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With a view to solving the defect that multiscale amplitude-aware permutation entropy (MAAPE) can only quantify the low-
frequency features of time series and ignore the high-frequency features which are equally important, a novel nonlinear time series
feature extraction method, hierarchical amplitude-aware permutation entropy (HAAPE), is proposed. By constructing high and
low-frequency operators, this method can extract the features of different frequency bands of time series simultaneously, so as to
avoid the issue of information loss. In view of its advantages, HAAPE is introduced into the field of fault diagnosis to extract fault
features from vibration signals of rotating machinery. Combined with the pairwise feature proximity (PWFP) feature selection
method and gray wolf algorithm optimization support vector machine (GWO-SVM), a new intelligent fault diagnosis method for
rotating machinery is proposed. In our method, firstly, HAPPE is adopted to extract the original high and low-frequency fault
features of rotating machinery. After that, PWFP is used to sort the original features, and the important features are filtered to
obtain low-dimensional sensitive feature vectors. Finally, the sensitive feature vectors are input into GWO-SVM for training and
testing, so as to realize the fault identification of rotating machinery. -e performance of the proposed method is verified using
two data sets of bearing and gearbox. -e results show that the proposed method enjoys obvious advantages over the existing
methods, and the identification accuracy reaches 100%.

1. Introduction

With the rapid development of modern manufacturing,
rotating machinery is widely applied in various large-scale
precision equipment such as wind turbines, aeroengines,
and driverless cars and plays an important role in bearing
loads and transmitting power [1]. -e most representative
rotating machinery is bearings and gears. Generally
speaking, the working environment of such components is
relatively harsh, and they often work in the state of high
speed and high load, which are easy to produce faults. Once
the fault occurs, it will cause equipment downtime at least
and even huge economic losses and casualties [2]. -ere-
fore, the research of efficient and accurate new fault di-
agnosis method of rotating machinery has important

practical significance for ensuring the safe and stable op-
eration of equipment and reducing accidents.

Rotating machinery fault diagnosis based on vibration
signal analysis is the current research hotspot, while feature
extraction is the most critical step in the fault diagnosis
process [3]. -e fault vibration signals of rotating machinery
are typical nonlinear and nonstationary signals, and the
traditional linear processing methods cannot effectively
extract the fault features representing the working state of
rotating machinery. -erefore, many nonlinear time-fre-
quency analysis methods have been proposed and applied to
fault diagnosis domain, such as ensemble empirical mode
decomposition (EEMD), local mean decomposition (LMD),
and wavelet packet transform (WPT). Feng et al. [4]
employed EEMD to process the bearing vibration signal to

Hindawi
Shock and Vibration
Volume 2021, Article ID 4395500, 18 pages
https://doi.org/10.1155/2021/4395500

mailto:565423803@qq.com
https://orcid.org/0000-0003-0686-0354
https://orcid.org/0000-0001-6694-9890
https://orcid.org/0000-0001-5112-2663
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4395500


get the corresponding intrinsic mode function (IMF) and
then screened the sensitive IMF for reconstruction, so as to
identify different fault types. Chen et al. [5] used wavelet
packet decomposition to process the original signal and then
calculated the energy entropy value of each subsignal as the
fault feature for fault identification of bearings.

In addition to the above time-frequency analysis method,
in recent years, nonlinear dynamic parameters based on en-
tropy theory have developed rapidly and are widely used in
feature extraction of nonlinear time series. Commonly used
entropy methods include sample entropy (SE) [6], fuzzy en-
tropy (FE) [7], and permutation entropy (PE) [8]. As effective
feature extraction tools, these methods have been widely used
in the domain of medical signal analysis, image processing, and
vibration signal analysis. However, these methods also have
certain shortcomings: SE has low computational efficiency and
is highly dependent on the length of time series; the compu-
tational process of FE is similar to SE, so its computational
efficiency is also low; Compared with FE and SE, PE enjoys
simpler principles and higher computational efficiency. Nev-
ertheless, PE only considers the order structure of the time
series, but ignores the amplitude information of each element
in the time series, which leads to the poor robustness of PE
against noise. In addition, PE does not well solve the problemof
inaccurate evaluation of the permutation pattern caused by the
presence of elements with the same amplitude in the time
series. In order to overcome the abovementioned shortcomings
of PE, Azami et al. et al. [9] proposed amplitude-aware per-
mutation entropy (AAPE). -is method fully considers the
amplitude information of time series and the amplitude dif-
ference between different elements and is more sensitive to the
amplitude and frequency of the signal.Moreover, by improving
themeasurement method of the same pattern in PE, AAPE can
better deal with the problem of equal element amplitude. In the
literature [9], the simulation signal and biomedical signal
experiments proved that compared with SE, FE, and PE, AAPE
enjoys better dynamic feature evaluation ability.

