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In order to solve the problem that a single type of sensor cannot fully reflect the bearing life information in the process of bearing
residual life prediction of metro traction motor, a bearing residual life prediction method based on multi-information fusion and
convolutional neural network is proposed. Firstly, the vibration sensor and acoustic emission sensor are used to collect the bearing
life signals on the bearing fatigue life test bench. Secondly, wavelet packet decomposition is used to denoise the collected bearing
life signal and extract multiple eigenvalues. On this basis, the multiple eigenvalues are normalized, and the bearing degradation
trend is analyzed. Finally, the collected bearing life is divided into five stages, and the processed multiple eigenvalues are fused and
input into convolutional neural network for training and recognition. +e results show that the probability of predicting the stage
of bearing life based on multiple eigenvalues and convolutional neural network is more than 98%.

1. Introduction

Rolling element bearings are one of the most critical
components in rotating machinery to support rotating
shafts. Any unexpected failure of bearings may result in
several negative implications, such as downtime increase,
productivity reduction, and even raise of safety risks [1–5].

In recent years, great achievements have been made in
the research of algorithms in various fields. For example,
Deng et al. [6] proposed an improved MSIQDE algorithm
based on hybrid Multistrategy to solve the problem that
quantum differential evolution (QDE) is easy to lead to
premature convergence and low search ability and fall into
local optimum. Aiming at the problems of slow convergence
speed, poor global search ability, and difficulty in designing
rotation angle of quantum heuristic evolutionary algorithm
(QEA), Cai et al. [7] proposed an improved quantum co-
operative coevolution algorithm with faster convergence
speed and higher convergence accuracy based on coevolu-
tion strategy. Deng et al. [8] and others proposed an im-
proved differential evolution algorithm (HMCFQDE) in
order to overcome the shortcomings of differential evolution

algorithm, such as low efficiency, insufficient search diver-
sity, slow convergence speed, and high possibility of search
stagnation, combined with the quantum computing char-
acteristics of quantum evolutionary algorithm (QEA) and
the idea of divide and rule of cooperative coevolutionary
algorithm (CCEA). Based on the nonlinear Wiener process
model, Wen et al. [9] and others proposed an improved
method to predict the remaining service life of bearings.
Chen [10] and others proposed a prediction model based on
correlation features and multivariable support vector ma-
chine to solve the problem of using small samples to predict
the residual life of rolling bearings due to the lack of suf-
ficient condition monitoring data. Zhao et al. [11] proposed
KELM (maximum power spectral density fitting curve
differentiation) and weight applied to time to failure
(WAFT) to solve the problem of different individual
methods of rolling bearings and the different performance
degradation curves caused by the difference of kernel ex-
treme learning quality and working conditions and estab-
lished a new RUL prediction model of rolling bearings. Yang
and Court [12] conducted a study on the actual health status
of test bearings with different types and severity of failures by
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using four dimensionless status monitoring standards.+ese
studies have achieved good results in the direction of bearing
life prediction, but they all input a single eigenvalue into the
model for training, the extracted bearing life information is
limited, and the multieigenvalue information fusion tech-
nology is not considered. +e multieigenvalue information
fusion technology can improve the prediction accuracy.
With the development of information fusion technology,
more and more scholars join in the research. Wu and Zhang
[13] proposed a new cascaded fusion convolutional long-
and short-term memory network for orientation rule pre-
diction because of the limited structure of current deep
learning methods and the poor stability of prediction results
due to the use of single sensory data. Wang et al. [14] used
KPCA method to reduce the dimension of the extracted
features and used kernel principal component to estimate
the parameters of WPHM model and proposed a trend
prediction method of rolling bearing residual service life
based on Pchip-EEMD-GM(1, 1). +ese studies using in-
formation fusion technology in the direction of bearing
residual life prediction have achieved good results and
provide useful reference in information fusion technology,
but, using a single type of sensor, the information collected
cannot fully reflect the bearing life information, which will
affect the prediction of bearing life.

In order to solve the problem that a single sensor cannot
fully reflect the bearing life information, this paper uses
wavelet packet decomposition [15] to denoise the collected
original signal and extract multiple eigenvalues and studies
the remaining life prediction of metro traction motor
bearing based on information fusion and convolutional
neural network.

