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)is is the first attempt to combine the Multiobjective Billiards-Inspired Optimization Algorithm (MOBOA) with groundwater
modelling to determine pumping rates within a well-distributed range of Pareto options. In this study, in order to determine an
optimum solution for groundwater drawdown, pumping rates were selected accompanied by three minimization objectives:
minimizing shortage influenced by inability to supply, adjusted shortage index, and minimizing the degree of drawdown within
predefined areas. To optimize hydraulic conductivity and specific yield parameters of a modular three-dimensional finite-dif-
ference (MODFLOW) groundwater model, the Harris Hawks optimization algorithm was used to minimize the sum of absolute
deviation between observed and simulated water-table levels. MOBOAwas then utilized to optimize pumping rate variables for an
Iranian arid to semiarid groundwater environment using these parameters. As the study results, when the maximum and
minimum aquifer drawdown was specified in the range of −40 to +40 cm/year, the Pareto parameter sets produced satisfactory
results. Overall, the “Simulation-Optimization-Modelling” protocol was able to generate a series of optimal solutions that were
shown on a Pareto front. )e study concluded to an optimum approach that provides policy makers in the Iranian water stressed
zones with safe groundwater management alternatives.

1. Introduction

Groundwater behaviour modelling is one of the critical
mechanisms that hydrogeologists have been attempting to
measure since long time ago in order to solve evolving
groundwater issues [1]. Due to the dynamic and multi-
objective nature of the groundwater system, simulation of
the groundwater system is challenging, especially in arid to
semiarid zones. In the issue of rising groundwater demand,
new models are desperately needed to develop novel deci-
sion-making tools and improve aquifer system drawdown
[2]. Groundwater simulations have traditionally been con-
ducted with the use of simulation/optimization algorithms
[3, 4]. )ese models have been used to address construction
and process issues of groundwater hydraulic control, water
supply, and remediation [5, 6]. Professional experience with
groundwater mechanism calibration shows which the sin-
gle-objective functions are often insufficient to accurately

quantify all dimensions and features of a groundwater
system. Since sustainability managing is inherently a mul-
tiobjective issue, no optimum solutions can be determined in
the conventional context, and policy makers can articulate
their favourites through a collection of nondominated so-
lutions [7].

To consider the multiobjective existence of groundwater
systems, one approach is to specify multiple optimization
objective functions that quantify different characteristics of
system action. )ey employ a multiobjective optimization
tool to find a collection of nondominated solutions named as
Pareto best approaches [8, 9]. )e Pareto solutions reflect
trade-offs among various incomputable and often com-
peting goals, with the property that switching from one
solution to another improves one while deteriorating one or
more others [10]. In groundwater research, there are many
literature studies relating to the use of either deterministic or
stochastic optimization approaches. Linear programming,
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nonlinear programming, and dynamic programming are
examples of deterministic optimization approaches. Several
academics have followed these approaches [11, 12]. )e
standard part of optimization techniques, known as meta-
heuristic algorithms, comprises genetic algorithms (GA),
particle swarm optimization (PSO), simulating annealing,
and others. )ese approaches were applied to extremely
nonlinear or multimodal issues with a variety of dynamic
constraints in order to improve groundwater characteristics
in various regions [13].

Many attempts have been made in the literature to
address multiobjective optimization of groundwater man-
agement issues. Park and Aral [14] proposed a multi-
objective optimization method for determining coastal well
positions that enhances pumping rates while minimizing the
distance between the sensitive stagnation point and the
reference coastline position. Reed et al. [15] developed a
multiobjective strategy to cost-effective long-term ground-
water monitoring using an Elitist nondominated sorted GA.
In Italy, Giustolisi and Simeone [5] devised a method for
assessing the complicated relationship between precipitation
and water level in shallow unconfined aquifers. Siegfried
et al. [16] proposed a multiobjective algorithm for opti-
mizing pumping facility positioning and operation over
time.

Saafan et al. [17] optimized pumping rates in Egypt’s El-
Farafra oasis by combining a multiobjective genetic algo-
rithm optimization model with MODFLOW. )ey forecast
maximum pumping rate and minimum operation costs, as
well as potential improvements in both variables. )e above
algorithms have concentrated on using a single genetic al-
gorithm technique to calculate groundwater properties,
which cannot be appropriate for large-scale groundwater
systems. While working with a large-scale and complex
structure, multiple competing priorities can occur, resulting
in a rapid increase in the number of decision variables based
on the problem scale. In such cases, single-objective ap-
proaches can produce unsatisfactory results for decision
makers, necessitating the search for multiple optimization
solutions. Many optimization domains include multidi-
mensional problems that can only be solved concurrently by
constructing different optimization algorithms.

El-Ghandour and Elsaid [12] suggested a steady-state
analytical solution in a homogeneous unconfined aquifer
using the particle swarm optimization (PSO) method to
optimize and solve the groundwater management problem.
)ey tested the proposed model on a popular hypothetical
example to maximize the total pumping rate from located
well system at steady-state condition.)e results showed the
superiority of the proposed model to obtain the maximum
pumping rate compared with other methods of previous
work.

It is the first research to combine a new multiobjective
optimization algorithm called as Multiobjective Billiards-
Inspired Optimization Algorithm (MOBOA) developed
by Kaveh et al. [18] with MODFLOW to optimize
pumping rates within a well-distributed range of Pareto
approaches. )e aim of the study was to determine the
optimum approaches to meet the highest demand for arid

to semiarid groundwater managing. )ree minimization
objectives were employed to optimize the pumping rates:
minimizing the amount of drawdown within predefined
Pareto zones, decreasing the shortage caused by an in-
ability to supply, and decreasing the Modified Shortage
Index (MSI).

Sadeghi-Tabas et al. [19] tried to link the multialgorithm
genetically adaptive search method (AMALGAM) with a
groundwater model to define pumping rates within a well-
distributed set of Pareto solutions. )e pumping rates along
with threeminimization objectives, i.e., minimizing shortage
affected by the failure to supply, modified shortage index,
andminimization of extent of drawdownwithin prespecified
regions, were chosen to define an optimal solution for
groundwater drawdown and subsidence in an arid
groundwater system, Iran. )e result was that the “Mod-
eling-Optimization-Simulation” procedure was capable to
compute a set of optimal solutions displayed on a Pareto
front. In addition, the proposed optimal solution provides
sustainable groundwater management alternatives to deci-
sion makers in arid region.