Unfortunately, AAPE can only evaluate the complexity of
time series on a single scale, while the important information
hidden in other scales is discarded; meanwhile, single-scale
analysis cannot consider the long correlation of time series,
resulting in inaccurate complexity assessment. With a viewing
to solving this defect, based on the multiscale entropy theory
[10], multiscale amplitude-aware permutation entropy
(MAAPE) [11] was proposed, which extended the dynamic
feature quantification based on AAPE to multiple time scales.
However, multiscale expansion adopts the traditional aver-
aging operation to obtain multiple coarse-grained time series,
which enjoys poor stability. To improve the performance of
MAAPE, Chen et al. proposed an improved MAAPE
(IMAAPE) method [12], which uses the improved coarse-
grained method instead of the traditional method so as to
significantly improve the stability and feature extraction per-
formance ofMAAPE. However, bothmethods can only extract
the dynamic feature information of the low-frequency com-
ponents, but ignores the equally important information hidden
in the high-frequency components. With a view to solving the
defect that multiscale entropy cannot extract high-frequency
features, Jiang et al. [13] proposed the concept of hierarchical

entropy and divided the original time series into different
frequency bands by constructing high-frequency and low-
frequency operators, thus obtaining the corresponding high-
frequency and low-frequency components. In view of this, this
paper combines hierarchical entropy with AAPE and proposes
hierarchical amplitude-aware permutation entropy (HAAPE).
-e method adopts AAPE to quantify the complexity of each
subseries obtained through hierarchical decomposition, which
can extract the low-frequency and high-frequency features of
the time series at the same time, thereby overcoming the
drawback of high-frequency information loss in MAAPE.

In view of the theoretical advantages of HAAPE, this paper
introduces it into the field of fault diagnosis to extract fault
features from vibration signals of rotating machinery. However,
the original fault feature vectors extracted by HAAPE are high-
dimensional, which not only contains sensitive information
closely related to the working state but also inevitably has re-
dundant information that does not contribute to fault identi-
fication. Meanwhile, high-dimensional feature vectors mean
high computational cost and possible overfitting phenomenon
of the classifier. -erefore, it is necessary to choose an effective
feature selection method to screen sensitive features from the
original feature vectors and reduce the impact of redundant
information [14].

Pairwise feature proximity (PWFP) [15] is a dimen-
sionality reduction tool recently proposed by SL Happy et al.
In this method, according to the principle of keeping
minimum within-class distance and maximum between-
class distance, all features are ranked by statistical method
and the features with low scores are the required sensitive
features. In literature [15], the dimensionality reduction
performance of PWFP was verified through several real-
world data sets, and the results showed that, compared with
traditional methods such as Relief-F, Laplace Score, and
Fisher Score, the performance of PWFP was superior when
processing high dimension data with low sample size.

SVM [16] is a nonlinear supervised learning classifier and
enjoys excellent generalization ability when dealing with small
sample classification problems. However, the performance of
SVM depends on the setting of two key parameters, namely,
penalty factor and kernel function parameter. To give full play
to the best performance of SVM, many optimization algo-
rithms have been applied to the parameter selection of SVM.
Among them, the gray wolf optimization (GWO) [17] enjoys
great convergence speed and global search ability, so we
employ it in this paper to determine the best parameters of
SVM by iterative optimization. Based on the above, this paper
proposes a new fault diagnosis method for rotating machinery
based on HAAPE, PWFP and GWO-SVM. Firstly, HAAPE is
used to extract the original fault features representing the
working state of rotating machinery from the vibration signals.
-en, PWFP is used to rank the original features according to
the feature sensitivity, and the best features are selected to form
the low-dimensional sensitive feature vectors to reduce the
impact of redundant information. Finally, the sensitive feature
vectors are input into the GWO-SVM-based classifier for
training and recognition, and the rotating machinery fault
diagnosis is completed.With a view to proving the effectiveness
and universality of the proposed method, the performance of
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the proposed method is verified using two fault data sets of
bearing and gear.-e results display that the proposed method
can effectively complete the fault identification of rotating
machinery, and the accuracy reaches 100%. At the same time,
to prove the superiority of our method, we compare the
proposed HAAPE with some comparison methods such as
MAAPE, IMAAPE, multiscale permutation entropy (MPE),
hierarchical permutation entropy (HPE), multiscale sample
entropy (MSE), and hierarchical sample entropy (HSE). -e
results show that the feature extraction performance ofHAAPE
is superior.

All in all, the main contributions and innovations of this
paper are as follows:

(1) HAAPE, a new nonlinear time series feature ex-
traction method, is proposed in this paper and ap-
plied to the field of rotating machinery fault
diagnosis, which shows better feature extraction
performance than comparative methods such as
MAAPE, MPE, HPE, and so on.

(2) Combining HAAPE-based feature extraction
method, PWFP-based feature selection method and
GWO-SVM-based classifier, a new rotating ma-
chinery fault diagnosis method is proposed.

(3) Two experiments, namely bearing fault diagnosis ex-
periment and gear fault diagnosis experiment are
carried out to verify the performance of the proposed
method, as well as verifying its superiority over other
methods.

-e rest of the paper is organized as follows: Section 2
explains the basic principle of AAPE, MAAPE and HAAPE,
verifies the advantages of HAAPE over MAAPE through
simulation signal experiment and discusses the choice of
HAAPE’s parameters. In Section 3, the diagnostic procedure of
the proposed method is described in detail; meanwhile, the
principles of PWFP and GWO-SVM are also summarized in
this section. In Section 4, two data sets of bearing and gearbox
are used to verify the performance of the proposed method.
Finally, the whole paper is summarized in Section 5.

