Hindawi

Shock and Vibration

Volume 2021, Article ID 5077366, 11 pages
https://doi.org/10.1155/2021/5077366

Hindawi

Research Article

Fault Dynamic Modeling and Characteristic Parameter
Simulation of Rolling Bearing with Inner Ring Local Defects

Zhang Fengling, Zhang Yuwei, Guan Jiaoyue, Tian Jing (), and Wang Yingjie
Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,
Shenyang Aerospace University, Shenyang 110136, China

Correspondence should be addressed to Tian Jing; jingtian@sau.edu.cn
Received 7 April 2021; Revised 4 June 2021; Accepted 22 October 2021; Published 17 November 2021
Academic Editor: Chengwei Fei

Copyright © 2021 Zhang Fengling et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

To further study the fault mechanism and fault features of rolling bearings, a two-DOF rolling bearing fault dynamic model with
inner ring local defects considering the bearing radial clearance and time-varying displacement excitation is established based on
Hertz contact theory. By comparing the simulated fault signal with bearing fault test data in the time domain and frequency
domain, the accuracy of the established fault dynamic model is verified. Finally, the change rules of the characteristic parameters of
the bearing inner ring fault signal, including effective value, absolute mean value, square root amplitude, peak value, kurtosis
factor, pulse factor, peak factor, and shape factor, are simulated by the fault dynamic model. The results highlight that the
proposed fault dynamic model is in good agreement with the experimental results. The model can simulate the fault signal
characteristic parameters with the change of defect width, external load, and rotating speed effectively. The study in this paper is of

engineering application value for bearing condition monitoring and fault diagnosis.

1. Introduction

Rolling bearing is an important part of various rotating
machines. Bearing failures not only affect the normal op-
eration of mechanical equipment but also cause catastrophic
damages [1]. The condition monitoring and fault diagnosis
for rolling bearings are hot topics of current research. It is of
great significance to establish a reliable rolling bearing fault
dynamic model for studying bearing condition monitoring
and fault diagnosis [2, 3].

A lot of research has been carried out at home and
abroad for the rolling bearing fault dynamic model. Patil
et al. [4] established a dynamic model of rolling bearing
based on Hertz contact theory and simulated the influence of
the bearing outer ring local defect on bearing vibration. Patel
et al. [5] studied the characteristics of deep groove ball
bearing and built a two-DOF bearing dynamic model
considering the shaft, cage, raceway, and ball quality. They
also studied the vibration response of bearings with single
fault and multiple faults on the inner and outer raceways of

the bearing. Zhang et al. [6] built a two-DOF rolling bearing
fault dynamic model with outer ring local defects, which
considered the rolling shaft nonlinear bearing force and
radial clearance. Guan et al. [7] set up three nonlinear
dynamic fault models of rolling bearings with outer ring
local defect, inner ring local defect, and the roller local
defect, respectively, considering the bearing radial clearance,
the nonlinear contact force of the roller and the raceway, and
the varying compliance (VC) vibration. The correctness of
these models is verified by simulation analysis results. To
study the rolling bearing fault vibration characteristic,
Zhang et al. [8] established a six-DOF bearing fault dynamic
model. They simulated and analyzed the rolling bearing
outer ring local defect fault, inner ring local defect fault, and
roller local defect fault, respectively, by the Runge-Kutta
numerical integration method. Their results are consistent
with the experiment basically. Niu et al. [9] constructed the
rolling ball bearing dynamic model with local surface defects
based on the Gupta bearing model and analyzed its dynamic
characteristic, which provided a theoretical foundation for
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rolling ball bearing fatigue damage analysis and fault quan-
titative diagnosis. Liu et al. [10] built the cylindrical roller
bearing local defect fault dynamic model with nonideal Hertz
line contact characteristic and time-varying displacement
excitation. They also studied the effect of displacement exci-
tation form and local defect size on the vibration characteristic
of cylindrical roller bearing. It offered valuable conclusions for
the incipient local defect fault dynamic analysis and fault
diagnosis of rolling bearing. Yan et al. [11] instituted a two-
DOF deep groove ball bearing local defect fault dynamic
model, based on nonlinear Hertz contact deformation and
elastic fluid lubrication theory. They also verified the accuracy
of the model by comparing the simulation signal with the
bearing fault test data and supplied a theoretical basis for
bearing fault diagnosis. Niu et al. [1] proposed a dynamic
model for roller bearings with roller defects. Jiang et al. [12]
established an improved dynamic model to investigate the
abrupt change of contact force and the corresponding vi-
bration response of the bearing system. In order to investigate
the vibration characteristics and stability due to fit clearance,
Cao et al. [13] proposed a dynamic model of rotor-bearing-
pedestal system. The model applies time-varying displacement
responses and Fourier spectra to analyze the vibration char-
acteristics of the rotor system. Bourdon et al. [14] studied the
effect of localized defects on the rotating speed fluctuation in a
tapered roller bearing. The tool can distinguish speed changes
from defects and working conditions. Li et al. [15] established a
general dynamic model of rolling bearing rotor system and
used a test rotor supported by two deep groove ball bearings
for experimental verification. Yi et al. [16] proposed a model
considering not only the high-speed effect of the rolling el-
ement such as centrifugal force and gyroscopic moment but
also the degrees of freedom (DOFs) of all movable compo-
nents. Qin et al. [17] proposed a new high-speed fault dynamic
model of ACBB using a B-spline fitting displacement exci-
tation method to represent the fault excitation.

