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A novel ensemble Yu’s norm-based deep metric learning (DMLYu) is proposed to diagnose the fault of rolling bearing in this
paper, which can diagnose the fault classes through the information fusion method that combines the different diagnosis results
produced by several Yu’s norm-based deep metric learningmodels with different scale signals.*e suggested method is composed
of three steps: firstly the vibration signal is decomposed into multiple IMF components by the EEMD method, then these IMF
components are input into the DMLYu models which is called the modified deep metric learning model based on Yu’s norm-
based similarity measure, respectively, to extract the feature parameters to diagnose the fault of rolling bearings from the different
scales, and finally the final diagnosis decision is made by fusion strategy based on Bayesian belief method (BBM). At last, through a
multifaceted diagnosis test of rolling bearing on different datasets, the effectiveness of the proposed ensemble DMLYu based on
BBM is verified, and the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy and
generalization with DMLYu based on voting method and the individual DMLYu model.

1. Introduction

*e rolling bearing is the key component of rotating ma-
chinery; its failure can lead to the equipment shutdown and
the enterprise economic losses. In order to ensure the
normal operation of the rolling bearing, it is necessary to
monitor and diagnose the fault conditions of the bearing
[1–4]. Currently, the mechanical fault diagnosis has entered
the era of mechanical big data; it is of great significance to
study how to effectively use the big data to diagnose the
bearing faults [5, 6].

Presently deep learning has been widely applied to the
field of fault diagnosis of mechanical equipment because of
the strong ability of automatically learning discriminative
feature parameters from themechanical big data through the

multiple-layer nonlinear transformation. Different kinds of
deep learning models, such as deep belief network (DBN),
the convolution neural network (CNN), and deep autoen-
coder model, have been developed to diagnose the fault
categories of different mechanical equipment [7–13]. Al-
though these deep learning models can obtain higher di-
agnosis accuracy than the shallow neural network models,
their diagnosis accuracy and generalization ability need to be
improved, and their diagnosis mechanism is unexplainable
in the process of diagnosis [14].

Deep metric learning (DML) which can map original
feature parameters to discriminative feature space by
maximizing interclass variation and minimizing intraclass
variation is also suggested to be applied to the field of pattern
recognition [15–18].*ese DMLmodels can use the distance
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metric criterion to classify the data samples with explainable
classification mechanism, but in the field of fault diagnosis
some mechanical signals are too difficult to be diagnosed
because of the complexity of signal transmission path and
insensitiveness of the fault parameter features to fault cat-
egories; in particular, some data samples in the boundary
region of different fault categories can be misclassified by the
DML based on distance metric criterion [18]. Afterwards a
DML based on Yu’s norm similarity measure (DMLYu) is
proposed to diagnose the fault of rolling bearings, which can
automatically extract feature parameters through the fuzzy
formalism and the multiple-layer nonlinear transformation,
and it can recognize the faulty data samples in the boundary
region of different fault categories with higher accuracy [19].

Although the individual DMLYu can take advantages of
the end-to-end learning ability of deep learning mechanism
to obtain discriminative feature parameters from the original
vibration signals, like other deep learning models it can not
reveal thoroughly the nonstationary dynamic fault charac-
teristics concealed in the time domain vibration signals. To
solve this problem, different kinds of time frequency analysis
methods, such as short-time Fourier transform (STFT),
wavelet packet transform (WPT), and empirical mode de-
composition (EMD), have been combined with deep
learning for fault diagnosis [20, 21].

Furthermore, the diagnosis accuracy and reliability of
the DMLYu model are degraded because of the small faulty
data samples and overfitting. Ensemble learning based on the
decision fusion strategy has been verified to overcome these
limitations of individual deep learning model and achieve
higher accuracy and reliability because of the complementary
classification behaviors among different classifiers [22]. When
multiple deep learning models combined with the different
scale components of original signal are applied to the same
fault diagnosis problems, its final diagnosis performance is
superior to that of the individual deep learning model.
*erefore, some ensemble deep learning models have been
developed to apply to the field of fault diagnosis with higher
accuracy and reliability [23–25].