In addition, combination of MODFLOW with an ad-
vanced swarm-intelligence-based algorithm as the Harris
Hawks optimization algorithm (HHO) developed by Abdel-
Basset et al. [20] to calculate aquifer hydrodynamic pa-
rameters using an automated search process was the first
innovation issue of this study. )erefore, )e HHO
approach’s capability resulted in more reliable calculations
in error variance. In addition, it assisted in characterizing
groundwater processes at each zone. )erefore, the aquifer
properties were optimized in a highly parameterized model
by developing the HHO approach within the groundwater
numerical model.

)e second aspect of innovation developed in this re-
search (i.e., as the second step) was to identify optimal Pareto
solutions for groundwater drawdown using a novel multi-
objective algorithms named as the Billiards-Inspired Mul-
tiobjective Optimization Algorithm (MOBOA) model.

)e recent optimization algorithm application guaran-
teed the groundwater control over an arid to semiarid area in
Northeast of Iran.

In Figure 1, the procedure used in this research is il-
lustrated graphically.

2. Material and Methods

2.1. Geographical Location of the Research Field. )e Gorgan
Plain is located in the arid to semiarid zone of Golestan
Province, Iran.)e Gorgan Plain aquifer system is located in
the latitude and longitude of 36° W 37′ to 37° W 27′ North
and 53°W 51′ to 54°W 51′ East (Figure 2). It encompasses an
area of around 4393 km2. )e Gorgan Plain is categorized as
an arid to semiarid zone by the DoMarton climatic classi-
fication, with mean annual rainfall and temperature of 254
millimeters and 19°C, respectively. According to the mean
sea level, the maximum and minimum elevations are 150
and −26 meters, respectively. )e plain’s slope is steep in the
south and mild in the north [21] Figure 1 illustrates the
Gorgan Plain aquifer’s geographical location.
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)e aquifer’s bedrock is mainly hard rock in the south
and saline water in the middle and northern parts. )e
majority of the land in the north is young alluvial fans, and
clay flat stretches from the south to the north.)e study area
is mountainous in the south, and deserts and fine Caspian
Sea sediments cover the western and northern regions.
Agriculture tends to have the largest demand for water from
March to July, with a subsequent decrease in demand.
Furthermore, throughout the summer, drinking demand
increases moderately, while industrial demand remains
nearly steady during the year.

2.2. Groundwater Modelling. )e mathematical solution of
the groundwater model solves the math form of the mass
balance equation in one area and generates a generally
continuous approach to the surrounds. Every parameter
value in terms of surface, volume, or time is represented by a
distinct portion of the mass balance equation. In summary, a
groundwater simulation mathematical model consists of a
set of numeric value for different indicators in the balance
equation. In other words, the balance equation is con-
structed for a specific aquifer zone, but it is generalized to the
entire field [21]. Moreover, the results of groundwater
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Figure 1: )e flowchart of research methodology.
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modelling can be influenced by numerous mistakes, such as
those caused by the groundwater conceptual model, the
estimated solution of groundwater factors, and unexplained
interactions between numerous factors and features. In fact,
establishing a groundwater computational model necessi-
tates the collection of various parameters such as hydraulic
conductivity (k), transmissivity, and storage coefficient (or
specific yield (Sy)). Groundwater modelling can produce a
range of errors and misfits due to the scarcity of hydro-
geology data (particularly in groundwater stressed regions),
the heterogeneity of parameters in space and time, inac-
curate configuration of aquifer characteristics (location,
type, number of layers, distribution, etc.), and the scaling
impact of variables. Since the numerical model is based on a
conceptual model, therefore, the groundwater conceptual
models frequently simplify real-world hydrogeology settings
improperly [22]. Physical stability in groundwater mass and
energy flows, which is a continuity mechanism, is usually
described to allow predictions at discrete time points. All of
these variables and complexity contribute to simulation bias
and error, posing a challenge to modelling the groundwater
problems, especially in arid to semiarid regions as the most
groundwater stressed areas.

2.3. Governing Flow Equations of Groundwater Modelling.
In groundwater simulation, the governing equation takes the
following general form [22]:
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In which, kx, ky, and kz are hydraulic conductivity tensors
and h, Ss, and R are pressure head, specific storage, and
recharge or discharge (positive and negative) aquifer ele-
ments, respectively.)e thickness of the saturated layer of an
unconfined aquifer correlates with groundwater level.
Dupuit [22] considered that the horizontal flow should be
governed in the whole aquifer as well as proportionality of
the hydraulic gradient to the slope of the free surface [23].
)e equation is based on Dupuit’s assumption if the flow is

two-dimensional and transient, and the continuity equation
is as follows [24]:
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In which Sy represents the specific yield. )e MOD-
FLOW software was introduced in 1984 and has since been
updated and improved to simulate in both steady and un-
steady circumstances. A distributed hydrogeology model
was developed in this study through using numerical data
needed for simulating a functional relationship between
prediction and observation data in order to model steady
and unsteady-state conditions in the Gorgan Plain aquifer
under various drawdown and control conditions.

2.3.1. Mathematical Representation of Aquifer Models.
Izady et al. [24] suggested the method applied to construct
the groundwater mathematical model in this analysis. )e
groundwater model, according to their approach, consists of
the six following phases:

(a) Acquiring all possible data;
(b) Verifying and configuring control observations;
(c) Identifying the geometry of the aquifer;
(d) Primary estimate of the hydrodynamic parameters of

the aquifer;
(e) Description of the recharge and discharge values of

the aquifer; and
(f) Integrating the effects of previous phases producing

the final conceptual model.

A one-layered unconfined aquifer with thicknesses
ranging from 5m to 55m was examined as a conceptual
groundwater model for the Gorgan Plain groundwater
modelling. Surface elevation data, well logs, well locations
and measurements, a geology map, hydrography, and re-
charge data were used to build the groundwater model. To
identify the plain boundary situation, topography and ge-
ology maps were first used. )e single optimization ap-
proach was then used to approximate the spatially
distributed hydrodynamic characteristics. )e temporal
discharge difference was calculated in this analysis by
pumping 33999 wells located inside the aquifer boundary
(Figure 3). In Figure 3, the pumping well drilled in and
distributed on Gorgan Plain aquifer has been shown. It
should be noticed that this pumping well discharges the
aforementioned aquifer.