Most of the research aimed at building the bearing fault
dynamic models but lacked the change rules of bearing fault
signal characteristic parameters [18-21]. In view of the above
shortcomings, at first, the time-varying displacement exci-
tation function is used to represent the fault in this paper
according to the rolling bearing inner ring fault form;
secondly, the rolling bearing fault dynamic model is built
considering time-varying displacement excitation and
bearing clearance. Then, the accuracy of the model is verified
by comparing the model simulation results with the ex-
perimental results. Finally, when the inner ring fault occurs,
the model is used to simulate the influence of the defect
width, the external load, and the working speed on the
bearing fault characteristic parameters. The research results
can provide a theoretical reference for bearing condition
monitoring and fault diagnosis.

2. Bearing Fault Dynamic Model with Inner
Ring Local Defects

2.1. Simplified Bearing Model. The actual bearing structure is
complex. To study the bearing vibration, the roller, the inner
ring, and the outer ring can be simplified into a spring-mass
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system [4, 5], as shown in Figure 1. The bearing fault dy-
namic model is established based on Hertz contact theory.

2.2. Local Defect Shape. This paper studies the incipient local
defect fault of the bearing and uses the rectangle to represent
the actual defect shape. During the incipient bearing fault,
the width of the defect W is small, so it does not touch the
defect bottom when the rollers pass the defect. The maxi-
mum offset H,, generated by the defect is smaller than the
defect depth H ;. Figure 2 demonstrates the passing defect
process of a roller, which is divided into three stages. During
the first stage, the roller enters the defect from the beginning
with the roller touching the left side of the defect, and the
time-varying displacement H, is gradually increasing.
During the second stage, the roller enters the defect com-
pletely with the roller touching both sides of the defect, and
the time-varying displacement H, reaches the maximum.
During the third stage, the roller leaves the defect with the
roller touching the right side of the defect, and the time-
varying displacement H, is dropping gradually. In brief,
when the roller passes the defect, its time-varying dis-
placement gradually increases and then decreases, so the
roller time-varying displacement excitation model is
expressed approximately by the sinusoidal function.