In view of the above principles, a novel ensemble
DMLYu model based on the Bayesian belief method and
ensemble empirical mode decomposition (EEMD) is pro-
posed to diagnose the faults of rolling bearings, and the
contribution and innovation of the proposed fault diagnosis
method are written as follows:

(1) *e deep metric learning based on Yu’s norm can
classify the data samples in the boundary region of
different fault categories with higher accuracy and
explainable classification mechanism because of
similarity measure based on the fuzzy rule of Yu’s
norm

(2) *e individual DMLYu model can extract more
insensitive fault feature parameters from the IMF
component which can describe the fault related
information from the different scale view

(3) *e ensemble DMLYu model based on the Bayesian
belief method can diagnose the fault of bearings with

the highest accuracy and generalization ability be-
cause of the fusion mechanism of several DMLYu
models with different IMF components

*e diagnosis schematic flowchart is shown in Figure 1.
Firstly, the vibration signal is gradually truncated through
the sliding window and divided into N data sample seg-
ments, and then the data sample segment is decomposed
into multiple IMF components. Secondly, each IMF com-
ponent is fed into the DMLYu to diagnose the fault of
bearings, respectively. Finally, the final diagnosis result can
be obtained by the Bayesian belief fusion technique. *e
remainder of the paper is organized as follows.*e proposed
ensemble Yu’s norm-based deep metric learning model
which synthesizes the EEMD algorithm and the basic theory
of DMLYu model with the Bayesian belief method is de-
scribed in Section 2; the fault diagnosis experiment of rolling
bearings is conducted in Section 3. At last the conclusions
are drawn in Section 4.

2. Ensemble Yu’s Norm-Based Deep Metric
Learning Model

Owing to the fact that ensemble deep metric learning model
inherits the advantages of both the deep metric learning
models and the ensemble learning, the ensemble deep metric
learning has better generalization performance and higher
diagnosis accuracy. Accordingly, in order to improve the
diagnosis accuracy and robustness of individual DMLYu
model, referring to Figure 1 the different scale components
of vibration signal which is decomposed by the EEMD
method to describe the fault related information from the
different viewpoint are input into multiple DMLYu models
to form the proposed ensemble DMLYu model based on the
Bayesian belief fusion method.

2.1. EEMDMethod. EEMDwhich is the improved version of
the EMD is mainly to decompose the original signal into
multiple intrinsic mode functions (IMFs) and solve the
problem of mode mixing in the EMD method by a noise-
assisted analysis method [26]. It produces a collection of
series by adding the white noise with statistical property of
uniform distribution in frequency range to the primitive
signal firstly and then processing the newly acquired series
with EMD method. *e algorithm of EEMD is described as
follows:

(1) Given a time series x(t), a new time series xi(t) can
be generated by adding a white noise with the given
amplitude wi(t) to the primitive data series x(t),
namely,

xi(t) � x(t) + wi(t), (1)

where wi(t) is the added white noise of the ith trial.
(2) Use EMD to decompose the time series xi(t), then the

jth IMF components cij(t) and one residual compo-
nent ri(t) are obtained as the following formula:
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xi(t) � 
n

j�1
cij(t) + ri(t), (2)

where cij(t) is the jth IMF component of n IMF
components of the ith trial.

(3) Repeat step (1) and step (2) with the given M trials;
calculate the ensemble mean of all trials. *e cor-
responding formulae are depicted in the following
equations:

cj(t) �
1
M



M

i�1
cij(t),

r(t) �
1
M



N

i�1
ri(t).

(3)

Finally, the decomposition result of the original time
series x(t) by the EEMD can be written as the following
equation:

x(t) � 
j

cj(t) + r(t), (4)

where r(t) is the final residual component of EEMD.
In addition, it should be noted that amplitude of the

added white noise and the number M of trials are two key
parameters in this algorithm.

2.2.+eBasic+eoryof theDeepMetricLearningBasedonYu’s
Norm

2.2.1. Deep Metric Learning. Deep metric learning (DML) is
developed on the basis of the deep learning which can learn
hierarchical feature representation directly from original
data sample, which use the deep neural network structure to
integrate feature learning and metric learning into a joint
learning framework [27]. *e network architecture of DML
consists of input layer, multiple hidden layers, and output
layer, which can be seen in Figure 2. It can also compute the
feature representation h(N) of a data sample x by passing it to
multiple-layer nonlinear transformations and map the
original feature parameters to discriminative feature space

by maximizing interclass variation and minimizing intra-
class variation [15, 16].