In this analysis, seven data coverages were integrated
into the MODFLOW model to create a groundwater nu-
merical model, consisting of aquifer boundary circum-
stances, piezometers, pumping wells, surface recharges,
drainage data, hydraulic conductivity, and specific yield.
MODFLOW’s boundary conditions are determined by using
a constant head boundary, a head based flux (river, drain,
and general-head boundaries), and a known flux (recharge,
evapotranspiration, wells, and stream). Because of the dif-
ferential hydraulic gradients across multiple areas, the

Figure 2: )e Gorgan Plain aquifer’s geographical location.
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Gorgan Plain aquifer functions as a transient aquifer. In
addition, this aquifer is recharged/discharged at inflow/
outflow limits by adjacent aquifers, resulting in conditional
and temporary results. In this research, water front entry
cells or grids were used to identify recharge and discharge
sites at inflow and outflow boundaries. For all of those
borders, a specific-head-boundary state was considered to
remain constant at each cell number in the model. As il-
lustrated in Figure 3, only 281 of the 1340 observational wells
with validated data, as monthly observed water-table level
data, were utilized for calibration (Figure 4).

)e number of pumping wells was 33999 pumping wells
that consists of agricultural, drinking water, and industrial
pumping wells. Furthermore, the aquifer contains 2764
springs and 336 Qantas, which entered in the MODFLOW.
MODFLOW was originally simulated in steady state to
describe homogeneous zones before being used to construct
the aquifer model. )e aquifer was separated into 30 ho-
mogeneous zones to determine hydraulic conductivity and
specific yield values. In order to develop and construct a

groundwater model, numerous settings were given, in-
cluding model network architecture, stress cycle and time
step selection, determination of starting position, boundary
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Figure 3: Pumping well drilled and distributed on Gorgan Plain aquifer and discharging it.
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condition, and shape and number of saturated zones. To
solve partial differential equation, the aquifer was separated
into 7208 cells or grids due to geological heterogeneity. )e
plain’s gridding was constructed with 60 rows and 140
columns such that each layer cell is squared to 250m× 250m
(Figure 5).

Cells outside of the aquifer boundary were then given a
zero code, indicating that they have no influence on the
simulation analysis. While individual model cell features
may be set, combining cells with the same attributes into
homogeneous zones significantly enhanced and simplified
the modelling procedure. Figure 4 shows the modelled
structure of the Gorgan Plain aquifer used by the MOD-
FLOW model.

In this research, the modelling of groundwater flow in
the Gorgan Plain was carried out over a one-year cycle, from
October 2018 to September 2019 as the calibration period
and from October 2019 to September 2020 as the validation
period. 12-month tension cycles with a ten-day time phase
were defined and used in the modelling methodology (i.e.,
for each stress cycle, three time measures were taken into
account). To complete the numerical model, absolute values
of bed rock depths, topography, and beginning water level
data were interpolated by using the Kriging method and
assigned to the network’s cells.

2.4. Harris Hawks Optimization Algorithm as the Single-
Objective Optimization Approach. Modeling the Harris
Hawks hunting technique yielded the Harris Hawks opti-
mization (HHO) algorithm [25], a novel nature-inspired
method. )e algorithm’s operative and exploratory stages
involve looking for prey, making a sudden pounce, and
attacking in a variety of ways. )e hunt is conducted at
random using two exploring approaches. In the first way,
Harris Hawks perch on a position that takes into account the
positions of other family members and prey, whereas in the
second way, the hawks wait on selected tall trees. Both
strategies may be represented with the same probability of q
as follows [20]:

x(t + 1) �
xr(t) − x1 xr(t) − 2r2x(t)


q≥ 0.5,

xrabbit(t) − xmean(t) − r3 Lb + r4(Ub − Lb)( q< 0.5,

⎧⎨

⎩

(3)

where x(t) and x(t + 1) imply hawks’ position vectors in the
present and subsequent iteration, respectively. xr(t) is
mentioned to a random hawk picked from the population.
xrabbit(t) is the rabbit position. q, r1, r2, r3, and r4 are the
numbers that was arbitrarily produced. Ub and Lb are higher
and lesser bounds to generate accidental positions of the
hawks’ habitat. xmean(t) implies the average position of
hawks in the population which can be capable of being
computed as follows [20]:

xmean(t) �
1
h



h

i�1
xi(t), (4)

where xi(t) implies the i-th position vector of each hawk at t-
th iteration and i� 1, . . ., h. h is mentioned as the number of

Harris Hawks’ population. According to escape energy E or
fleeing of the rabbit, the algorithm’s transition from ex-
ploring to operation is possible as follows [20]:

E � 2E0 1 −
t

Max_iter
 , (5)

where E0 denotes the primary rabbit energy randomly
generated in [−1, 1]. Max iter specifies the maximum
number of iterations. When E≥ 1, hawks look for more
regions to explore the rabbit’s locations as the exploration
phase; otherwise, the exploitation phase is activated. )e
description of the failure (p< 0.5) or success (p≥ 0.5) of the
rabbit escape is accomplished in the algorithm, when the
probability p is the same. Furthermore, a forceful (E< 0.5) or
gentle (E≥ 0.5) besiege will be accomplished by hawks
according to the rabbit energy. )e gentle besiege can be
expressed as follows [20]:

x(t + 1) � Δx(t) − E|J × xrabbit(t) − x(t),

Δx(t) � xrabbit(t) − x(t),

J � 2(1 − rand),

(6)

where Δx(t) implies the dissimilarity between hawk and the
rabbit positions, and the draw of the accidental strength of
rabbit jump J is completed by employing an arbitrary
amount of rand.)e definition of the forceful besiege, on the
other hand, is as follows [19]:

x(t + 1) � x(t) − E|Δx(t)|. (7)

If (p< 0.5) and (E≥ 0.5) and as the rabbit can effectively
flee, gentle besiege with advance rapid dives is done.)e best
possible dive can be selected by the hawks.

