obvious peak. At the same time, it should also be noted

that the quasi-periodic motion of the third-order main
resonance has not been eliminated but relatively suppressed.
In general, the SFD has a more obvious suppression effect on
the main resonance peak and quasi-periodic motion than
other frequency components and can be used together with
the bearing as means to reduce vibration and extend the life
of the bearing.
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Figure 12: (e amplitude-frequency curves of responses of disc in horizontal direction when (a) Nb � 11, (b) Nb � 12, and (c) Nb � 13
(blue line means run-up process and brown line means run-down process).
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brown line means run-down process).
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Figure 13: Continued.

Table 2: (e quasi-periodic frequency with different numbers of balls.

Number of balls Quasi-periodic frequency

Nb � 11

(1) λ � 3.48, λf � 0.935;
(2) λ � 3.87, λf � 0.968;
(3) λ � 6.44, λf � 0.943;
(4) λ � 6.9, λf � 0.927

Nb � 12

(1) λ � 3.06, λf � 0.971;
(2) λ � 3.57, λf � 0.959;
(3) λ � 3.95, λf � 0.964;
(4) λ � 4.4, λf � 0.967;
(5) λ � 6.56, λf � 3.043;
(6) λ � 6.66, λf � 0.976;
(7) λ � 6.91, λf � 0.928

Nb � 13

(1) λ � 3.08, λf � 0.978;
(2) λ � 3.54, λf � 0.972;
(3) λ � 4.07, λf � 0.993;
(4) λ � 6.66, λf � 0.976;
(5) λ � 7.15, λf � 0.96
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6. Conclusions

(is paper studies the nonlinear response characteristics of
an asymmetric rolling bearing supported rotor system with
application of SFD in different resonance regions. (e
following conclusions can be drawn:

(1) In first three orders’ prime resonance regions, the
SFD suppresses the vibration significantly. Due to
the nonlinearity introduced by the ball bearing,
quasi-periodic solutions and jump behaviours still
exist but with small amplitude.

(2) In VC frequency resonance region, the SFD almost
has no damping effect because the amplitude of the
response in VC frequency resonance case is small
when no SFD is implemented. However, with the
SFD, the soft and hard springs’ coexisting charac-
teristic would disappear when the number of balls
increases.

(3) When the number of balls increases, the nonlinear
responses, such as quasiperiodic motion and double
period motion, still exist. (e SFD suppresses the
vibration of nonlinear components generally but
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Figure 14: (e amplitude-frequency curves of responses of (a) disc and (b) left-end journal in horizontal direction when Nb � 13 (blue line
means run-up process and brown line means run-down process).
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Figure 13: (e amplitude-frequency curves of the left end journal in horizontal direction when (a) Nb � 9, (b) Nb � 10, (c) Nb � 11, (d)
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very little. However, with the SFD, the nonlinear
behaviours and system stability would be affected by
the number of balls.

All these characteristics can help us understand the
dynamic behaviours of the ball bearing supported rotor

systems with the application of the SFD, based on which the
design basis of such kind of system can be given.
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0 0 0 0 · · · 0
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