2. The Basic Principle of HAAPE

2.1. AAPE. In order to solve the problem that PE cannot
consider the amplitude of each element in the time series and
the amplitude difference between adjacent elements, which
leads to the inaccurate evaluation of dynamic characteristics,
AAPE is proposed. In other words, the principle of AAPE is
based onPE.-erefore, to clearly explain the calculation process
of AAPE, we firstly summarize the principle of PE as follows:

Given a random time series Y � yi , i � 1, 2, . . . N.
Based on the time delay λ and embedding dimensionm,Y can
be transformed into multiple reconstruction series as follows:

Y
m,λ
j � yj, yj+λ, . . . , yj+(m− 2)λ, yj+(m− 1)λ ,

j � 1, 2, . . . , N − (m − 1)λ.
(1)

According to the size relationship of each element in the
reconstructed series, the ascending sorting is carried out,

and different permutation patterns πv0 ,v1 ,...,vm− 1
are obtained

as follows:

yj+ i1− 1( )λ, yj+ i2− 1( )λ, . . . , yj+ im− 1− 1( )λ, yj+ im− 1( )λ , (2)

where i∗ represents the position index of each element in the
reconstruction series. When the embedding dimension is m,
the length of the reconstructed series is also m. -erefore,
there are m! possible permutation patterns, and the k-th
permutation pattern is denoted as πi。

-e occurrence probability of each permutation pattern
can be calculated by

p πk(  �
Num πk( 

N − (m − 1)λ
, (3)

where Num(πk) represents the number of πk pattern in all
reconstruction subseries. Specifically, the number of
Num(πk) will increase by 1 whenever the permutation
pattern of Ym,λ

j is πk.
Based on the Shannon entropy theory, the PE value of

time series Y can be calculated as follows:

PE(Y, m, λ) � − 
m!

k�1
p πk( ln p πk( . (4)

It can be seen from the above that PE sorts different
elements according to their amplitudes to obtain different
permutation patterns, and the final entropy value is cal-
culated through the statistics of the occurrence probability
of different permutation patterns. -ere are two drawbacks
in this process. First of all, PE only considers the order
information of time series, but ignores the amplitude in-
formation of each element. Secondly, when elements with
the same amplitude appear in the time series, PE numbers
them according to their occurrence order, which leads to
the imprecise statistics of the permutation patterns. In
order to solve the above defects, AAPE is proposed.
Compared with PE, the specific improvements of AAPE are
as follows:

Set the initial value of p(πk) as 0. When the permutation
pattern of Ym,λ

j is πk, different from the counting rule of PE,
AAPE adopts equation (5) to calculate the contribution degree
of the different pattern. Among which, A ∈ [0, 1] denotes the
adjustment coefficient which is utilized to adjust the weight of
the time series amplitude average and the deviation between
the amplitudes. l refers to the number of elements with the
same amplitude in Ym,λ

j . For example, when there are three
elements with the same amplitude in Ym,λ

j , l � 6, and when
there are no elements with the same amplitude in Ym,λ

j l � 1.

p
update πk(  � p πk(  +

1
l!

A

m


m

k�1
yj+(k− 1)λ



⎛⎝

+
1 − A

m − 1


m

k�2
yj+(k− 1)λ − yj+(k− 2)λ



⎞⎠.

(5)

Correspondingly, the relative probability of the per-
mutation pattern πk can be calculated as follows:
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p πk(  �
p
update πk( 


N− (m− 1)λ
j�1 A/m 

m
k�1 yj+(k− 1)λ



 + 1 − A/m − 1
m
k�2 yj+(k− 1)λ − yj+(k− 2)λ




. (6)

-erefore, the AAPE value of the time series Y can be
calculated by

AAPE(Y, m, λ, A) � − 
m!

k�1
p πk( ln p πk( . (7)

2.2. MAAPE. To improve the feature extraction perfor-
mance of AAPE, MAAPE is proposed based on multiscale
entropy theory.

For time series Y � yi  i � 1, 2, . . . N, coarse-graining
process is conducted on it using equation (8) firstly.

y
τ
j �

1
τ



jτ

i�(j− 1)τ+1
yi, 1≤ j≤

N

τ
, (8)

where τ is the scale factor and yτ
j is the obtained coarse-

grained time series.
MAAPE can be obtained by calculating AAPE values of τ

coarse-grained time series.

MAAPE � AAPE y
τ
j , m, λ, A . (9)

2.3. HAAPE. As shown in the principle of MAAPE, the
essence of multiscale extension is to calculate the mean value
of τ adjacent elements in the time series, so as to obtain
different coarse-grained time series. Each subseries obtained
by this processing method is the low-frequency component
of the time series, so MAAPE can only extract the low-
frequency information of the time series, but ignores the
high-frequency information. To solve this issue, this paper
proposes hierarchical amplitude-aware permutation entropy
(HAAPE). -is method adopts hierarchical processing
method instead of multiscale extension, which can extract
the high frequency and low-frequency features of time series
simultaneously. -e specific principle of HAAPE is sum-
marized as follows:

(1) For the time series Y � yi  of length N � 2n, low-
frequency operator Q0 and high-frequency operator
Q1 are defined as follows:

Q0(y) �
y2i+1 + y2i+2

2
,

Q1(y) �
y2i+1 − y2i+2

2
, i � 0, 1, . . . 2n− 1

− 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where Q0(y) and Q1(y) are the low-frequency and
high-frequency components of the time series,
respectively.
-e matrix representation of Q0 and Q1 is as follows,
where j � 0 or 1.

Qj �

1
2

(− 1)
j

2
0 0 · · · 0 0

0 0
1
2

(− 1)
j

2
· · · 0 0

⋮

0 0 0 0 · · ·
1
2

(− 1)
j

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

(2) When the number of hierarchical layers is k, k di-
mension vector [s1, s2, . . . , sk] is constructed, where
sk � 0 or 1. -e hierarchical node l can be calculated
using the following equation:

l � 
k

m�1
2k− m

sm. (12)

(3) Based on [s1, s2, . . . , sk], repeat step (1) to obtain the
hierarchical component Yk,l corresponding to node l

when the number of hierarchical layers is k:

Yk,l � Q
k
sk

· Q
k− 1
sk− 1

· · · · Q
1
s1

· Y. (13)

(4) Based on the above, the HAAPE of the original series
Y � yi  can be calculated as follows:

HAAPE(Y, k, l, m, λ, A) � AAPE Yk,l, m, λ, A . (14)

To intuitively explain the process of hierarchical de-
composition, Figure 1 shows the schematic diagram when
the number of hierarchical layers is 3, where Y1,0 and Y1,1,
respectively, represent the high-frequency component and
low-frequency component of Y when the hierarchical layer
is 1.