2.5.MultiobjectiveBilliards-InspiredOptimizationAlgorithm.
)is section provides an explanation of the basic principle of
this novel physics-based metaheuristic. )e mechanism of
the Billiards-Inspired Multiobjective Optimization Algo-
rithm is then outlined in the following section. )e physics’
natural laws and the Billiards game embedded in the clash of
balls are the major genesis of the BOA. Vector algebra and
conservation laws govern when the balls collide with other
balls. )e kinetic energies of balls are preserved during
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Figure 5: Gorgan Plain aquifer modelled by MODFLOW.
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collisions in perfectly elastic collisions, in addition to the sum
of all angular velocity. )erefore, the following ultimate ve-
locities of balls after crash in perpendicular and parallel di-
rections to the impact line will be calculated as follows [18]:

v1′
→

� v
1. e

→′ + v
→

1.⊥,

v2′
→

� v
2. e

→′ + v
→

2.⊥,

v1.
′ �

m1 − m2

m1 + m2
v1.‖ +

2m2

m1 + m2
v2.‖,

v2.
′ �

2m1

m1 + m2
v1.‖ +

m2 − m1

m1 + m2
v2.‖,

(8)

where v1 and v2 are the velocities of the first and 2nd balls
during the collision and v’1 and v’2 are their velocities after the
colliding. In addition, the symbols ║ and ┴ symbolize
parallel and perpendicular elements, respectively. )e
masses of the balls are represented by the parametersm1 and
m2. )e linking vector’s unit vector is often denoted by e

→║.
It is worth noting that the velocities’ perpendicular com-
ponents stay constant, so the forces are merely directed to
the collision axis, resulting in the perpendicular components
of the angular velocities being preserved for balls. )erefore,
the aforementioned equations indicate that if the masses of
the balls are identical, the balls just transfer the parallel
component of their velocities. )e balls’ velocity compo-
nents during the crash are shown in Figure 6 [18]:

v1.‖
′ � v2.‖,

v2.‖
′ � v1.‖.

(9)

)e final positions of bodies defined in this algorithm
using the equations of kinematics in the event of continuous
accelerating are as follows [18]:

x(t) � x0 + v0t +
1
2

at
2
,

|v|
2

� v0



2

+ 2|a| x − x0


.

(10)

2.6.Billiards-InspiredMultiobjectiveOptimizationAlgorithm.
All of the solution approaches that comprise multiple de-
cision variables are modelled as the multidimensional balls
in this algorithm. )ese balls are the MOBOA’s searching
factors, and every dimension indicates a variable. In sum-
mary, the procedure begins with a random distribution of
balls, and after that, it transfers nondominated strategies into
an outside archive. Any members of the archive are chosen
as pockets in each iteration. Following that, the balls are split
into two collections: regular and cue balls. Every cue ball
strikes its targeted ball, causing it to travel into a pocket.
Whenever cue balls collide with each other, collision rules
and vector algebra take over determining the movement
of collided balls as well as their final status. MOBOA’s
phases are illustrated below, and its pseudocode is shown in
Figure 7 [18].

2.6.1. Phase 1: Initialization. In the search space, the initial
population of multidimensional balls is generated at random
as follows [18]:

x
0
i � xmin + rand[0,1] xmax − xmin(  , i � 1, 2, 3, . . . , 2N.

(11)

In which, x0
i is the ith ball initial value. )e vectors of

variables xmax and xmin represent the maximum and min-
imum permissible values. rand[0,1] is an arbitrary variable,
ranged by [0, 1], as well as the population number is defined
by 2N.

2.6.2. Phase 2: Evaluation of Population. )e objective
functions each ball [f (x)� f1(x), f2(x), . . ., fk(x)] T should be
evaluated [18].

v′2.⊥

v′1.⊥ v1

v2.⊥

v’2.||

v1.||

v′1.||

v′1.⊥v′1

v2.||

v2

v′ 2

Impact line

→

Figure 6: Velocity components of the balls during the crash [18].

2N = number of balls;
M = number of pockets;

Initialize 2N random bodies by equation (11);
Evaluate all balls according to objective functions;
Find the non-dominated solutions and create the repository;
Select M pockets from repository using roulette-wheel selection;
while (iter < Maximum number of iterations)

ET = escaping threshold;
iter = 0;

iter = iter + 1;
Sort the population based on maximum fitness values;
Create ordinary ball and cue ball groups;
for each pair ball

for each pocket

end

End

if (rand < ET)

end

end

Calculate shot score by equation (14);

Regenerate a random dimension of current pair ball by
equation (20);

Return the repository as the optimal Pareto front.

Evaluate all the bodies according to the objective functions;
Extract non-dominated solutions and Update the repository;
Update the pockets using roulette-wheel selection;

Regenerae the violated dimensions of the cue ball;

Assign the best pocket to current pair ball;
Update the position of current ordinary ball by equation (16);
Regenerate the violated dimensions of the ordinary ball;
Calculate the velocities of current pair ball by equations (17) and (18);
Update the position of current cue ball by equation (19);

Set

Figure 7: )e MOBOA pseudocode [18].
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2.6.3. Phase 3: Use an External Archive. )e archive’s first
mission is to save the best nondominated approaches dis-
covered till now. All existing nondominated solutions are
added to the archive in each iteration, whereas dominated
solutions are deleted. To keep the archive size limit, a
gridding process is being contemplated, which divides the
objective space into hypercubes. When the archive capacity
exceeds the maximum size limit, certain approaches in the
packed hypercube are removed and some new solutions are
added. )is procedure broadens the range of the estimated
Pareto front. )e repository’s 2nd job is to include any
candidates that deserve to be pockets [18].

2.6.4. Phase 4: Identifying the Pockets. Any representatives
of the archive are chosen as pockets by means of the roulette-
wheel selection approach. Equation (12) defines the sug-
gested chance for selecting a hypercube to randomly draw a
pocket [18]:

Pi �
e

− βni

 j
e

−βnj
, (12)

where β is the greater-than-zero selection pressure and ni
defines the amount of solutions in the ith hypercube. As a
result, staying in a less populated region enhances the
chances of getting a hypercube. It should be noted that the
user determines the amount of pockets, and these pockets
increase the algorithm’s exploiting potential.

2.6.5. Phase 5: Arranging the Balls. In each iteration, the
solution candidates are ordered in ascending order using the
maximum strategy. An approach having a lower maximum
value of fitness is more suitable because it is found in sparse
regions. For the jth solution, the maximum fitness value is
determined as follows [18]:

fitnessj � max min fk xi(  −fk xi( , k � 1, 2, . . . , k, i � 1, 2, . . . , 2Ni≠ j. (13)

Following that, the ordered population is split into two
equivalent classes (N pairs): (1) the upper and (2) the lower
half as the regular and cue balls, respectively. Every cue ball
corresponds to its pair in the regular balls category. )is
clustering approach creates the ideal situation for cue balls to
exploit good-positioning regular balls.