2.2.2. Deep Metric Learning Based on Yu’s Norm. *e tra-
ditional DML based on Euclidean distance can misdiagnose
the data samples in the overlapping region of the different
fault classes because of the nonlinearity of the classifi-
cation boundary line. Especially when the faulty data
samples are fuzzy and insensitive to the fault classes, the
misdiagnosis ratio is even higher. But the metric learning
based on Yu’s norm depends on similarity between dif-
ferent data samples rather than the distance, which
classify the data samples by the similarity measure ef-
fectively. Correspondingly the DML based on Yu’s norm-
based similarity (DMLYu) is proposed.

Assuming that there are N+ 1 layers in the deep network
and p(n) units in the nth layer, where n ∈ [1, 2, . . . , N], the
output of x at the nth layer is computed as

f
(n)

(x) � h(n)
� φ W

(n)
h

(n− 1)
+ b

(n)
 , (5)

where W(n) ∈ Rp(n)×p(n−1) and b(n) ∈ Rp(n) are the weight and
bias of the parameters in the nth layer. φ is the nonlinear
activation function of each layer, which is set as a tanh
function here. *e nonlinear mapping f(n) is a function
parameterized by W(i) 

n

i�1 and b(i) 
n

i�1. For each pair of
input samples xi and xj, their corresponding representation
at the nth layer of the deep network can be written as
f(n)(xi) and f(n)(xj). Correspondingly the Euclidean dis-
tance of the data sample points xi and xj in the deep metric
network space is substituted by the similarity based on Yu’s
norm which is written as follows:

df(n) Xi, Xj  � S<f
(n)

Xi( , f
(n)

Xj > , (6)

where S〈Xi, Xj〉 � max(0, (1 + λ)(Sn(X1, Xj)+

Sn(Xi, XJ) − 1) − λSn(X1, Xj)Sn(Xi, XJ)), Sn(Xi, Xj) �

min[1, Xi + Xj + λXiXj], X1 � 1 − Xi, and λ is a constant.
Based on the graph embedding framework, the Marginal

Fisher Analysis (MFA), which is a supervised descendent
dimension algorithm that measures the similarity between
every data sample and its neighbor samples, is conducted on
the output of all the training samples at the top layer of deep
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Figure 1: *e flowchart of the proposed fault diagnosis method.
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neural network; a strongly supervised deep metric learning
model is constructed and formulated as follows:

min J
f(N)

� S
(N)
c − αS

(N)
c + c 

n

n�1
W

(n)
�����

�����
2

F
+ b

(n)
�����

�����
2

2
 , (7)

where α is the free parameter which balances the importance
between intraclass compactness and the interclass separa-
bility; the larger α is, greater the interclass scatter is; c is the
adjustable regularization parameter, c> 0; ‖Z‖F denotes the
Frobenius norm of the matrix Z; S(n)

c and S
(n)
b are the

intraclass compactness and interclass separability, respec-
tively, and their formula can be written as follows:

S
(n)
c �

1
Mk1

Pijdf(n) Xi, Xj ,

S
(n)
b �

1
Mk2

Qijdf(n) Xi, Xj ,

(8)

whereM is the number of data samples in the training set; P

and Q are adjacency matrixes. If Xj is one of the k1-intraclass
nearest neighbors of Xi, then Pij is set to 1, otherwise 0; if Xj

is one of the k2-interclass nearest neighbors ofXi,Qij is set to
1, otherwise 0.

*e subgradient descent method is utilized to optimize
the parameters W(n), b(n)  in equation (7). *e gradient of
the objective function J with respect to the parameters W(n)

and b(n) is computed as follows:

zJ

zW
(n)

�
1

Mk1
Pij L

(n)
ij h

(n−1)T
i + L

(n)
ji h

(n−1)T
j  −

α
Mk2

Qij L
(n)
ij h

(n−1)T
i + L

(n)
ji h

(n−1)T
j  + 2cW

(n)
,

zJ

zb
(n)

�
1

Mk1
Pij L

(n)
ij + L

(n)
ji  −

α
Mk2



M

i�1


M

j�1
Qij L

(n)
ij + L

(n)
ji  + 2cb

(n)
,

(9)

where h
(0)
i � xi and h

(0)
j � xj are the original input data

samples of the network; for all other layers
n � 1, 2, . . . , N − 1, the updated equations are written as
follows:

L
(N)
ij � h

(N)
i − h

(N)
j ⊙φ′ Z

(N)
i ,

L
(N)
ji � h

(N)
j − h

(N)
i ⊙φ′ Z

(N)
j ,

L
(n)
ij � W

(n+1)T
L

(n+1)
ij ⊙φ′ Z

(n)
i ,

L
(n)
ji � W

(n+1)T
L

(n+1)
ji ⊙φ′ Z

(n)
j ,

(10)

where the operation ⊙ denotes the elementwise multipli-
cation and W(n) and b(n) can be updated by the following
gradient descent algorithm until convergence:

W
(n)

� W
(n)

− τ
zJ

zW
(n)

,

b
(n)

� b
(n)

− τ
zJ

zW
(n)

,

(11)

where τ is learning rate.

