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As an essential component of offshore bridges, stay cables are prone to vibrations due to their low inherent damping char-
acteristics. Various dampers have been used for cable vibration control; however, the experimental research and theoretical study
of inertial dampers on real cables have not been conducted sufficiently.,is study aims to investigate the damping performance of
a novel viscous inertial damper (VID) and focuses on the frequency-dependent and displacement amplification phenomena of a
cable-damper system. Tests were first conducted to verify the energy consumption capacity of a prototype damper. A shallow
cable-VID system was established. ,eoretically, complex-valued modes were analyzed to determine the influence of the inertial
and viscous coefficients on the cable’s frequency and mode damping ratio. ,e test results and numerical analysis show that the
VID has a good damping effect on the shallow cable. Considering multiple adjacent cable modes, the inertial and viscous
coefficients can be optimized. After optimizing, the VID can simultaneously maximize both adjacent symmetric and anti-
symmetric modes’ damping ratios. ,e two frequencies are almost the same. ,e displacement amplification of the VID shows
that a VID can overcome the shortcomings of displacement loss caused by traditional oil dampers. ,e implications of these
findings of the VID on shallow cable are discussed, which will guide future research and applications of the VID or other
inerter dampers.

1. Introduction

As an essential component of the offshore cable-stayed
bridge, cables have high flexibility and low inherent
damping. Vibration problems can be frequently encoun-
tered in these bridges, such as vortex-induced vibrations,
parametric resonance, wake galloping, buffeting, and wind-
and rain-induced vibrations [1–9]. ,ese problems affect
the public’s confidence in the bridge’s structural safety and
shorten the cables’ service life. Long-span cable-stayed
bridges adopt various cable vibration control measures.,e
additional external viscous damper can directly increase
the cable’s mode damping ratio, which is the most common
cable vibration control method. ,e design theory and
vibration control methods of stayed cables have been ex-
tensively studied [10–16]. Passive viscous dampers solve the
vibration problem of cables to some extent, but the in-
stallation location restricts the damper’s damping effect.

,e installation location does not exceed 5% of the cable
length [17, 18], so the additional damping ratio provided
may be limited. Additionally, parameters such as the sag,
bending stiffness, damper support stiffness, internal stiff-
ness, and the coupled vibration between the cable and the
beam will reduce the damping effect [15, 19]. Besides,
external viscous dampers only achieve the optimal
damping ratio for a specific vibration mode of cables.
Generally, many factors dramatically limit the viscous
damper’s damping effect.

In the process of studying active and semiactive
dampers, researchers have found that negative stiffness can
make the damper move with greater displacement, consume
more energy, and achieve a higher damping ratio [20–25].
By using mechanical amplification mechanisms (such as ball
screws, gears, and lever pendulums), inertial devices can
provide a larger apparent mass, and inertial force is gradually
used for structural vibration control. Lazar et al. [26–28]
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replaced the mass part of a tuned mass damper with an
inertial mass and constructed a tuned inertial damper (TID).
Vibration control analysis of the cable’s first vibration mode
showed that the TID makes the cable obtain a higher mode
damping ratio than the traditional viscous damper. Chen
et al. [29] applied a passive negative stiffness device for the
cable-damper system to overcome the problem of insuffi-
cient additional damping and discussed the influence of the
nonlinear control force caused by negative stiffness. Shi et al.
[30–33] proposed a negative stiffness damper composed of
magnets that provides negative stiffness and an oil damper.
Numerical analysis and experiments verified that the
damper’s damping performance for the first vibration mode
of the cable is much better than that of the traditional viscous
damper. Nakamura et al. [34] andWang et al. [35] developed
an electromagnetic inertial mass damper (EIMD) using a
rotary electromagnetic damper and ball screw inertial de-
vices, respectively. ,rough the displacement enhancement
mechanism of the ball screw, EIMD makes the flywheel
produce larger inertial mass than its physical mass. Si-
multaneously, it has an acceleration effect on the rotary
electromagnetic damper’s rotational speed, and the inertial
coefficient and damping coefficient work synergistically. At
present, the research on using inertial mass to reduce cable
vibration is still in its infancy, and most scholars have only
conducted theoretical research.