2.6.6. Phase 6: Assigning Pockets to Balls. )e lengths and cut
angles between the balls and the pockets are used to assign
the pockets to each pair of balls. )ese factors are taken into
account while calculating the regarded shot score, which is
calculated as follows [18]:

Shotmi �
cos θ

x(i+N)
�����→

xi
→

xiPm

����→, i � 1, 2, 3, . . . , N, m � 1, 2, . . . , M.

(14)

)e shot score between the ith pair of balls and themth bag
is defined by Shotmi . xi

→ and x(i+N)
�����→ are the ith regular ball and

ith cue ball positions, correspondingly. In addition, Pm denotes
the location of the mth bag, and M denotes the number of
pockets. And the cosine of the cut angle is determined by cos θ,
and it is measured using the following equation:

cos θ �
x(i+N)
�����→

xi
→

· xiPm

����→

x(i+N)
�����→

xi
→

xiPm

����→ . (15)

In which the dot product is denoted by the symbol “.”;
based on the measured scores, all pair of balls is assigned to
the highest scoring pocket. Another choice is to use the
roulette-wheel selection method to calculate the pockets for
every pair of balls [18].

2.6.7. Phase 7: Population Updating. Finally, a collision
occurs between cue balls and regular balls. Regular balls are
then driven into pockets by cue balls. As indicated by the
equations below [18], the new locations of regular balls
following collisions are near their pockets:

x
new
i,j � P

i
m,j + rand[−EROR,EROR] x

old
i,j − P

i
m,j ,

EROR � 1 −
iter

itermax
.

(16)

In which xnew
i,j and xold

i,j are the new and old values of the
ith regular ball’s jth vector, respectively. )e Pi

m,j vector is
the jth variable of themth pocket belonging to the ith pair of
balls. )e error rate is denoted by EROR; in addition, the
iteration number and maximum iteration number are
denoted by iterand itermax, respectively. rand[−EROR,
EROR] is an arbitrary number between [−EROR, EROR]
[18]. Determining the ultimate location of cue balls fol-
lowing a collision is dependent on certain prerequisites, such
as calculating the velocity of regular and cue balls. )e
velocity of the regular balls following the impact is shown as
follows [18]:

vi′
→

�

�����������������

2a · x
old
i,j x

new
i,j

��������→


x
old
i,j x

new
i,j



. (17)

In which vi′
→

is the velocity of the ith normal body fol-

lowing the crash, and x
old
i,j x

new
i,j

��������→
is the ith body’s displacement

vector. It is worth noting that the symbol “̂” denotes a
corresponding unit vector. )e acceleration rate is defined
by the parameter a, which is set to one. Cue ball velocities are
calculated as follows [18]:

8 Shock and Vibration



v(i+N)
�����→

�
vi
′

→


x
old
i x

new
i ·


x
old
(i+N)x

old
i


x
old
(i+N)x

old
i ,

v(i+N)
′

�����→
� v(i+N)

�����→
− vi
′

→
.

(18)

In which v(i+N)
′

�����→
and v(i+N)

�����→ are the ith cue ball’s velocities
during the crash, correspondingly. In conclusion, the
changed positions of the cue balls are calculated as follows
[18]:

x
New
(i+N)

�����→
� x

old
i

��→
+ ω

v(i+N)
′

�����→

2a
v(i+N)
′

�����→
. (19)

In which the factor ω determines a reducing variable that
controls the movement of cue balls and has an initial value in
the range [0, 1]. Figure 8 depicts the ball updating process.

2.6.8. Phase 8: Breaking Free from Local Optima. An escape
limit, such as EL inside (0, 1), is known to avoid trapping in
local optima. EL is compared to rand for each updated ball
that is an arbitrary number regularly spread within (0, 1). If
rand EL, the updated ball’s random dimension is regen-
erated as [18]

xi,j � xmin ,j + rand xmax ,j − xmin ,j , i � 1, 2, 3, . . . , 2N.

(20)

2.6.9. Phase 9: Evaluate the Boundary Restrictions. )e ul-
timate location of balls may be put outside of the permissible
ranges during the method of updating the location of balls.
)e dimensions of the balls that have been violated must be
regenerated in this situation [18].

2.6.10. Phase 10: Evaluating the Termination Criteria.
After a certain number of iterations, the search process will
be terminated. If the condition is not met, the procedure is
restarted at phase 2 [18]. )is study used 5,000 function
evaluations of 50 population sizes for optimization reasons.
)en, to provide a reliable and computationally effective
method to multiobjective optimization problems, 12
monthly discharge parameters were employed. After about
3,000 simulation cycles, the model met the convergence
criterion. Pumping rates, as well as three minimization
objectives, namely, minimizing shortages caused by a failure
to supply, MSI, and minimizing the drawdown amount
within predefined areas, were afterward selected to identify
the best result for groundwater drawdown.

2.7. Developing the MODFLOW-HHO-MOBOA Structure.
)e MODFLOW-HHO-MOBOA framework is established.
A simulator-optimizer model in the MATLAB software was
used to evaluate and calculate aquifers’ properties. )e
simulator model (i.e., MODFLOW) and the optimizer al-
gorithms (HHO-MOBOA) should be coupled in order to
calibrate the aquifer’s hydrodynamic parameters and

calculate pumping rates, and therefore, simulator model and
the optimizer algorithms were linked by developing the
interface subfunction in MATLAB that contributes to the
simulator-optimizer model. In this research, )eo Ols-
thoorn’s [26] MODFLOW simulator model was used
throughout the MATLAB platform (mfLab program). )e
MF2005NWT (MODFLOW-2005, Newton-Raphson for-
mulation) software, which includes the Newton-Raphson
solver to improve the outcome of unconfined groundwater-
flow problems, as well as the Upstream Weighting Package
(UPW), was also employed in this investigation for nu-
merical solutions. UPW was used to determine aquifers’
features governing flow movement between cells in the MF
20005-NWT and MF-OWHM (MODFLOW-2005, One
Water Hydrologic Flow Model) methods.