2. Signal Preprocessing and Degradation
Index Selection

2.1. Signal Acquisition and Preprocessing. +e model of the
bearing studied in this paper is Nu 216. As the bearing of
metro traction motor, it plays an important role in the safe
operation of the subway, so it is particularly important to
predict the remaining service life of the bearing. In order to
reduce the test cycle and simulate the early defects in the
actual operation of the bearing, the Da Zu YLP-MDF-152
three-dimensional laser instrument was used to prefabricate
the defects on the rolling element. During the process of
defect prefabrication, 30% laser energy was used. +e pitting
diameter was 20 μm and the crack width was 15 μm. On this
basis, the remaining life is explored and the remaining life
test is carried out. +e selected test bench is T40-120, which
is located in Henan Engineering Laboratory of intelligent
numerical control equipment.+e test bench is composed of
hydraulic system (providing loading, cooling, and lubrica-
tion), temperature measurement system, pressure mea-
surement system, and data acquisition system. +e data
acquisition system includes acoustic emission sensor
(model: R50S-TC, measurement range: 50 kHz–700 kHz,
maximum sampling frequency: 10m/sS) and vibration
sensor (model: LC0151T, range: 33 g, sensitivity: 150mv/g).
+e test bench is shown in Figure 1.

+e test was carried out according to GB/T24607-2009
national test standard. +e 120-hour fatigue life strength-
ening test was carried out under the working conditions of
radial equivalent dynamic load of 40 kN and rotating speed
of 2400 r/min. +e bearing status data is collected every 10
minutes. After the test is completed, a total of 720 sets of
bearing performance degradation test data are collected.
+ere are a lot of noises in the collected original signals. In
order to filter and denoise the original signals, they are
decomposed by wavelet packet. Wavelet packet decompo-
sition is a more detailed time-frequency analysis method. It
decomposes the high frequency and low frequency of the
original signal at the same time, which ensures that the signal
has high resolution in different frequency bands and greatly
improves the signal analysis ability [16].

Wavelet packet decomposition is used to decompose
the signal N times, and each decomposition will decompose
the high-frequency and low-frequency signals obtained
from the previous decomposition. +e decomposed signal
retains the bearing life information without distortion.
Suppose that the eigenvector extracted from a single sensor
is Zi (i� 1,2, . . ., k), so the eigenvector obtained by mul-
tisensor synthesis isW ×Zi. +e expansion of Zi is shown in
the following formula:

Zi �

z11 . . . z1k

⋮ ⋱ ⋮

zm1 · · · zmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where W is the number of sensors, k is the number of
extracted eigenvalues, and m is the number of samples. In
this paper, db4 wavelet basis function is selected, and the
original signal is decomposed by eight times wavelet packet,
and the multiple eigenvalues of each frequency band are
extracted.

2.2. Selection of Degradation Index of Bearing Residual Life.
After performing wavelet packet decomposition on the
original signal, it is necessary to extract the eigenvalues of the
obtained high-frequency and low-frequency signals. In this
paper, Fourier transform is used to analyze the original
signal in frequency domain, and wavelet packet decompo-
sition is used to process the original signal, so as to extract
the characteristic value of time-domain signal. +e time-
domain features are divided into dimensional and dimen-
sionless. Among them, dimensional time-domain features
include standard deviation (SD) and root mean square

Figure 1: Bearing fatigue life test bench.
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(RMS), and dimensionless time-domain features include
kurtosis (Kr) and margin (C). +eir formula is as follows:
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+e standard deviation, root mean square value, kur-
tosis, and margin are calculated according to the above
formula. Some calculation results are shown in Tables 1
and 2.

From Tables 1 and 2, we can see that the same sensor
cannot be directly fused because of the different magnitude
of the value between different eigenvalues. At the same time,
the numerical unit of the same feature value is different
between different sensors, and it cannot be directly fused.
+erefore, we need to normalize them to map them to the
same interval and perform fusion within the same interval.

3. Information Fusion and Model Building

3.1. Fusion of Eigenvalues. In engineering practice, the life
decline process of rolling bearings is often reflected by vi-
bration signals, so as to carry out life state identification and
life assessment [17]. However, in order to cope with the
shortcomings of single type of sensors, vibration and
acoustic emission sensors are used to collect bearing life
information in this test. After the preprocessed signal and
the feature value are extracted, the simultaneous interpreting
cannot be directly integrated, because the physical meaning
of data collected by different sensors is different, and nor-
malization is needed.