... ... ... ... ......

W(1), b(1) W(2), b(2) W(N), b(N)

X h(1) h(2) h(N−1) h(N)

Figure 2:*e network architecture. X is the input data sample of the network, (h(1) . . . h(N− 1)) are the output of the hidden layers, and h(N)

is the output of the top layer. W(N)and b(N) are the parameters of the network to be learned, 1≤ n≤N.
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In addition, the backpropagation neural network
(BPNN) is introduced into the top output layer of the
DMLYu and is used to further fine-tune the parameters of
the network [26, 27] and diagnose the data samples in this
paper.

2.3. Decision Fusion Based on Bayesian Belief Method.
Based on the assumption of mutual independency of clas-
sifiers and the diagnosis error of each classifier, the Bayesian
belief method (BBM) can obtain the final diagnosis result by
fusion of the belief measure of each classifier which is
computed by the confusion matrix of each classifier [28].
Assume that there areM known fault classes andK classifiers
in the same diagnostic task; the classifier ek can be depicted
as a function:

ek(x) � j, (12)

where k � 1, 2, . . . , K, j ∈ 1, 2, . . . , M, M + 1{ }，M+ 1 is
unknown fault class label, ek(x) signifies that the sample x is
assigned to class j by the classifier ek, and its two-dimen-
sional confusion matrix can be calculated by the following
equation:

CMk �

n
k
11 n

k
12 . . . n

k
1M n

k
1(M+1)

n
k
21 n

k
22 . . . n

k
2M n

k
2(M+1)

. . . . . . . . . . . . . . .

n
k
M1 n

k
M2 . . . n

k
MM n

k
M(M+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

which is obtained by executing ek(x) on the test dataset after
ek(x) is trained. Each row i represents class ci, each column j

represents ek(x) � j. *e matrix unit nk
ij represents that the

input samples from class ci are assigned to class cj by the
classifier ek(x). *e number of samples in class ci is
nk

i. � 
M+1
j�1 nk

ij, where i � 1, 2, . . . , M, and the number of
samples labeled j by ek(x) is nk

.j � 
M
i�1 nk

ij, where
j � 1, 2, . . . , M + 1. A belief measure of classifier ek can be
calculated by the following belief function:

bk x ∈ ci | ek(x)(  � P x ∈ ci | ek(x) � j(  �
n

k
ij

n
k
.j

, (14)

where i � 1, 2, . . . M, j � 1, 2, . . . , M + 1. But this belief
function is only suitable when the number of samples in each
class is the same. When the number of data samples in each
class is different, the diagnosis accuracy decreases because of
the imprecise beliefs. So an improved belief function is
calculated as follows:

ibk x ∈ ci | ek(x)(  � P x ∈ ci | ek(x) � j(  �
n

k
ij/n

k
i.


M
i�1 n

k
ij/n

k
i. 

.

(15)

When K classifiers e1, e2, . . . , ek are utilized, their cor-
responding belief measures ib1, ib2, . . . , ibk can be computed
by (15). Fusion strategies of all K classifiers can result in the
final belief measure of the ensemble classifiers, which is the
average algorithm. And its formula is depicted as follows:

b(i) � b x ∈ ci | e1(x), e2(x), . . . , ek(x), EN( 

� P x ∈ ci | e1(x), e2(x), . . . , ek(x), EN(  �
1

M + 1


K

k�1
bk x ∈ ci | e1(x), EN( ,

(16)

where i � 1, 2, . . . M + 1, EN denotes the common classifi-
cation environment. *us, the sample x is classified into a
class cj(j � 1, 2, . . . , M + 1) according to belief of making
the final decisionB(j) � maxM+1

i�1 b(i).