,is study aimed to undertake more diversified vi-
bration system research to realize cable vibration control
using viscous and inertial devices. Both numerical and
experimental solutions were obtained for a shallow cable
with a viscous inertial damper (VID) installed close to a
cable end. ,e understanding gained will help with
interpreting cable vibration control using VIDs or other
inertial devices, which can provide outstanding damping
performance and understand the frequency-dependent
and displacement amplification mechanism of the shallow
cable-VID system. Subsequently, three different cases of
inertial devices were established to experimentally verify
the accuracy of the numerical analysis and validate the
superior vibration mitigation performance of the VID.
Finally, the most practical motivation of this study was to
conduct a refined investigation and construct an
achievable method for vibration control on cable
structures.

2. Novel Viscous Inertial Damper

2.1. Composition and Mechanical Parameters of VID. As
shown in Figure 1, the viscous inertial damper (VID)
consists of two parts: inertial and viscous devices. In terms of
movement, the cable and rack are connected by a ball hinge.
,e cable’s vibration causes the rack to reciprocate up and
down in a straight line, and the pinion converts the rack’s
linear reciprocating motion into the disk’s rotating motion.
At the same time, it makes a rotating motion in the damping
fluid to achieve a damping effect. ,e rack and pinion
convert the cable’s vertical vibration into the shaft’s rotation,
so the shaft’s rotation angle θ and torque T can be expressed
as [36, 37]

θ �
2π
l

v, (1)

T � Ti + Tc, (2)

where l denotes the pinion’s circumference, v is the dis-
placement of the cable that drives the rack to move up and
down, and Ti and Tc are the inertia torque and viscous
torque, respectively. ,e force at the end of the rack can be
expressed as

F �
2π
l

T + M€v , (3)

F is the force at the moving end of the VID, and M is the
mass of the translation motion part of the VID.

2.2. Inertial Coefficient. ,e rotating and translational parts
of the VID generate inertial force during the movement. In
equation (2), the torque Ti on the shaft can be expressed as

Ti � J1 + J2 + J3 + Jn( €θ. (4)

By converting the torque obtained in equation (4) into
rack’s damping force, the damping force generated by the
inertia of the damper can be expressed as

Fi �
2π
l

 
2

J1 + J2 + J3 + Jn( €v + M4€v,

�
2π
l

 
2

M1c
2
1 + M2c

2
2 + M3c

2
3 + Mnc

2
n €v + M4€v

, (5)

where J1, c1, and M1 denote the pinion’s moment of inertia,
the radius of rotation, and mass, respectively; J2, c2, and M2
represent the shaft’s moment of inertia, the radius of ro-
tation, and mass, respectively; J3, c3, and M3 reflect the
viscous disc’s moment of inertia, the radius of rotation, and
mass, respectively; Jn, cn, and Mn are the inertial disc’s
moment of inertia, the radius of rotation, and mass, re-
spectively; and M4 is the rack’s mass. By introducing these
parameters, the amplification factor n1 ∼ n5 can be obtained.

n1 �
2π
l

 
2
c
2
1; n2 �

2π
l

 
2
c
2
2; n3 �

2π
l

 
2
c
2
3; n4 � 1; nn �

2π
l

 
2
c
2
n.

(6)

2.3. Viscous Coefficient. In this study, the viscous damping
fluid was comprised of lithium-based grease with a higher
viscosity and hydraulic oil with a lower viscosity. ,e
damping torque Tc can be expressed as

Tc � Bτ(c)r ds � Bτ
c _θ
h

 r ds �

�
2

√

2
η
h
πr

4
3
_θ. (7)

In equation (7), the shear force is expressed as τ � ηc,
where η is the damping fluid’s dynamic viscosity; c is the
shear strain rate, and h is the distance between the viscous
disc and the side-wall of the fluid tank. ,en, the damping
force equation produced by the viscous devices of the
damping fluid can be expressed as
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Fc �
2π
l

Tc �
2π
l
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√

2
η
h
πr

4
3 _v. (8)

At the same time, the correction of the damping term
caused by bearing’s rolling friction should be considered in
the test. ,e damping term is corrected as follows:

Fc �
2π
l
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�
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√
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η
h
πr

4
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l
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�
2

√

2
η
h
πr

4
3 + Cb  _v,

(9)

where Cb is the equivalent viscous coefficient of the bearing,
and the value should be determined through prototype
experiment.