Normalization refers to mapping from one interval to
another. Suppose that the original eigenvalue interval
extracted is (X1, X2), and the normalized interval is (Y1, Y2).
If the data before normalization isG and the normalized data
is H, then the mapping relationship between G and H is as
follows:

H � f(G). (3)

+e mapping relation is linear:

H �
G − X1( 􏼁 Y2 − Y1( 􏼁

X2 − X1
+ c. (4)

Information fusion technology is based on normaliza-
tion and has the characteristics of complementary mea-
surement results of multisensor. Information fusion can

evaluate and decide the importance of its parameters [18].
Information fusion can be divided into data layer fusion,
feature layer fusion, and decision level fusion according to the
fusion mode. Data layer fusion belongs to the most original
fusion [19], and the loss of information is the least. However,
due to the difference of detection technology between acoustic
emission sensor and vibration sensor, data layer fusion is not
adopted; feature level fusion belongs to the fusion of extracted
eigenvalues. Although some information is lost, the difference
between sensors can be eliminated by normalization pro-
cessing, and a lot of information will be lost in decision level
fusion, so feature level fusion is used in this experiment.

It can be seen from Table 2 that the extracted eigenvalues
cannot be directly fused, and they need to be normalized and
then fused. After 720 groups of data are fused, 120 groups are
selected as the test group, and the remaining 600 groups are
taken as the training group. +e test group and training
group are divided into five stages.+e divided test group and
training group are marked and input into the neural network
for training.

3.2. PredictionModel of Bearing Residual Life Based onMulti-
Information Fusion and CNN. Convolutional neural net-
work is a feedforward neural network composed of mul-
tilayer networks. In view of the LeNet-5 structure, the
convolutional neural network is improved. Initially de-
termine the size of the convolution kernel to be 3× 3; the
activation function of convolutional neural network in-
cludes sigmoid, tanh, and ReLU, as well as initial selection
of activation function ReLU. After the feature information
is extracted in convolution layer and transmitted to pooling
layer, the pooling layer performs feature selection and
information filtering and preliminarily determines that the
pooling matrix is 2× 2. +e full-connection layer needs to
carry out nonlinear combination of the extracted features
to get the output, and the output layer selects softmax
classification function for classification. +e structure of
convolutional neural network is shown in Figure 2.

Table 1: Characteristic values of bearing life collected by vibration
sensor.

Vibration sensor
SD RMS Kr C
43.6529 1980.265 3.3203 1.0473
45.4865 1981.92 14.5511 1.263
52.9402 1981.651 79.2886 1.4892
53.5617 1979.754 90.9587 1.0493

Table 2: Characteristic values of bearing life collected by acoustic
emission sensor.

Acoustic emission sensor
SD RMS Kr C
0.0176 0.0178 687.014 170.6823
0.1956 0.1961 134.212 497.5525
0.0454 0.0458 108.6922 111.4096
0.0653 0.0653 125.7846 183.2307
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After normalization, it is necessary to train convolu-
tional neural network, input normalized data into neural
network, and adjust the numbers of convolution layers and
pooling layers in the convolutional neural network model.
Finally, it is determined that the size of the convolution
kernel of the first layer of the convolutional neural network
is 3× 3, the output dimension is 46× 46, the sliding step is 1,
the pooling matrix of the first layer is 2× 2, and the moving
step is 2.+e size of the second layer of convolution kernel is
3× 3, the output dimension is 21× 21, the sliding step is 1,
the pooling matrix of the second layer is 2× 2, the moving
step is 2, and the first layer is fully connected set to 100, the
fully connected layer of the second layer is set to 64, and the
output layer is set to 5. +e activation function of the first
layer is ReLU, and the activation function of the second layer
is tanh. +e optimal training times (Epochs) of the model are
100.

After the above work is completed, the normalized ei-
genvalues of each sensor are input into the adjusted neural
network, and the recognition rate is shown in Table 3.

According to Table 3, the recognition rate of different
eigenvalues is different. +e root mean square value has the
best recognition rate, which indicates that the root mean
square can extract the most bearing life information, and
standard deviation, kurtosis, and margin decrease in
turn, which indicates that the bearing life information
extracted by them decreases in turn. It can be seen from
Table 3 that, for a single sensor, the fusion of different
eigenvalues can improve the accuracy of remaining life
prediction, which shows that there are similarities and
differences between different eigenvalues in extracting
bearing life information. +rough fusion of feature values
extracted by different sensors, it is seen that the accuracy
of predicting the remaining life of bearing is also im-
proved, and it is shown that different sensors can be
complemented to improve the accuracy of bearing
remaining life prediction.

4. Data Analysis

By analyzing the normalized eigenvalues, the bearing life
trend is shown in Figures 3 and 4.

It can be seen from Figure 3 that, except for kurtosis, the
trend of other indicators is upward, which indicates that
kurtosis index can extract the least bearing life information,
while the root mean square and standard deviation can
extract more bearing life information than margin. Figure 4
shows the trend of bearing life collected by AE sensor, and
the above conclusion can be verified from Figure 4.