2.4. General Diagnosis Procedure of the Ensemble DMLYu
Model. In order to obtain the higher diagnosis accuracy and
stronger generalization, the ensemble DMLYu is proposed
to diagnose the fault of rolling bearings. *e corresponding
general diagnosis procedure is summarized as follows:

Step 1: collecting the data samples of different fault
classes of rolling bearings by the sliding window from
the vibration data.
Step 2: selecting the training data samples and
decomposing each data sample into n IMF components
by the EEMD method.
Step 3: inputting n IMF components into different N
DMLYu models, respectively, and obtaining N initial
diagnosis results. *en the final diagnosis decision can
be obtained by the fusion strategy based on the BBM.
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Step 4: using the ensemble DMLYu model to diagnose
the testing data sample.

3. Fault Diagnosis of Rolling Bearings

3.1. Acquisition of Vibration Data. In order to verify the
validity of the proposed ensemble DMLYumodel and ensure
the credibility of diagnosis results, the vibration signal used
is obtained from the dataset of the rolling element bearings
[29]. Figure 3 shows the photo and the schematic diagram of
experiment rig. A three-phase induction motor is connected
to a dynamometer and a torque sensor by a self-aligning
coupling. *e rolling element bearings are installed in a
motor driven mechanical system. *e dynamometer is used
to control the desired torque load levels. An accelerometer is
mounted at the 12 o’clock position at the driven end of the
motor housing. *e vibration data are acquired with the
12K/s sample rate. *e test bearing type is 6205-
2RSJEMSKF, deep groove ball bearing.

To simulate the different fault categories and severities of
bearings, the single point defects are introduced by the
electrodischarge machining. Four different defect diameters
(0mm, 0.18mm, 0.36mm, and 0.54mm) are introduced
into the inner race, the ball, and outer race, respectively, and
the defect depths are all 0.28mm. Each bearing is tested
under the 0 hp loads and 1800 rpm. *e dataset contains 10
fault categories. *e number of data samples for each fault
class is 500, in which the number of training samples is 350
and the test samples is 150 and the total number of training
data samples and test samples is 3500 and 1500, respectively.
Additionally each data sample has 512 sample points. *e
detailed data statistics is described in Table 1.

3.2. Diagnosis Analysis of Rolling Bearing

3.2.1. Decomposition of Vibration Signal by EEMD Method.
To obtain the different scale components which are input
into these multiple DMLYu models, respectively, the
training samples and test samples are all decomposed into
the IMF components by the EEMD method in which the
ratio of the standard deviation of the added white noise is set
as 0.1 and the trial M is set as 100 here. Figure 4 shows the
different IMF components which are derived from the slight
fault signal of inner race. From the figure it can be seen that
the original vibration is decomposed into 8 IMF components
and one residual signal, and these IMF components can
describe their respective dynamic characteristics from the
different scale and viewpoints.

3.2.2. Diagnosis Performance Comparison and Discussion.
To verify the effectiveness and superiority of the proposed
ensemble DMLYu model based on BBM, the individual
DMLYu model and the ensemble DMLYu models based on
voting method are all used to diagnose the fault of bearings.

In addition, in all the diagnosis tests the parameters of
the ensemble DMLYu model are described as follows: firstly,
the number of DMLYu models for ensemble is set as 8.
Secondly, the DMLYu model is comprised of 1 input layer

and 2 hidden layers, the corresponding node number is 512-
100-100, respectively, and the second hidden layer is con-
nected with the BPNN classifier, and the node number of the
output layer in BPNN is set as 10 which represents the
number of fault classes. At last, according to the empirical
experience for the hyperparameters of DMLYu, α andλ are
set as 4.0 and 0.2, respectively, the maximum number of
iterations T is set as 10, the regularization parameter c is set
as 0.5, the initial learning rate τ is set as 0.2, and its cor-
responding learning rate decline factor is set as 0.95.

(1) Performance Comparison with the Individual DMLYu
and Other Ensemble DMLYu Models. In this section,
comparison of the diagnosis performance of the proposed
ensemble DMLYu based on BBM with the individual
DMLYu model and ensemble DMLYu model based on
voting method is conducted. *e original vibration signal
and each of its IMF components which are decomposed by
EEMD method are all used as the input of the individual
DMLYu model, respectively, to diagnose the fault of rolling
bearings. Figures 5(a)–5(i) show the corresponding diag-
nosis results, in which the X axis is the data sample sequence
and Y axis is the fault class name. From the figure, it can be
seen that the diagnosis accuracy of the individual DMLYu
model with the original vibration signal is 95.4% and some
data samples are misclassified into other fault classes, and it
is lower than the diagnosis accuracy produced by the in-
dividual DMLYu model with the 1st IMF component, but it
is higher than the diagnosis accuracy produced by the in-
dividual DMLYu model with the other IMF components.
*ese demonstrated that the fault information concealed in
time domain cannot reveal the nonstationary dynamic
characteristics of the vibration signal thoroughly; the 1st
IMF component can contain more fault related information
than other IMF components.