According to the above definition, the high-frequency
operator Q1 and low-frequency operator Q0 of hierarchical
entropy correspond to the low pass and high pass filter of the
Harr wavelet, respectively. -us, the essence of HAAPE is
firstly, wavelet packet decomposition based on Harr wavelet
is used to decompose the original signal to obtain subseries
of different frequency bands, and then the AAPE value of
each subseries is calculated to obtain corresponding feature
vectors.

2.4. Simulation Signal Experiment Analysis. With a view to
testing the performance of the proposed HAAPE method as
well as comparing it with the existing MAAPE method, 50
independent random white noise signals with a length of
2048 are adopted for comparative experiments. Figure 2
displays the time domain and frequency domain waveforms
of random white noise. Obviously, the complexity of white
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noise remains roughly constant throughout the frequency
band, so theoretically, the entropy values of white noise will
maintain stable [13]. HAAPE and MAAPE are used to
extract the entropy values of all white noise samples, where
the parameters of HAAPE and MAAPE are set to
m � 5, λ � 1, A � 0.5, k � 3, and m � 5, λ � 1, A � 0.5, τ � 8,
respectively. -e error bar curves corresponding to the two
different methods are shown in Figure 3, where the mean
entropy value and standard deviation are well shown. It can
be seen that, for MAAPE, the entropy value of white noise
shows an obvious downward trend with the increase of scale
factor, which indicates that MAAPE can only extract the
low-frequency information of time series, but cannot
evaluate the complexity of high-frequency band well. On the
contrary, for HAAPE, the entropy value of white noise on
each node is basically unchanged, which is consistent with
the reality, proving that HAAPE can effectively prevent the
loss of high-frequency information. In addition, observation
shows that the standard deviation of HAAPE method is
smaller than that of MAAPE, indicating that HAAPE

method is more stable. As a whole, HAAPE enjoys better
feature extraction performance than MAAPE.

2.5.2e Parameter Selection of HAAPE. As described above,
the main parameters of HAAPE include embedding di-
mension m, time delay λ, adjustment coefficient A, and
hierarchical layer k. -e average amplitude and amplitude
difference of rotatingmachinery vibration signals are all very
important for the extraction of fault features, so adjustment
coefficient is set to A � 0.5 in this paper, which is also in line
with the recommendation of literature [9]. Generally
speaking, time delay has little influence on the final entropy
value, which is generally set to λ � 1 [18]. For the embedded
dimension m, if m is too small, AAPE cannot effectively
detect the dynamic features of time series, while if m is too
large, the calculation cost will increase. In literature [6], m is
recommended to be set between 3 and 7. For the hierarchical
layer, if k is too small, it will lead to insufficient extraction of
high frequency and low-frequency information of the time

Y

Y1,0

Y2,1Y2,0 Y2,2 Y2,3

Y3,7Y3,6Y3,5Y3,4Y3,3Y3,2Y3,0k=3

k=2

Hierarchical layer
k=1

Y3,1

Y1,1

Figure 1: Schematic diagram of hierarchical decomposition when k � 3.
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Figure 2: (a) Time domain waveform of white noise. (b) Frequency domain waveform of white noise.
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series; if k is too large, the calculation cost will be greatly
increased and the practicability of the method will be re-
duced [19]. Considering feature extraction performance and
calculation cost, as well as the common parameter settings
for hierarchical entropy and AAPE [9, 11, 20], this paper
finally sets the parameters of HAAPE as follows:
m � 3, λ � 1, A � 0.5, k � 3.

3. The Proposed Fault Diagnosis Method for
Rotating Machinery

3.1. PWFP Feature Selection Method. By constructing low-
frequency and high-frequency operators, HAAPE can si-
multaneously extract the high-frequency and low-fre-
quency features which represent the state of time series,
thereby effectively avoiding the drawback of high-fre-
quency information loss in MAAPE. However, the original
feature vectors extracted by HAAPE are high-dimensional,
and there is inevitably redundant information that affects
the final pattern recognition. In order to eliminate the
influence of redundant information and improve the
separability of feature vectors, it is necessary to use an
effective feature selection method to screen sensitive fea-
tures from original feature vectors. -e PWFP feature
selection method is a dimensionality reduction tool pro-
posed recently which is suitable for the classification of
high dimension data with low sample size, whose criteria is
based on the minimum within-class distance and maxi-
mum between-class distance. Different from the traditional
methods, which take all feature samples of the same class as
a whole for distance measurement, this method adopts two
feature samples of the same or different classes as subsets
and counts the number of optimal features corresponding
to each subset. After that, each feature is scored and ranked,
while the feature corresponding to the low score is the
sensitive feature with better separability. In literature [15],
it is proved through comparative experiments that PWFP

enjoys better dimensionality reduction effect than Fisher
Score, Laplace Score, and Relief-F. In view of the excellent
performance of PWFP, this paper employs it to further
process the original high-dimensional features extracted
using HAAPE. -e specific principles of PWFP can be
summarized as follows:

(1) Suppose a d-dimensional feature vector set xd
i , yi 

with a sample number of M, where xd
i represents the

feature vector and yi is the corresponding sample
label, yi � 1, 2, . . . c, i � 1, 2, . . . m and c represents
the number of labels. For two different samples
under the same label (xj, yj), (xk, yk), yj � yk,
calculate the Manhattan distance between them, and
get the distance vector pjk � [s1, s2, . . . sd], where sd

represents the distance between the d − th feature of
the two samples. -e sorted vector
p∗

jk
� [s∗

1
, s∗

2
, . . . s∗

d
] is obtained by ascending sorting

according to the size of each element in pjk, where s∗1
represents the position index of the nearest feature in
the original feature vector.