2.3. Time-Varying Displacement Excitation of Inner Ring Local
Defect Fault. When the inner ring rotates with the working
axis, both the position of the bearing inner ring defect and
the time-varying displacement excitation change accord-
ingly. The angular position relation of the roller and the
defect is shown in Figure 3. The counterclockwise direction
is the positive direction, and the inner ring angular velocity
is set as w;. The initial angular velocity of the first roller
relative to the X axis is 0, and the angular velocity of the i-
th roller relative to the X axis at the time t is ;. The initial
angular velocity of the right side of the defect relative to the
X axis is 0 ¢, and the angular velocity of the time ¢ relative to
the X axis is 0,. The defect angle ¢ is 2W/d,, where d; is the
diameter of the bearing inner raceway. According to the
relationship of the inner ring defect and the roller motion,
the time-varying displacement excitation H, generated by
the roller passing the defect can be obtained as follows:

H, sin<l (mod(Gﬂ, 271) - mod (6, 271))),
Py
H, =
0< mod(E)ﬂ, 271) - mod (0, 27) < ¢,
0, else,
(1)
where
th = Gfo + wit,
m (2)
Gbi = 7 (l - 1) + wct + 9b0>

in which w, is the speed of the bearing cage.
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FIGURE 2: Process of roller passing defect.

FIGURE 3: Angular position relation of roller and defect when
bearing inner ring fault occurs.

2.4. Establishment of the Dynamic Differential Equation.
The relationship between the bearing nonlinear load and
displacement by Harris is expressed as follows:

Q=K?¢" (3)

For the deep groove ball bearing, n =3/2. When the
bearing bears loads, the radial displacement between the two
raceways is equal to the sum of the radial displacement between
the two raceways and the roller, which is expressed as follows:

5,=06+0,, (4)

The total stiffness is written as

K= ! n 5)
S\ wk)"+(uk )" )

where K; is the contact stiffness of the roller and the inner
race and K, is the contact stiffness of the roller and the outer
race. For ball bearing,

K, =215%x10° Y p;"(6;)7",
K,=215x10°Y p,"?(8:)7",

(6)

where 87 is the contact parameter when the inner raceway
dimension is 1 and &) is the contact parameter when the
outer raceway dimension is 1. ) p; is the curvature function
of the inner raceway. ) p, is the curvature function of the
outer raceway.

The bearing total contact stiffness K can be calculated by
formula (5). The displacement of the inner ring of the
bearing in the X and Y directions is x; and y;, as shown in
Figure 4. The radial displacement § of the inner ring relative
to a roller is expressed as follows:

8 = x; cos By, + y;sin 6, - C,, (7)

where C, is the radial clearance. For the deep groove ball
bearing, the radial contact force Q; of each roller can be
calculated by the following formula:

Q; = K[x; cos 6; + y;sin 6; — (C, + Ht)]m, (8)

where F;y and F}y are the sum of the component forces of
the radial contact force Q; of each ball in the X and Y di-
rections and are written as the following formulas,
respectively:

z
Fix = KZ [x; cos 6, + y; sin 6, — (C, + H,)]*” cos 6,
i=1

(9)

z
Fy = KZ [x; cos B, + y;sin 6, — (C, + H,)]*” sin 6,
i=1

(10)

When the rolling bearing is working, the outer ring is
generally fixed in the bearing housing. Due to the high ri-
gidity of the bearing housing and the small vibration of the
bearing outer ring, only the vibration of the inner ring is
considered, and the differential equation of the bearing fault
dynamic with two DOFs is established as shown in the
following formula [11]:
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FIGURE 4: Deflection of bearing inner ring in X and Y directions.

d’x; _dx; Z
M,.—le+Ci+K

a A

dz)’i dy; 4
M, R +C 7

i=1

where M; is the mass of the inner ring and A, is the switch
value judging whether the roller passes the defect or not. If it
is “pass,” A, = 1; otherwise, A, = 0. C is the bearing inner
ring equivalent damping in the X and Y directions. F;x and
Fy are the external loads acting on the inner ring in the X
and Y directions, respectively. F; is the inner ring centrifugal

oQ,
ox

K
dy

M~

N W

]
—

In summary, the steps to solve the dynamic equation of
ball bearing in this paper are shown in Figure 5, as follows.