)e MOBOA algorithmic was run by introducing an
initial population and setting the algorithm parameters. )is
population is spread through a set of calculation nodes,
which run the simulation model and calculate the objective
function of the points obtained. )e optimization process
will be accomplished according to the flowchart proposed
until the stopping criteria are encountered (Figure 1).

2.8. Evaluation of Model Results. Mean error (ME), mean
absolute error (MAE), root mean square error (RMSE), and
normalized root mean square error (NRMSE; nondimen-
sional variants of the RMSE) were all utilized as criteria
throughout the calibration procedure. ME, MAE, and
RMSE/NRMSE all indicate error in the units (or squared
units) of the constituent of interest, which aids in data in-
terpretation [27, 28, 29]. )e following equations (equations
(21)–(24)) were used to estimate error:

ME �


m
t�1 

m
i�1 h

t
oi − h

t
si 

n∗m
, (21)

MAE �


m
t�1 

m
i�1 h

t
oi − h

t
si




n∗m
, (22)

RMSE �

�����������������


m
t�1 

m
i�1 ht

oi − ht
si( 

2

n∗m



, (23)

NRMSE �

������������������


m
t�1 

m
i�1 ht

oi − ht
si( 

2


m
t�1 

m
i�1 ht

oi − ho 
2.




(24)

In which ht
oi, ht

si, and ho denote the observed head,
simulated head, and mean value for observed head, re-
spectively, n denotes the number of observational wells, and
m denotes the number of monthly time stages (i ranges from
1 to 11 months, while t ranges from 1 to 12 months). )e
optimization model’s decision variables are dependent on
the number of the aquifer discharge volumes (33999 wells)
over 12 months. )e three objective functions employed in
this analysis are mentioned below. Minimizing the amount
of shortage was considered as the first objective function
[30]:
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MIN shortage � 

n

i�1
TDt − TWt( 

⎧⎨

⎩

⎫⎬

⎭. (25)

In which, TWt denotes the aquifer discharge volume in
the time span t (MCM), TDt denotes the demand volume in
the time period t (MCM), and n determines the cumulative
number months. An MSI (equation (26)) was selected as the
second objective function because it simply minimizes the
total of shortages over time and avoids the spread of
shortages over time. )is index is critical for developing
economic and social strategies [31]:

MIN MSI �
100
n



n

t�1

TSt

TDt

 

2⎧⎨

⎩

⎫⎬

⎭. (26)

In which, TSt and TDt represent the amount of shortage
and demand in period t, respectively. In addition, n indicates
the total number months. It is worth noting that drinking
demand is calculated by subtracting the shortfall volume of
other needs (such as agricultural and industrial) from dis-
charge values. Finally, the third objective function was to
minimize the drawdown of water-table level [32]:

MIN Drawdown � H0 − Hend , (27)

In which, H0 and Hend are the mean aquifer water levels
(meters) at the start and end of the simulation time,
correspondingly.

3. Discussion and Results

3.1. Optimizing Parameters Using the HHO Algorithm.
Over 5,000 simulation runs, the HHOmodel was optimized,
with the model achieving the convergence condition after
around 3,000 iterations. For each zone, the specific yield and
hydraulic conductivity of groundwater were then optimized.
Figures 9 and 10 depict optimal hydraulic conductivity (k)
and specific yield (Sy) values for geological units. )e
aquifer’s hydraulic conductivity and specific yield varies
significantly, indicating a geologically nonhomogeneous
groundwater system. )e corresponding hydraulic con-
ductivity field is greatest in blue-coloured zone and lowest in
red-coloured one (Figure 11). It means that the central to the
north western parts of the aquifer have the lowest hydraulic
conductivity. Only two spots (i.e., blue spots) have the

highest amount of hydraulic conductivity. In other words,
the eastern parts of the Gorgan Plain aquifer have higher
amount of hydraulic conductivity. As a matter of fact, this is
due to the heterogeneity spread all over the aquifer. Al-
though, due to the sever nonhomogeneity of the Gorgan
Plain aquifer, the interpretation of hydraulic conductivity all
over the study area is difficult, discussion about the specific
yield can be more convenient. As it is obvious from Figure 9,
the specific yield amount reduces to the northwest and
northeast. Its highest amount located in the south with the
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Figure 9: Specific yield pattern resulted in MODFLOWmodelling.
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Figure 10: Hydraulic conductivity pattern resulted in MODFLOW
modelling.
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Figure 8: )e procedure of updating a pair of balls [18].

10 Shock and Vibration



blue colour as the blue spot. It means that the spreading
pattern of specific yield would be concordant to the aquifer’s
hydraulic conductivity except for the blue and green spots
toward the east. )erefore, the before mentioned hetero-
geneities can be the main cause of this variation pattern.

High hydraulic conductivity regions can be permanently
limited to the groundwater regime to modify aquifer
properties. Considering the broad range of variations in both
parameters across the entire aquifer, it seems that the
aquifer’s hydraulic reaction to recharging and pumping
operations is extremely volatile. To put it another way, there
cannot be a steady-state pattern in the groundwater regime.
)e vertical range of the aquifer can be further disrupted by
variations in hydraulic conductivity (hydraulic conductivity
multiplied by saturated aquifer thickness). Hydraulic
characteristics or other elements that have a significant
positive or negative influence on groundwater modelling are
of higher importance in the modelling [8]. )e specific yield
ranges between 0.02 and 0.2. In general, variations in specific
yields can cause fluctuations in the aquifer’s hydraulic re-
sponse to transient stress. )is instability represents the
groundwater regime’s extremely nonlinear characteristics.

After simulating each time, the mfLab software was
slightly changed to display the volumetric specific yield. )e
specific yield values were separated by the research area to
get equal water thicknesses. A variety of MATLAB com-
mands were developed in this study to facilitate algorithmic
runs and produce MODFLOW input files. All of the tests
were performed on a PC using an Intel Core i7, 7700HQ
CPU running at 2.8GHz to 2.81GHz and 12GB of RAM.
Depending on the algorithm setup, the overall running time
was about 37 minutes that was much faster than using the
internal optimization method supplied in MODFLOW
software (i.e., Newton-Raphson optimization subfunction).