It can be seen from Figures 3 and 4 that, with the increase
of bearing running time, the bearing life index is getting
larger and larger. +rough the analysis, it can be concluded
that dimensionless kurtosis and margin are not as good as
dimensionless root mean square and standard deviation.
From the two kinds of sensors, vibration sensor is better than
acoustic emission sensor in root mean square and standard
deviation, and acoustic emission sensor is better than vi-
bration sensor in margin and kurtosis.

It can be seen from Figures 3 and 4 that they have the
same bearing life index, and the upper and lower wave
momentum are different. In order to explore the influence of
the up and down wave momentum on the accuracy, taking
root mean square as an example, the root mean square
(RMS) obtained from the two sensors is input into the
convolutional neural network to obtain the color scale di-
agram of the accuracy in each stage, as shown in Figure 5.

In the above figure, A, B, C, D, and E represent the five
stages of bearing life:A represents the first stage, B represents
the second stage, C represents the third stage, D represents
the fourth stage, and E represents the fifth stage. +is ex-
periment is carried out after the discovery of bearing early
defects. +e first stage is the bearing early defects, and the
fifth stage is the final stage of bearing life collection. A total of
720 groups of data were collected, and the collected data
were divided into test set and training set, including 120
groups of test samples and 600 groups of training samples. In
the training process, the neural network will output the
probability values of these five stages for each group of test
samples. +e 120 groups of test samples will output 120× 5
probability values. Taking an average value of each two
groups of 120 groups as the new probability value, the new
probability value will be made into a color scale diagram of
Figure 5. In this grayscale image, the deeper the color is, the
higher the probability is.
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Figure 2: Convolutional neural network model.
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From Figure 5, we can see that the vibration sensor is not
as good as the acoustic emission sensor in the first stage and
the second stage, but it is better than the acoustic emission

sensor in other stages, which shows that the fusion of the
information obtained by the two sensors is conducive to
improving the accuracy of bearing residual life prediction.
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Figure 3: Bearing life curve collected by vibration sensor.
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Figure 4: Bearing life curve collected by acoustic emission sensor.

Table 3: Recognition rate of each normalized eigenvalue.

Eigenvalue Acoustic emission sensor (%) Vibration sensor (%)
RMS 94.17 95.83
Kr 70.83 66.67
C 70.00 61.67
SD 93.33 95.00
Recognition rate of multiple eigenvalues of a single sensor 95.83 96.67
Comprehensive recognition rate of two sensors 98.33
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At the same time, in Figure 5, we can see that the accuracy
rate of the two adjacent stages is lower than that of the
middle part of the stage.

Taking root mean square value as an example, it can be
seen from Figures 3–5 that the fluctuation of life curve
collected by acoustic emission sensor in the first stage is
smaller than that of vibration sensor. At this time, we can see
that the accuracy rate of acoustic emission sensor in the first
stage is high. Compared with other stages, it can be found
that the smaller the fluctuation of bearing life curve is, the
higher the accuracy of bearing life stage is. On the whole, the
fluctuation of bearing life curve collected by vibration sensor
is smaller than that of acoustic emission sensor, so vibration
sensor is better than acoustic emission sensor in bearing life
prediction.

5. Conclusion

Aiming at the problem that a single sensor cannot reflect the
bearing life information comprehensively, a bearing residual
life prediction method based on multi-information fusion
and convolutional neural network is proposed.

(1) +is paper studies the prediction of the remaining
life of subway traction motor bearings with deep
learning and information fusion technology. First,
use vibration sensor and acoustic emission sensor to
collect bearing life signals on the bearing fatigue test
bench; secondly, use wavelet packet decomposition
to denoise the collected original signals and extract
multiple eigenvalues. On this basis, multiple eigen-
values are extracted. +e eigenvalues are normalized
and the bearing degradation trend is analyzed. It is

found that the vibration sensor performs better than
the acoustic emission sensor in terms of dimension,
and the acoustic emission sensor performs better
than the vibration sensor in the dimensionless as-
pect. Finally, the processed multiple eigenvalues are
fused and input into the convolutional neural net-
work for training to predict the remaining service life
of the bearing.

(2) +e results show the following: ① +e vibration
sensor has less fluctuation on the bearing life curve
compared to the acoustic emission sensor, and the
recognition rate of using two types of sensors at the
same time is higher than that of using a single type of
sensor. ② +e information fusion of different types
of sensors is realized by using feature layer fusion,
and the combination of convolutional neural net-
work can effectively predict the remaining life of the
bearing.
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