3. Experimental Verification

3.1. Acquisition of Bearing Test Data. The correctness of the
bearing fault dynamic model is verified by comparing the
bearing fault test data of Case Western Reserve University
with model simulation results. The bearing fault test rig is
shown in Figure 6. It includes a 2-horsepower motor, a
torque sensor, a power meter, and an electronic control unit.
The bearing outer ring is fixed, and the inner ring supports
the motor shaft. The vibration signals are collected by
acoustic sensors, which are mounted on the motor housing
at 6 o’clock. The sampling frequency is 12000 Hz, and the
motor spindle speed is 1797 r/min.

[x; cos B; + y;sin B, — (C, + A1Hr)]1/2|:

[x; cos 6, + y;sin 6, — (C, + A, H,)]””* cos 6,; = F;x + F, cos (w;t),

(11)

+ KZ [x; cos By, + y;sin 6y, — (C, + A, H,)]** sin 6,; = Fyy + F; sin (w;t),

force by eccentricity, and w; is the inner ring angular
velocity.

The bearing cross stiffness is negligible [22], so the
bearing stiffness K;x and K;y in the X and Y directions can
be approximated by the deviation of formulas (9) and (10)
for x and y.

2
cos Oy,
’ :| (12)

) ’
sin”6,;

The test bearing is a deep groove bearing (Model: 6205-
2RS JEM SKF), and the structural parameters are shown in
Table 1. A single point fault is set on the bearing inner ring by
the spark erosion technique. The defect width is 0.1778 mm,
and the defect depth is 0.2794 mm.

The local defect fault feature frequency formula of the
bearing inner ring [23] is expressed as follows:

(

where f is the bearing inner ring frequency, d is the roller
diameter, d,, is the bearing pitch diameter, and « is the
contact angle between the roller and the inner or outer ring.
By calculation, the inner ring fault feature frequency f, is
162.8 Hz, and the inner ring rotating frequency f is 29.9 Hz.

f

5 (13)

fo 1+ dicos (x)Z,

m
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Establish the dynamic differential
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FIGURe 5: Calculation flowchart of the proposed dynamic model.
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FIGURE 6: Bearing fault test rig. (a) Experimental setup. (b) Schematic drawing of the experimental setup.

TaBLE 1: 6205-2RS JEM SKF bearing structural parameters.

Parameter Numerical value
Bearing inner race diameter d; (mm) 25
Bearing outer race diameter d, (mm) 52

Pitch diameter d,, (mm) 38.5
Roller diameter d (mm) 8
Number of balls Z 9
Contact angle « 0

Radial clearance C, (ym) 20

The parameters are set according to Table 1. The bearing
inner ring structural damping is 200 Ns/m. The radial load
F |y in the X direction is 300 N, the radial load Fy in the Y
direction is O N, and the eccentric distance of the inner ring
is 0.005mm. The fault dynamic model is solved by
theNewmark — 8 method. The time step is 0.0001s, the
initial displacement, the initial speed, and the initial ac-
celeration in X direction and Y direction are both zero.

3.2. Inner Ring Fault Simulation and Experimental
Verification. When the bearing inner ring has local defect,
the load at the defect changes periodically because of the
defect rotating with the bearing inner ring, and the bearing
frequency plays the role of frequency modulation. The

spectrogram of the inner ring fault signal is mainly described
as the inner ring fault feature frequency and its frequency
multiplication, The the inner ring fault feature frequency is
the center frequency, while the rotating frequency and its
frequency multiplication are the side frequencies.

The time-domain signal of the bearing inner ring fault
test data is shown in Figure 7(a). The frequency spectrum
signal after noise reduction is shown in Figure 7(b).
Figure 8(a) shows the simulation signal of the bearing inner
ring fault model in the time domain, and the frequency-
domain simulation signal is shown in Figure 8(b). From
Figures 7(b) and 8(b), it can be seen that the fault feature
frequency f; and its doubling frequency 2 f; are clear, with
fas the center, fas the rotating frequency, and its frequency
multiplication 2 f as the side band. Experimental results and
simulation results are in good agreement. The fault feature
frequency f; = 162.8 Hz in the simulation signal frequency
spectrum, which is consistent with the theoretical value. The
fault feature frequency in the experimental signal frequency
spectrum f; = 161.7 Hz, which is basically equal to the
simulation result. They are a little different because there is a
slip phenomenon when the bearing works and an error in
the bearing speed measurement. Therefore, the accuracy of
the inner ring fault dynamic model is verified by comparing
the simulation results with the experimental results.
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FIGURE 7: Test signal of bearing with inner ring fault. (a) Test signal in time domain. (b) Test signal in frequency domain after noise

reduction.
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F1Gure 8: Simulation signal of the bearing inner ring fault model in (a) time domain and (b) frequency domain.