(2) Select the first d features from p∗
jk
as a subset p∗.

And, the same method is adopted to get the feature
subset p∗ corresponding to all paired samples with
the same label. -en, the occurrence times of all
features are counted to get the statistic vector
p � [c1, c1, . . . cd], where cd represents the occur-
rence times of the d − th feature in the feature
subset.

(3) For two samples (xj, yj), (xk, yk), yj ≠yk under
different labels, calculate the Manhattan distance
between them and get the distance vector
qjk � [s1, s2, . . . sd]. -e sorted vector
q∗

jk
� [s∗

1
, s∗

2
, . . . s∗

d
] is obtained by descending sorting

according to the size of each element in pjk, where s∗1
represents the position index of the farthest feature
in the original feature vector.

HAAPE
MAAPE
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Figure 3: Entropy value curves of two different methods.
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(4) Select the first d features from q∗
jk
as a subset. And,

the same method is used to obtain the feature subset
q∗ corresponding to all paired samples with different
labels. -en, the occurrence times of all features are
counted to obtain the statistical vector
q � [c1, c1, . . . cd].

(5) Use equation (15) to calculate the occurrence
probability of the required features in all paired
samples:

P �
1

Np

p,

Np � 
c

k�1

mk

1( ,

Q �
1

Nq

q,

Nq � 
j,k;j≠k

mj · mk,

(15)

wheremk stands for the number of samples labeled k.
(6) -e criteria shown in equation (16) is adopted to

screen the optimal features:

S(i) �
P − Q

P + Q




, i � 1, 2, . . . d, (16)

where S(i) represents the score of each feature, and
selecting the optimal m features means selecting the
m features with the lowest score in the original
feature vector.

3.2. GWO-SVM. SVM is a machine learning method which
is widely used in the field of pattern recognition. It adopts
kernel function to map the nonseparable samples in low-
dimensional space to high-dimensional space and constructs
a hyperplane to make the samples linearly separable in high-
dimensional space, so as to improve the generalization
ability. For small sample classification problem, SVM is
generally the preferred method, so SVM has been widely
used in the field of fault diagnosis. For reasons of space, the
principle of SVM is not described in detail in this paper.

-e performance of SVM depends on the setting of
penalty factor c and kernel function parameter g. Reasonable
parameters setting can bring out the best classification effect
of SVM. On the contrary, unreasonable parameters setting
will easily lead to overfitting or underfitting. In order to
determine the optimal parameters of SVM adaptively and
avoid the influence of artificial parameters setting, with
average error obtained by trifold cross-validation of training
samples as the fitness value, the gray wolf optimization
(GWO) with strong global search ability is employed to
determine the optimal parameters of SVM.-e specific steps
of GWO-SVM are as follows:

(1) Set the parameters of GWO, and generate the initial
wolf pack with [c, g] as the wolf’s position.

(2) -e corresponding fitness values of all wolves in the
initial wolf pack are calculated, and the wolves
corresponding to the three minimum fitness values
are set as α, β, σ, respectively, while their positions
are set as Xα, Xβ, Xδ. -e other wolves are all ω
wolves, and the positions are set as X.

(3) According to Xα, Xβ, Xδ, X is updated by the fol-
lowing equation to obtain new wolf pack:

Dj � Cj · X
j
n − X

k
n



,

Xt � X
j
n − Aj · Dj,

X
k
n+1 �


3
t�1 Xt

3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where j � α, β, δ, Xk
n represents the position of the

k − th wolf in the n − th generation wolf pack, Dj

represents the distance between ω wolf and j wolf,
and Xk

n+1 represents the position of updated wolf
pack. A and C stand for calculation coefficients,
which are calculated as follows:

A � 2a · r1 − a r1 ∈ [0, 1],

C � 2 · r2 r2 ∈ [0, 1].
 (18)

(3) Repeat steps 2 and 3 after getting new wolf pack.
(4) Iterate until the maximum number of cycles Tmax is

satisfied, and output the best [c, g] and corre-
sponding classification accuracy.

-e parameters of GWO-SVM in this paper are set as
shown in Table 1:

3.3.2eDiagnostic Process of the ProposedMethod. Based on
HAPPE, PWFP and GWO-SVM, this paper proposes a new
intelligent fault diagnosis method for rotating machinery.
-e specific steps can be summarized as follows:

(1) Data acquisition: the acceleration sensor is used to
collect vibration signals of m different working states
of rotating machinery, and N nonoverlapping
samples with length L are taken for each state.

(2) Feature extraction: HAAPE is employed to extract
original fault features of all samples. According to
Section 2.3, the parameters of HAAPE are set to m �

5, λ � 1, A � 0.5, k � 3 in this paper. In order to
enrich the number of features and facilitate further
screening of the optimal features, the entropy values
corresponding to the hierarchical components of
each layer are taken into account, that is, the original
feature vector obtained is [EX, E1,0, E1,1, E2,0,

E2,1, E2,2, E2,3, E3,0, E3,1, E3,2, E3,3, E3,4, E3,5, E3,6, E3,7],
where EX represents the AAPE value of the original
signal, and E1,0 represents the AAPE value corre-
sponding to the hierarchical component at node 0 of
the first layer. -erefore, the original feature vector
obtained is a high-dimensional vector of length 15.
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(3) Feature dimensionality reduction: PWFP is used to
sort the original features according to the separability
of different features, and the features with low scores
are selected as sensitive features to form the low-
dimensional sensitive feature vector. In this paper,
the number of sensitive features is set to 8, that is, the
sensitive feature vector is a low-dimensional vector
with length of 8.