Meanwhile, the figure also shows that the highest di-
agnosis accuracy is 98% which is obtained by the individual
DMLYu model with the 1st IMF component; the lowest
diagnosis accuracy is 25.67% which is produced by the
individual DMLYu model with the 8th IMF component. But
the diagnosis accuracy does not decrease with the increase of
order number of the IMF component. For example, the
diagnosis accuracy of the individual DMLYu model with the
6th IMF component is higher than that of the individual
DMLYu model with the 5th IMF component. *ese are
mainly because that each IMF component depicts the dif-
ferent local fault related information from the perspective of
different time scales, the contribution of the fault infor-
mation to the diagnosis capability of DMLYu model is
different, and the corresponding diagnosis accuracy is also
different.

Figure 6 shows the diagnosis result produced by the
ensemble DMLYu based on BBM with the first n IMF
components. In the figure, the bar on the vertical mea-
surement represents the diagnosis accuracy of the individual
DMLYu with the different IMF component; the curve plot
represents the diagnosis accuracy produced by the ensemble
DMLYu model based on BBM with the first n IMF com-
ponents against the number of IMF component. From the
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figure it can be seen that the diagnosis accuracy of ensemble
DMLYu model increases with the increase of the number of
DMLYumodels used for ensemble. When the number of the
DMLYu models with the IMF components used for en-
semble is 8 the diagnosis accuracy of ensemble DMLYu
model based on BBM is up to 100%. And from Figures 5 and
6, it can be seen that the diagnosis accuracy of ensemble

model with different number of DMLYu models is higher
than that of the individual DMLYu model with any IMF
component and original vibration signal because of the
complementary classification behaviors of all individual
DMLYu models used for ensemble. All these can demon-
strate that ensemble DMLYu model based on BBM is su-
perior to the individual DMLYu model obviously.
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Figure 3: *e photo and the schematic diagram of experiment rig. (a) *e experimental setup; (b) the schematic diagram of the ex-
perimental setup.

Table 1: *e faulty data statistics of rolling bearing.

Fault class label Fault condition Fault size (mm) Training samples Test samples
1 Normal 0 350 150
2 Light inner race 0.18 350 150
3 Moderate inner race 0.36 350 150
4 Severe inner race 0.54 350 150
5 Light ball 0.18 350 150
6 Moderate ball 0.36 350 150
7 Severe ball 0.54 350 150
8 Light outer race 0.18 350 150
9 Moderate outer race 0.36 350 150
10 Severe outer race 0.54 350 150
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Figure 5: Continued.
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At the same time, the diagnosis accuracy produced by
the ensemble DMLYu model based on voting method with
the first n IMF components against the number of IMF
component can be seen from the curve plot in Figure 7.
From the figure, it can be found that when the number of
the DMLYu models used for ensemble is not less than 2 the
diagnosis accuracy of the ensemble DMLYu model is
higher than that of the individual DMLYu model with the
vibration signal. And the ensemble DMLYu model with
the first 3 IMF components can obtain the highest diag-
nosis accuracy which is up to 98.27%, but the diagnosis
accuracy of ensemble DMLYu model is high and low with
the number of DMLYu model used for ensemble in-
creasing; this can demonstrate that the diagnosis accuracy
of ensemble DMLYu model does not increase with the

increase of the number of DMLYu models used for en-
semble. In addition, from Figures 6 and 7, it can be seen
that the diagnosis accuracies of ensemble DMLYu model
based on BBM with first n IMF components are all higher
than that of the ensemble DMLYu model based on voting
method when the number of DMLYu models used for
ensemble is the same. And the highest diagnosis accuracy
of ensemble DMLYu model based on BBM with 8 IMF
components is also higher than that of ensemble DMLYu
model based on voting method with 3 IMF components
which is higher than that of the individual DMLYu model
with the original vibration signal. *ese can indicate that
the diagnosis performance of these two kinds of ensemble
DMLYu model based on different fusion strategy is better
than that of the individual DMLYu model, and the
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Figure 5: Diagnosis accuracy produced by individual DMLYu with original signal and IMF component. Diagnosis accuracy produced by
individual DMLYu (a) with original signal, (b) with IMF1 component, (c) with with IMF2 component, (d) with IMF3 component, (e) with
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performance of the ensemble DMLYu model based on
BBM is the best.