3.2. HHO Calibration and Validation Results. During the
calibration process, aquifer water-table level was simulated
across 30 zones, as seen in Figures 9 and 10. Using 12-month
tension data from October 2019 to September 2020, the
model was validated by predicting observed water-table level

(each cycle includes three ten-day time scales). )e con-
tribution of different locations within the model domain to
the estimated value of the particular parameter being
measured is represented by the estimated values in distinct
zones for a specific groundwater parameter. Table 1 shows
and reports the error indices for simulated and observed
head values. )e error calculation indicates that the model is
well calibrated. )e calculated error is also low during the
validation process, suggesting a good calibration. )e
MODFLOW simulation’s validity and the HHO’s efficiency
in computing groundwater properties are also verified by the
model calibration and validation results. Any ambiguity,
such as measurement error, specified initial and boundary
conditions, or the overall conceptual model, has a significant
influence on modelling. Although Hamraz et al. [3] ex-
amined the parameter uncertainty associated in identifying
the recharging ground water parameters; the emphasis of
our study is on optimization approaches (by reducing error
and misfit). According to the error indices, the HHO sig-
nificantly decreased error and misfit by indicating the lowest
error throughout the calibration and validation phases as
well as reducing the CPU time. )e HHO algorithm yielded
RMSE and NRMSE in the ranges of 0.7–0.9m and
0.02–0.025, respectively (Table 1).

)e HHO approach discussed here will afford modellers
with a simple technique that can be applied to complicated
activities. As shown in Figures 10 and 12, the groundwater
water-table levels were calculated at the start and end of the
simulation phase for the whole aquifer.

)e head values reveal a distinct pattern when com-
paring groundwater water-table levels. )e effects of local
pumping operations (drinking or agricultural wells) at the
start of the simulation phase (which starts in October) and
the subsequent restoration of flow can be used to explain this
phenomenon (mostly by neighbouring aquifers). )ese
aggressive pumping operations might smooth out the design
of the simulated head curve at the aquifer’s centre. In other
words, the values at the cell or grid’s centre are reflected in
the simulated groundwater level, and piezometers are fre-
quently found there. )e aquifer’s groundwater level de-
creased from south to north and northwest, as seen in
Figures 12 and 13, indicating that groundwater flow is
largely in the same route. We can see from Figures 12 and 13
that if present withdrawals continue, groundwater levels in
the west would almost certainly decline. In addition, the
groundwater gradient decreases from south to north (and
east to west in the eastern parts). )is is due to the flow
direction which is concordant to the groundwater gradient.

3.3. Pumping Rate Optimization. )e optimized parameters
collected by the HHO optimization algorithm were used to
optimize predefined objective functions in MOBOA (5,000
iterations). )ree policy analysis possibilities are examined
to analyze the influence of different fundamental assump-
tions on the results. Scenario A: under this situation, the
highest pumping rate is considered with reducing the sum of
shortages while having the aquifer water-table drops max-
imally. Scenario B: in this situation, pumping rates are
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Figure 11: Groundwater water-table levels at the start of the
simulation phase.
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permitted to supply demand with no drop in aquifer water-
table level and no volatility in the aquifer water table at the
start and end of the year (October to September). Scenario C:
pumping rates are expected to be the minimum values in
order to minimize drawdown and raise the aquifer water
level at the start and end of the period. )erefore, the
MOBOA was optimized using 12-month discharge values as
decision parameters according to the predetermined ob-
jective functions (Scenarios A, B, and C) as the alternative
optimum approaches situated in separate areas of the Pareto
solutions.

So, the MODFLOW framework is used to simulate and
explain optimum solutions. Figure 13 depicts the Pareto-
optimal solution using the three predefined objective
functions values (i.e., drawdown, shortage, and MSI). As the
distribution of shortages in different months is defined by
MSI values, it (i.e., MSI) is considered to decline while
shortage amounts reduce, and the drawdown amounts in-
crease. )erefore, as drawdown increases, the shortage
amount decreases, until all needs are supplied with no
shortage when drawdown reaches 0.4 meter. Furthermore,
2D Pareto fronts (two objective functions) were evaluated to
a better explanation and to analyze the best solutions
(Figure 14). Drawdown and shortage are inversely related;
because of the decreasing trend in the aquifer, discharge
causes a drop in drawdown, as seen in Figure 14(a). )e
relation between shortage and drawdown is nearly linear,
and it might be explained by the same amount for aquifer
hydrodynamic characteristics at different flow depths. MSI
has a straight association with shortage. As a result, MSI is
projected to be inversely proportional to drawdown
amounts (Figure 14(b)).

)e total of optimum discharge amounts across the
simulation time is shown as the decision variables for the
three samples of optimum solution from various regions of
the Pareto front.)erefore, the black, green, and blue dots in
Figures 13 and 14, respectively, show the solutions A, B, and
C.

According to Figures 13 and 14, if the first scenario (A) is
considered, the total amount of shortages will be reduced
and the aquifer will experience high values of drawdown. It
will be accompanied by the total amount of MSI reduction as
the highest pumping rate applied to the aquifer. It is well-
known if Scenario C is considered, the aquifer water level
rises upward due to declination in drawdown amount. )is
situation will not be obtained unless the aquifer pumping
rates are expected to be at the minimum values.

Based on Scenario B, there will be no drop and instability
in aquifer water level due to permitting the pumping rates to
supply demands at the start and end of the year.

Figure 14 determines the solutions A and C that express
zero, and 27.3 MCM shortages are decided to supply the first
and third objective functions so as to minimize the sum of
shortages and drawdown, respectively. )e best solution
would be one that all three objective functions contribute
equally to the optimization procedure. )e ideal solution is
represented by the green point as solution B, when shortage
and MSI are nearly zero. According to Figure 14, when
drawdown is near 0.4m, the aquifer can meet all demands.
Moreover, in Scenario B, the pumping rate at existing wells is
allowed to fluctuate over time (but not the water-table depth
at the start and end of the period), resulting in a more
arrangement that can respond to possible changes such as
water needs or periodic recharges. Every value in the
nondominated collections acquired for all options repre-
sents a distinct strategy that must be weighed against the
others when making management choices. )ese options
contrast from groundwater management viewpoints, which
hold that no improvement can be made to one goal without
decreasing satisfaction with the others. Figure 15 shows the
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Figure 13: Pareto-optimum solution using the three objective
functions values (i.e., drawdown, shortage, and MSI).