(4) Fault identification: for each state, sensitive feature
vectors of n samples are randomly selected as
training samples, and sensitive feature vectors of the
rest N − n samples are selected as testing samples.
-e training samples are input into GWO-SVM for
training, so as to determine the optimal parameters
of SVM, and the fault classifier is constructed. -en
the testing samples are input into the trained clas-
sifier for identification, and the fault diagnosis of
rotating machinery is completed.

Figure 4 shows the flowchart of the proposed fault di-
agnosis method.

4. Experimental Verification

For the purpose of verifying the effectiveness of the proposed
fault diagnosis method, in this section, we firstly adopt the
bearing fault data set of Case Western Reserve University,
which is widely used in the fault diagnosis field, to test the
performance of the presented method. In addition, to prove
the universality of our method, the measured gearbox fault
data set is also used to verify the performance of the pro-
posed method. With a view to highlighting the advantages of
the proposed method, we conduct a series of comparative
experiments to verify the advantages of the proposed
HAAPE feature extractionmethod and the necessity of using
the PWFP feature selection method.

Case 1. Fault diagnosis based on rolling bearing
In this section, the publicly available Case Western

Reserve University bearing fault data set is used to verify the
diagnostic performance of the proposed method. -e ex-
perimental platform is displayed in Figure 5, which is mainly
composed of motor, torque sensor, and dynamometer. -e
test bearing is located at the motor drive end, and the model
is SKF6205. Using EDM technology to deal with normal
bearings to simulate different fault types and degrees of
bearings. -e inner ring fault bearing, outer ring fault
bearing, and rolling ball fault bearing with fault diameters of
0.1778, 0.3556, and 0.5334mm are obtained, so there are ten
different working states, including normal working state and
nine fault states. During the experiment, the speed of the
motor is 1797r/min, and the load is 0. -e accelerometer is

installed at the drive end to collect vibration signals of rolling
bearings under different working states with a sampling
frequency of 12 kHz. Figure 6 shows the time-domain
waveforms corresponding to different states. For each
working state, 50 nonoverlapping samples with a length of
2048 are taken. Among them, 20 samples are randomly
selected as training samples and the remaining 30 samples
are testing samples. So there are 200 training samples and
300 testing samples. Table 2 lists the details of different
working states of bearings.

According to the fault diagnosis process described in
Section 3.3, HAAPE is firstly employed to extract the fault
features of all samples to obtain the original high-dimen-
sional fault feature vectors. -e mean entropy curves cor-
responding to different states are shown in Figure 7(a).-en,
PWFP is used to rank the obtained original fault features,
and the results are shown in Figure 7(b). -e first eight
features after ranking (i.e., features with positions of 12, 2, 3,
10, 13, 1, 14, and 9 in the original feature vectors) are selected
as sensitive features in this paper to form sensitive feature
vectors. -e criteria of PWFP feature selection method are
based on the minimum within-class distance and maximum
between-class distance. -erefore, the eight sensitive fea-
tures represent the most separable features in the original
feature vector. -e sensitive feature vectors of the training
samples are input into the GWO-SVM-based fault classifier
for training to construct the optimal SVM classifier. -en,
sensitive feature vectors of testing samples are input for
identification. -e running results are shown in Figure 8. It
can be seen that the proposed method can effectively dis-
tinguish different fault types and fault degrees of rolling
bearings, and the fault recognition accuracy is 100%, which

Table 1: Parameters setting for GWO-SVM

-e size of wolf
pack Tmax

Initial fitness
value c g

20 50 +∞ [0.01 1000] [0.01 1000]

Collect the vibration signals of rotating
machinery corresponding to different states

N samples are taken from each state,
and the HAAPE values of all samples

are calculated

Sensitive feature vectors are
obtained by PWFP feature

selection

Training sample
set

GWO-SVM is trained, and the
optimal parameters of SVM are

determined
SVM fault classifier

Fault identification
result

Testing sample set

Figure 4: -e flowchart of the proposed method.
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proves that the proposed method enjoys good fault iden-
tification effect.

In order to highlight the feature extraction advantages of
the proposed HAAPE method, four multiscale entropy
methods, namely, MAAPE, IMAAPE, MPE, and MSE, and
two hierarchical entropy methods, namely, HPE and HSE,
are, respectively, used to replace HAAPE in the proposed
method for fault feature extraction, while other diagnostic
processes remain unchanged. Parameter setting of different
methods is displayed in Table 3. -e identification results of
different methods are shown in Table 4 and Figure 9, where
“time” in Table 4 refers to the time required to extract the
fault features of a single sample using the corresponding
method. -e experimental results show that both HAAPE
method proposed in this paper and IMAAPE method
proposed by Chen et al. enjoy the highest recognition ac-
curacy, reaching 100%. However, the computational effi-
ciency of HAAPE is significantly higher than that of
IMAAPE, which can extract fault features of samples at a
faster speed. In addition, it can be observed that the rec-
ognition accuracy of hierarchical entropy methods is higher
than that of other multiscale entropy methods (HAA-
PE>MAAPE, HPE>MPE, HSE>MSE). -is reason is that
hierarchical entropy can extract the high-frequency and low-
frequency features of vibration signal simultaneously and
overcome the defect of high-frequency information loss in
multiscale entropy, so the feature extraction performance is
better. In terms of computational efficiency, the PE-based
method is significantly more efficient than the SE-based
method. -e calculated cost of the proposed HAAPE
method is slightly higher than that of MAAPE, HPE, and
MPE, but it is sufficient to meet the needs of practical ap-
plication. Overall, compared with other methods, the feature
extraction performance of the proposed HAAPE is better.