4. Characteristic Parameter Simulation and
Analysis of Bearing Inner Ring Fault Signals

4.1. Characteristic Parameters of Fault Signals. In the early
stage of bearing local defect fault, the defect size is very small, but
the defect size expands gradually with the operation of the
bearing until a serious fault occurs. In addition, the radial load
and working speed of the bearing will also change. Therefore, it
is necessary to study the fault signal characteristics of the bearing
under different defect widths, radial loads, and working speeds
and get the corresponding change law, which can provide a
reference for bearing condition monitoring and fault diagnosis.

For the bearing fault signal, the statistical parameters
which can reflect the fault characteristics are usually selected
to describe its characteristics, including dimensional char-
acteristic parameters and dimensionless characteristic pa-
rameters. Peak value X .., absolute mean value X, effective
value X ., and square root amplitude Xr are dimensional
characteristic parameters. x(k),k=1...N is a discrete
signal sequence, and the calculation formulas of the above
characteristic parameters are shown in Table 2.

The peak value can reflect the impact force of bearing
fault, and the greater the impact force is, the greater the peak
value is. It is suitable for the fault diagnosis of bearing surface

TaBLE 2: Calculation formulas of dimensional characteristic
parameters.

Dimensional characteristic
parameters

Peak value X .. X ax = max (x (k))
Absolute mean value X, X,=1N ZkN:1 |x (k)|

Effective value X, Xyms = \J1/N Zzi L %2 (k)

Square root amplitude X, X, = (UN YN, \Ix(K)])?

Calculation formula

pitting defects, especially in the early stage of bearing fault;
the peak value is very sensitive to the fault. The absolute
mean value, square root amplitude, and effective value can
reflect the magnitude of signal energy. The greater the energy
value is, the stronger the bearing fault vibration is, and the
more serious the fault is.

Kurtosis factor K, pulse factor I, peak factor C, and
shape factor S; are the dimensionless characteristic pa-
rameters. The calculation formulas are shown in Table 3.

B is the kurtosis, o is the standard deviation, and  is the
mean value.

1

ﬁ:_

N (X(k) -,

(14)

\MZ
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TaBLE 3: Calculation formulas of dimensionless characteristic parameters.

Dimensionless characteristic parameters

Calculation formula

Kurtosis factor K,
Pulse factor I
Peak factor C f

Shape factor Sy

K, = plo*
I_f = Xmax/Xa
Cf = Xmax/ers
Sf = ers/Xa

The kurtosis factor is the ratio of the kurtosis § to the
fourth power of the standard deviation ¢*. The vibration
signal of bearings without faults satisfies a normal distri-
bution, and the kurtosis factor is 3. The kurtosis factor of
bearings with faults is larger than 3. When the bearing fault
occurs, the components with large amplitude in the signal
increase because of the shock pulse in the fault signal, and
the two ends of the probability density distribution function
are upwarped. So, the kurtosis factor of fault bearing is
greater than 3. The kurtosis factor is very sensitive to the
early fault of bearing.

The pulse factor is the ratio of the peak value to the
absolute average value, which can judge whether there is an
impact component in the signal and has a good monitoring
effect on pitting, scratch, and other faults. The peak factor is
the ratio of the peak value to the effective value, which is
sensitive to the impact vibration caused by surface peeling
and scratch. The shape factor is the ratio of effective value
and absolute average value, which has a certain monitoring
effect on bearing pitting and wear fault.

Taking the bearing inner ring local defect fault as an
example, the influence of defect width, external load, and
working speed on the characteristic parameters of the
bearing fault signal is studied in the following paragraphs.