Table 1: Performance criteria of the HHO algorithm in calibration/
validation phases.

Phase MAE RMSE ME NRMSE
Calibration 0.49 0.71 0.18 0.019
Validation 0.65 0.85 0.33 0.024
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Figure 12: Groundwater levels at the end of the simulation phase.
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amount of water-table level variations for the three chosen
solutions across the simulation period. During February,
these three best solutions are fairly near, but they are far
apart in September.

February is an appropriate month since demand and
drawdown are almost equal or have minimal variations.
Although, throughout the spring and summer, once the
aquifer water level drops steadily according to numerous
pumping operations, the aquifer recovers significantly from
October to February. )e aquifer’s water-table level ranges
from 32.6 to 32.8 meters in February but drops to 30.5
meters in September as the aquifer maximum discharge.
During various options, the minimum and maximum limits
of groundwater levels were 30.5m and 32.9m, respectively,
according to the evaluation of all optimum solutions (Fig-
ure 15). As decision makers have three ideal alternatives for

the Gorgan Plain aquifer based on the findings, they can
choose any (drawdown) option that is within the ideal range
of −40 to +40 cm/year. During maximum and minimum
drawdown amounts over the aquifer, there are considerable
changes in water-table levels. If one of the optimum man-
agement strategies, A, B, or C, is selected, it should be as-
sured that the area’s maximum needs are satisfied. However,
the challenge of deciding the best option stays open and may
vary over time, based on management policies. It is worth
noting that optimum solution B, as a transitional scenario,
performed well in terms of decreasing the objective func-
tions under consideration in this research. It demonstrates
that the created technique was able to converge on an in-
termediate solution for the case study. Furthermore, optimal
solution B couldmeet the supplying demand fairly while also
reducing decline in the aquifer system.
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Figure 14: Mutual relationships of Pareto fronts in a two-dimensional model. (a) Drawdown (m) versus shortage (MCM); (b) drawdown
(m) versus MSI; and (c) MSI vs shortage (MCM).
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Figure 15: Groundwater level variations for all scenarios across the simulation period.
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)e Pareto front’s optimal solution performances sug-
gest that the assistances of the 281 wells might meet the
requirements and quality standards. )e best contributions
produced the highest (+40 centimetres) and lowest (−40
centimetres) drawdown in the 281 wells at the end of the
optimization phase. Figure 16 determines that the agricul-
tural demand for water is the primary cause of water level
fluctuations in the Gorgan Plain aquifer. In addition, the
summer agricultural demand for water has been highlighted
as the main discharge water.

It should be mentioned that the results of this research
are in line with the Sadeghi-Tabas et al. [19] research. In
other words, the results obtained in this study are similar to
their study results.

4. Conclusion

In this research, the HHO method was used to optimize the
estimation of MODFLOW hydrodynamic parameters, and
the optimized parameters were then utilized in the MOBOA
multiobjective algorithm to construct Pareto-optimum ap-
proaches and groundwater-managing scenarios. )e sug-
gested multiobjective problem design included reducing the
shortage caused by a supply failure, MSI, and reducing the
amount of drawdown within predefined zones within three
alternatives as Scenarios A, B, and C. Under Scenario A, the
total amount of shortages will be reduced and the aquifer will
experience high values of drawdown. In addition, it will be
accompanied by the total amount of MSI reduction as the
highest pumping rate applied to the aquifer. However, if
Scenario C is considered, the aquifer water level rises upward
due to declination in drawdown amount. )is situation will
not be obtained unless the aquifer pumping rates are ex-
pected to be at the minimum values. Moreover, in Scenario
B, there will be no drop and instability in aquifer water level
due to permitting the pumping rates to supply demands at

the start and end of the year. )e results determined that
considering the Scenarios A and C expresses zero and 27.3
MCM shortages, in order to supply the first and third ob-
jective functions so as to minimize the sum of shortages and
drawdown, respectively. And the best solution would be one
that all three objective functions contribute equally to the
optimization procedure. However, the ideal solution is
represented by Scenario B, when shortage and MSI are
nearly zero. It is worth noting that, when drawdown is near
0.4m, the aquifer can meet all demands. Moreover, in
Scenario B, the pumping rate at existing wells is allowed to
fluctuate over time (but not the water-table depth at the start
and end of the period), resulting in a more arrangement that
can respond to possible changes such as water needs or
periodic recharges. In addition, the groundwater level
variations for the three scenarios across the simulation
period indicated that during February, these three best
solutions are fairly near, but they are far apart in September.
)e aquifer’s water-table level also ranges from 32.6 to 32.8
meters in February but drops to 30.5 meters in September as
the aquifer maximum discharge. During various options, the
minimum and maximum limits of groundwater levels were
30.5m and 32.9m, respectively, according to the evaluation
of all optimum solutions. When two separate algorithms
were combined with the MODFLOW model, it was dis-
covered that the created method could produce a set of
optimum approaches for the groundwater system repre-
sented on a Pareto front. It should be noted that using the
HHO algorithm as a new optimizationmethod instead of the
traditional optimization method supplied in the MOD-
FLOW model makes the MODFLOW software more ap-
plicable and much faster in groundwater modelling by
shortening the CPU time of the computers up to 37 minutes
running time. )erefore, this research calculated optimal
solutions for the whole aquifer of the Gorgan Plain, eval-
uating those approaches for each groundwater zone might
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Figure 16: Groundwater discharge for all scenarios across the simulation period.
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give important data for the groundwater-managing policies.
Although both the HHO and MOBOA algorithms are ef-
fective in quantifying groundwater features, the computa-
tion time for a broader aquifer system may grow
considerably as the number of cells and stress periods rise.
)erefore, the idea of fuzzy set theory [33] or using mul-
tiprocessor computers [34] can also be utilized to evaluate
each of the efficient approaches to optimize objective
functions depending on objective conditions. )e HHO-
MOBOA method described in this research can be regarded
as an optimum solution producer, and its connection to the
MODFLOW framework allows for the simulation of opti-
mum groundwater scenarios that can be readily combined
with the other conceptual models such as hydrology and
water quality models. )e integration of the optimization
capabilities of HHO and MOBOA to the MODFLOW en-
vironment created a more applicable looping “Simulation-
Optimization-Modelling” method valuable for decision
makers dealing with groundwater management issues in the
arid to semiarid regions.
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