For the purpose of studying the relationship between the
number of features and the recognition accuracy as well as to
prove the necessity of using the PWFP method to reduce the
dimension of features, after using PWFP to rank the original
features, the relationship curve between the number of
features and the recognition accuracy is drawn, as depicted
in Figure 10. It can be seen that, with the increase of the
number of features, the recognition accuracy corresponding
to different methods first increases, and then remains ba-
sically stable. It is worth noting that the higher the number of
features, the higher the training cost. -erefore, it is not
necessary to use all the features for training and recognition.
-e ideal situation is to obtain the highest recognition ac-
curacy with the least number of features, which indicates
that it is necessary to adopt the PWFP method for feature
selection. It can be found that when HAAPE, MAAPE, and
IMAAPE achieve the highest accuracy, the corresponding
feature number is the least, both of which are 8. However,
the highest recognition accuracy of HAAPE and IMAAPE is
100%, and that of MAAPE is 97.67%. -is phenomenon
proves that compared with other methods, HAAPE and
IMAAPE enjoys stronger robustness and can perfectly re-
alize bearing fault identification with only a small number of
features. In addition, according to Table 4, the calculation
cost of HAAPE is significantly lower than that of IMAAPE.

-erefore, overall, HAAPE enjoys the best feature extraction
performance among these methods.

Case 2. Fault diagnosis based on gearbox
In the previous section, the rolling bearing fault data set

is used to verify the performance of the proposed method.
Experimental results show that our method can effectively
identify different fault types and fault degrees of bearings
and has advantages in recognition accuracy and robustness
compared with other methods. In order to further verify the
universality of the proposed fault diagnosis model, we use
the gear fault data set to further verify the performance of the
method in this section.

Gear fault data is collected from QPZZ-II rotating
machinery fault experimental platform, and its structure is
shown in Figure 11. -e gear box used in the experiment is a
single reduction gear unit, where the pinion is driven wheel
with 55 teeth, and the gear wheel is driven wheel with 75
teeth. We use different fault types of gears to replace normal
gears in the gearbox to simulate different fault states of the
gearbox. -ere are four different faults: pinion wear, gear
wheel pitting, gear wheel broken teeth, and gear wheel
pitting + pinion wear. In the experiment, the motor is
connected to the synchronous belt to drive the shaft to
provide power for the gearbox.-emotor speed is 880r/min,
and the load is 0. -e acceleration sensor installed on the
bearing seat on the motor side of the gearbox output shaft is
used to collect the vibration signals of the gearbox under
different states. -e sampling frequency is 5120Hz, and the
sampling time is 10.4s. Figure 12 shows the time-domain
waveforms corresponding to different working states. Due to
the limited data length, this paper adopts a sliding window
with a length of 2048 and a step size of 1024 for sampling,
and 50 samples with a length of 2048 are taken for each
working state, among which 20 samples are randomly se-
lected as training samples and the remaining 30 samples are
testing samples. Table 5 lists the details of the different
working states of the gearbox.

Same as Case 1, the HAAPE values of all samples are
extracted to obtain the original fault feature vectors. -e
mean entropy curves corresponding to different states are
shown in Figure 13(a). It can be seen that not all features
have good separability, so feature selection is necessary.-e
features sorted by PWFP are shown in Figure 13(b). -e
first 8 features are selected (that is, the features whose
positions in the original feature vectors are 7, 12, 8, 15, 1, 5,
11, and 2) to form sensitive feature vectors. -e sensitive
feature vectors of training samples are input into GWO-
SVM for training, and the optimal parameters of SVM are
determined as c � 361.09, g � 140.34. -en, the sensitive
feature vectors of testing samples are input into the trained
SVM for recognition. At the same time, in order to
compare the performance of different feature extraction
methods, MAAPE, IMAAPE, HPE, MPE, HSE, and MSE
are used to replace HAAPE for feature extraction, re-
spectively. -e parameters setting of different methods are
shown in Table 3 and the diagnostic results are depicted in
Table 6 and Figure 14. It can be seen that the identification
accuracy of the proposed method reaches 100%, which
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indicates that the method can effectively realize the
identification of different gear fault types. Considering the
two aspects of calculation efficiency and recognition ac-
curacy, the proposed method obviously has superior per-
formance. In addition, it can be seen from the recognition

accuracy of different methods that the feature extraction
performance of hierarchical entropy is better than that of
multiscale entropy, which is the same as the conclusion
obtained by Case 1, thus fully proving the advantage of
hierarchical entropy over multiscale entropy.

Fan end Drive end 

Induction motor

Torque transducer

Dynamometer

Figure 5: -e experiment platform.
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Figure 6: Time-domain waveforms corresponding to different states.

10 Shock and Vibration



Table 2: Detailed information of different working states of bearings.