4.2. Influence of Defect Width on Characteristic Parameters of
Bearing Inner Ring Fault Signals. Considering the rotation
speeds, the change rule of characteristic parameters of the
inner ring fault signal with the defect width is studied. The
radial load is kept constant at 300 N, the defect width is from
0 to 2mm, the defect increment is 0.1 mm, the bearing
working speed is from 500 r/min to 15500 r/min, and the
rotational speed increment is 1000 r/min.

Figures 9(a)~9(c) show the change law of the effective
value, square root amplitude, and absolute mean value with
defect width. When the rotation speed is low, the three
characteristic parameters increase gradually with the defect
width increasing and remain unchanged when the defect
width reaches a certain value. When the rotation speed is
high, the parameters increase continuously. It is because the
increase of the defect width causes the increase of large
amplitude components and the signal energy of the fault
signal. Figure 9(d) shows the change law of the peak value
with defect width. In the early stage of the fault, the peak
value increases with the increase of the defect width. In the
later stage of the fault, although the defect width continues to
increase, the peak value does not increase and fluctuates
irregularly due to the limitation of the structural charac-
teristics of the bearing itself. From the above analysis, in the
early stage of bearing failure, the dimensional characteristic

parameters are more sensitive to the change of defect width,
and there is no significant difference in the sensitivity of
dimensional characteristic parameters to the change of
defect width under different speeds except for the very low
working speed.

Figures 9(e)-9(h) show the change law of the kurtosis
factor, pulse factor, peak factor, and shape factor with defect
width. At low speed, the dimensionless characteristic pa-
rameters increase rapidly with the increase of defect width,
then decrease slightly, and then remain unchanged; at high
speed, with the increase of defect width, the dimensionless
characteristic parameters first increase and then gradually
decrease. From the calculation formula of dimensionless
characteristic parameters, the reason for the above variation
is that the relative growth rate of dimensional characteristic
parameters on the numerator and denominator of dimen-
sionless characteristic parameters is different with the in-
crease of defect width in different periods of bearing failure.
As shown in Table 4, the dimensionless characteristic pa-
rameters increase firstly and then decrease with the ex-
pansion of defects.

In addition, it can be found that the dimensionless
characteristic parameters at low speed are significantly larger
than those at high speed, and with the increase of working
speed, the speed of dimensionless characteristic parameters
with the increase of defect width gradually decreases. It can
be seen from the above analysis that, in the early stage of
bearing fault, the dimensionless parameters are very sen-
sitive to the change of defect width, but with the increase of
bearing working speed, the statistical characteristics of the
fault signal are changed, and the sensitivity of dimensionless
parameters to the change of defect width is gradually re-
duced. In practice, by monitoring the characteristic pa-
rameters of the bearing vibration signal, the bearing fault can
be predicted, and the development trend of the bearing fault
can be reflected.

4.3. Influence of Working Speed on Characteristic Parameters
of Inner Ring Fault Signals. Considering the defect width, the
change rule of characteristic parameters of the inner ring
fault signal with the working speed is also studied. The
external load is 300N, the working speed is 500 r/min-
~15500 r/min, the speed increment is 500 r/min, the defect
width is 0~2 mm, and the defect width increment is 0.2 mm.
When the defect width is 0, the bearing is normal without
any fault.

Figures 10(a)~10(c) show the change law of the effective
value, square root amplitude, and absolute mean value with
the working speed. In the early stage of bearing fault, the
parameters increase slowly with the increase of the rotating
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TaBLE 4: Relative growth speed of characteristic parameters in
different periods.
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speed and then remain unchanged; when the defect width is
large, the parameters increase rapidly with the increase of the
rotating speed. Figure 10(d) shows the change law of the
peak with the working speed. When the defect width is small,
the peak value increases slowly and then remains un-
changed. When the defect width is large, the peak has ir-
regular fluctuations. It can be seen from above that, in the
early stage of faults, the dimensional characteristic param-
eters are insensitive to the rotation speeds.