(2) Generalization Analysis of the Ensemble DMLYu. To
study the stability and generalization of the proposed en-
semble DMLYumodel based on BBM, three bearing datasets
under three working conditions (0 hp load and 1797 rpm, 1
hp load and 1772 rpm, and 2 hp load and 1750 rpm) are
utilized, and for convenience these datasets are referred to as
dataset 1, dataset 2, and dataset 3. Each dataset contains 10
fault classes, in each dataset the number of data samples for
each fault class is 500, among them the number of training
samples is 350, and the number of the test samples is 150.
And each data sample has 512 sample points. In each dataset
five diagnosis tests are conducted by the ensemble DMLYu
model based on BBM, ensemble DMLYu model based on
voting method, and individual DMLYu model, respectively.
*e average diagnosis accuracy produced by these three
models is shown in Table 2.

Table 2 can display that the average diagnosis accuracy
produced by ensemble DMLYu based on BBM with three
datasets is 99.95%, 99.96%, and 99.96%, respectively, the

maximum difference between these three average diagnosis
accuracies is 0.01%, and the minimum difference between
them is 0. *e average diagnosis accuracy produced by
ensemble DMLYu based on voting method with three
datasets is 98.24%, 98.69%, and 98.01%, the maximum
difference between these three average diagnosis accuracies
is 0.68%, and the minimum difference between them is
0.23%. *e average diagnosis accuracy produced by indi-
vidual DMLYu with three datasets is 93.57%, 93.28%, and
92.68%, the maximum difference between these three av-
erage diagnosis accuracies is 0.89%, and the minimum
difference between them is 0.11%. Obviously the diagnosis
accuracy of ensemble DMLYu based on BBM is the highest
among these three methods on the same dataset; the di-
agnosis accuracy of ensemble DMLYu based on voting
method is higher than that of individual DMLYu. *e
maximum difference and the minimum difference of the
average diagnosis accuracy of DMLYu based on BBM with
three datasets are all lower than those of DMLYu based on
voting method and individual DMLYu model. *ese can
indicate that diagnosis stability and generalization of the
ensemble DMLYu based on BBM are stronger than those of
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the ensemble DMLYu based on voting method and indi-
vidual DMLYu model and the diagnosis accuracy produced
by the ensemble DMLYu based on BBM is the highest. All
these can demonstrate that the ensemble DMLYu based on
BBM can diagnose the fault of rolling bearings effectively
with strong generalization and high accuracy.

4. Conclusion

In this paper, a novel ensemble DMLYu model based on
BBM and EEMD is proposed and applied to the fault
diagnosis of the rolling bearings. In order to solve the
misdiagnosis problem of data sample in the overlapping
region at the boundary of different fault classes and im-
prove the diagnosis accuracy and robustness of deep
metric learning model, by the EEMD method the original
vibration data of rolling bearing is decomposed into
multiple IMF components which are input into the deep
metric learning model based on Yu’s norm, respectively,
then the initial fault results are obtained, respectively, and
at last the final diagnosis decision is made by the BBM
fusion strategy.

*rough a multifaceted comparison of three methods on
different experimental datasets, the effectiveness and gen-
eralization of the proposed ensemble DMLYu model based
on BBM were verified by comparison with the ensemble
DMLYu model based on voting method and individual
DMLYu model. *e diagnosis results have demonstrated
that the proposed ensemble method was more effective and
robust than other ensemble DMLYumodels based on voting
method and individual DMLYu model for fault diagnosis of
rolling bearings under different working conditions and
verified that the proposed ensemble method can diagnose
the fault of rolling bearings with high accuracy and reli-
ability. All these can show that the proposed ensemble
DMLYu model will have a prosperous application prospect
in the field of fault diagnosis. But in the process of fault
diagnosis it is found that the number of DMLYu models
used for ensemble can affect the diagnosis accuracy, so the
selectiveness of the DMLYumodels used for ensemble needs
to be studied further in future.
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