Label Bearing state Abbreviations Fault diameter (mm) -e number of training samples -e number of testing samples
1 Normal state Nor 20 30
2 IRF1 0.1778 20 30
3 Inner race fault IRF2 0.3556 20 30
4 IRF3 0.5334 20 30
5 BF1 0.1778 20 30
6 Ball fault BF2 0.3556 20 30
7 BF3 0.5334 20 30
8 ORF1 0.1778 20 30
9 Outer race fault ORF2 0.3556 20 30
10 ORF3 0.5334 20 30
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Figure 7: -e original feature vectors and the sensitive feature vectors. (a) Original fault features; (b) fault features after ranking.
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Table 3: Parameters settings for different methods.

HAAPE MAAPE IMAAPE HPE MPE HSE MSE
Embedding dimension m � 3 m � 3 m � 3 m � 3 m � 3 m � 2 m � 2
Adjustment coefficient A � 0.5 A � 0.5 A � 0.5
Similar tolerance r � 0.15 r � 0.15
Time delay λ � 1 λ � 1 λ � 1 λ � 1 λ � 1 λ � 1 λ � 1
Scale factor τmax � 15 τmax � 15 τmax � 15 τmax � 15
Hierarchical layer k � 3 k � 3 k � 3
Number of sensitive feature 8 8 8 8 8 8 8

Table 4: -e comparison of different feature extraction methods.

Different feature extraction methods Time (s) Recognition accuracy (%) -e number of misclassifications Best parameters of SVM
HAAPE 0.058 100 0 c � 264.38, g � 14.81
MAAPE 0.043 97.67 7 c � 762.61, g � 4.36
IMAAPE 0.165 100 0 c � 435.63.61, g � 0.09
HPE 0.051 98 6 c � 507.48, g � 313.94
MPE 0.032 86.67 40 c � 576.22, g � 226.14
HSE 0.309 92.33 23 c � 1.87, g � 0.79
MSE 0.273 83 51 c � 490.11, g � 0.06
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Figure 9: Continued.
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Figure 9: -e recognition results corresponding to different feature extraction methods.
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Figure 10: -e relationship between the number of features and the recognition accuracy.
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Similar to Case 1, to study the relationship between the
number of features and recognition accuracy, after ranking
the original features using PWFP, the relationship curve
between the number of features and recognition accuracy is
drawn, as shown in Figure 15. It can be observed that the
proposed method only needs seven features to achieve a
recognition accuracy of 100%, which not only demonstrates

that this method is less dependent on the number of features
and enjoys strong robustness but also proves the necessity of
using PWFP for feature selection. In general, Case 2 once
again proves the effectiveness of the proposed method and
its advantages over other methods, which indicates that our
method has good universality and provides a new idea for
the fault diagnosis of rotating machinery.
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Figure 12: Time-domain waveforms corresponding to different states.

Table 5: Detailed information of different working states of gearbox.

Label Gear state Abbreviations -e number of training samples -e number of testing samples
1 Normal state Normal 20 30
2 Pinion wear Wear 20 30
3 Gear wheel pitting Pitting 20 30
4 Gear wheel broken teeth Broken teeth 20 30
5 Gear wheel pitting + pinion wear Pitting +Wear 20 30
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Table 6: -e comparison of different feature extraction methods.

Different feature extraction methods Time (s) Recognition accuracy (%) -e number of misclassifications Best parameters of SVM
HAAPE 0.056 100 0 c � 361.09, g � 140.34
MAAPE 0.044 96 6 c � 20.84, g � 40.13
IMAAPE 0.163 99.33 1 c � 53.56, g � 36.08
HPE 0.053 90.67 14 c � 6.55, g � 154.45
MPE 0.031 89.33 16 c � 144.18, g � 17.01
HSE 0.312 88 18 c � 471.14, g � 5.18
MSE 0.275 71.33 43 c � 133.2, g � 0.026
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Figure 13: -e original feature vectors and the sensitive feature vectors. (a) Original fault features; (b) fault features after ranking.
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Figure 14: Continued.
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Figure 14: -e recognition results corresponding to different feature extraction methods.
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5. Conclusion

With a view to accurately identifying different fault states of
rotating machinery, a new fault diagnosis method based on
HAAPE, PWFP, and GWO-SVM is proposed in this paper,
and the performance of the proposed method is verified
using two fault data sets of bearing and gearbox. -e main
work of this paper can be summarized as follows:

(1) Aiming at the shortcoming that multiscale ampli-
tude-aware permutation entropy (MAAPE) can only
extract low-frequency features of time series, but
ignores the high-frequency features, this paper
proposes hierarchical amplitude-aware permutation
entropy (HAAPE). By constructing high-frequency
and low-frequency operators, HAAPE can extract
the high-frequency and low-frequency information
of time series at the same time, which effectively
overcomes the information loss problem in MAAPE.

(2) Using HAAPE as feature extraction method, com-
bining PWFP feature selection method and GWO-
SVM classifier, a new fault diagnosis method for
rotating machinery is proposed. First of all, the fault
features of rotating machinery are extracted by
HAAPE, then the original features are ranked by
PWFP and sensitive features are screened to form
sensitive feature vectors. Finally, the obtained sen-
sitive feature vectors are input into GWO-SVM
classifier for training and recognition. -e perfor-
mance of the proposed method is verified using two
data sets of bearing and gearbox, and it is proved that
the proposed method could efficiently and accurately
identify different fault types of rotating machinery.

(3) In order to compare the advantages of the proposed
method over the existing methods, a series of
comparative experiments are carried out. -e results
show that HAAPE is superior to MAAPE, IMAAPE,
HPE, MPE, HSE, and MSE in feature extraction
performance and robustness. In addition, we also
study the relationship between the number of fea-
tures and the recognition accuracy and prove the
necessity of using the PWFP-based dimensionality
reduction method.
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