Figures 10(e)-10(h) show the change of the kurtosis
factor, pulse factor, peak factor, and shape factor with the
working speeds. For the normal bearing, the dimensionless
characteristic parameters are basically unchanged. Because
there are no impact components in the signal, the dimen-
sionless characteristic parameters are only sensitive to the
fault signal impact components. For the bearing inner ring
fault, the dimensionless characteristic parameters reduce
rapidly from the initial maximum value and then remain
unchanged. The larger the defect width is, the faster the

decrease in parameters will be. In practice, the bearing fault
can be predicted by monitoring the change of dimensionless
characteristic parameters of mechanical equipment bearing
vibration signal with speed, which has a certain practical
significance.

4.4. Influence of External Load Size on Characteristic Pa-
rameters of Inner Ring Fault Signals. The change law of
characteristic parameters of the inner ring fault signal with
the external load size is finally studied. The external load is
200 N~1500N, the external load increment is 100N, the
defect width is 0 to 2 mm, the defect increment is 0.1 mm,
and the rotation speed is 8000 r/min.

Figures 11(a)-11(d) show the change of the effective
value, square root amplitude, absolute mean value, and peak
value with the defect widths. Under different external loads,
the dimensional characteristic parameters gradually in-
crease. The larger the external load is, the faster the increase
in parameters will be. When the external load reaches a
certain value, the bearing capacity reaches the upper limit,
and the parameter values tend to be stable. It can be seen
from the analysis that, in the incipient bearing fault, the
dimensional characteristic parameters are sensitive to the
defect width, and the sensitivity is not significant under
different external loads.

Figures 11(e)-11(h) show the change of the kurtosis
factor, pulse factor, peak factor, and shape factor with the
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FiGure 11: Effect of defect width on characteristic parameters under different external loads. (a) Effective value. (b) Square root amplitude.
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defect width. The parameters increase firstly and then
gradually decrease. As the external load increases, all the
parameter values decrease. It is because the increase of the
external load suppresses the fault impact vibration and
reduces the dimensionless parameter values.

5. Conclusions

This paper uses the time-varying displacement excitation
function to indicate faults aiming at the bearing inner ring
fault form. Then, the rolling bearing fault dynamic model
is built considering the time-varying displacement exci-
tation and bearing clearance. At last, the accuracy of the
model is verified by comparing the model computing
results with the experimental results. The conclusions are
as follows:

(1) The fault dynamic model of bearing inner ring with
local defect is established, which considers the time-
varying displacement excitation and radial clearance.
By comparing the bearing fault test data, it is verified
that the time-varying displacement excitation
established in this paper can accurately simulate the
bearing fault excitation, and the bearing fault dy-
namic model can accurately simulate the bearing
fault characteristics.

(2) In the incipient bearing inner ring fault, the di-
mensional characteristic parameters of the fault
signal are sensitive to defect width and increase with
defect width increasing. The sensitivity is not sig-
nificant at different working speeds.

(3) The dimensionless characteristic parameters of the
fault signal increase first and then decrease with
the defect width increasing. In the incipient fault,
those parameters are very sensitive, but as the
bearing rotation speed increases, the sensitivity
decreases.

(4) For normal bearing, with the working speed in-
creasing, the dimensional characteristic parameters
increase slowly, and the dimensionless characteristic
parameters remain unchanged. In the incipient inner
ring fault, the dimensional characteristic parameters
change slowly and are insensitive with the working
speed increasing, but the dimensionless character-
istic parameters reduce rapidly from the initial
maximum value and are very sensitive.

(5) In the incipient inner ring fault, there is no signif-
icant difference in the sensitivity of dimensional
characteristic parameters to the change of defect
width under different external loads. The increase of
the external load reduces the sensitivity of the di-
mensionless characteristic parameters to the defect
width.

The efforts of this study provide a useful insight to adopt a
dynamic model to evaluate and monitor the health condition
of bearings in an aeroengine or other rotating machinery. In
future, the method in this paper may also be used in other
kinds of bearings, such as intershaft bearings in aeroengines.

Shock and Vibration
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