2.4. Calculation of Damping Force. ,e movement dis-
placement at both ends of the damper is expressed as
v(t) � vdeiωt, merging equations (5) and (9). ,e calculation
equation of the damping force is

F � Fi + Fc � −bdω
2

+ cdiω ve
iωt

, (10)

bd �
2π
l

 
2

M1c
2
1 + M2c

2
2 + M3c

2
3 + Mnc

2
n  + M4, (11)

Cd �
2π
l

 
2

�
2

√

2
η
h
πr

4
3 + Cb, (12)

where bd is the inertial coefficient generated by the inertial
devices, and cd is the viscous coefficient provided by the
viscous devices.

3. Mechanical Properties of VID

At present, the main method to understand the mechanical
properties of dampers is the force-displacement curve. In
this study, the mechanical performance of the damper under
different cases (different inertial mass and different fre-
quency) is studied through the vibration signal measured by
the force sensor and the laser displacement sensor equip-
ment on the end of the rack.

3.1. Damper’s Parameters. ,e parameters of the damper’s
pinion, shaft, damping disc, rack, and inertial disc are

calculated according to equations (4)–(6) and summarized
in Tables 1 and 2.

3.2. Test Results and Analysis. ,is study added damping
fluid to the tank and installed the damping disc on the shaft.
,e rotation of the damping disc in the damping fluid plays
the role of shearing the fluid, since the disc has certain
inertia. Simultaneously, it also plays a role in providing
negative stiffness. If it is necessary to increase the inertia, the
inertial disc can be added on the other end of the shaft
outside the tank.

When the vibration frequencies are 1.92Hz, 1.77Hz, and
1.55Hz, inertial mass bd of the damper is 4.2334 kg, 10.0173 kg,
and 20.4035 kg, respectively, which are named Case 1, case 2,
and case 3, respectively. Force-displacement curves obtained
from tests under Case 1 and corresponding theoretical force-
displacement curves are shown in Figure 2(a). Force-dis-
placement curves obtained from tests under case 2 and cor-
responding theoretical force-displacement curves are shown in
Figure 2(b). Force-displacement curves obtained from tests
under case 3 and corresponding theoretical force-displacement
curves are shown in Figure 2(c). ,e theoretical force-dis-
placement curves are calculated according to equation (10),
nearly equal to the envelope areas and negative slope of the test
force-displacement curves.

When the vibration frequencies are 3.17Hz, 2.77Hz, and
2.59Hz, inertial mass bd of the damper is 4.2334 kg,
10.0173 kg, and 20.4035 kg, respectively, which are named
case 4, case 5, and case 6, respectively. Force-displacement
curves obtained from tests under case 4 and corresponding
theoretical force-displacement curves are shown in
Figure 3(a). Force-displacement curves obtained from tests
under case 5 and corresponding theoretical force-dis-
placement curves are shown in Figure 3(b). Force-dis-
placement curves obtained from tests under case 6 and
corresponding theoretical force-displacement curve are
shown in Figure 3(c). ,e theoretical force-displacement
curves are calculated according to equation (10), which are
nearly equal to the envelope areas and negative slopes of the
test force-displacement curves.

According to force-displacement curves mentioned
above, the viscous coefficient cd of the VID can be deter-
mined using equations (7)–(9) and (12). ,e viscous coef-
ficient is cd � 66.0079N · s/m.

4. Theoretical Analysis of Cable-VID System for
Vibration Control

,e following theoretical analysis model was established to
study the damping effect of the VID on the cable.

4.1. In-Plane Vibration of a Shallow Cable with a VID.
,is study installed one end of the VID on the cable and the
other end on the bridge deck, as shown in Figure 4. ,e
relative displacement, relative speed, and relative accelera-
tion of the two ends of the VID were considered in the
calculation. ,e following parameters were introduced: the
cable force in the static state H, the cable’s mass per unit

Force sensor
Rack Mass block

Sha�
Viscous disc Inertial disc

Pinion

Scaled cable

Fluid tank

Figure 1: Anatomy diagram of the cable-VID system.

Shock and Vibration 3



Table 1: Damper’s parameters.

Component Physical mass, M (kg) Amplification factor, n Inertial mass, bd (kg)
Pinion, n1 0.2387 0.5017 0.1198
Shaft, n2 1.1098 0.1037 0.1150
Viscous disc, n3 0.6045 2.6421 1.5976
Rack, n4 2.4010 1 2.4010
Inertial disc 1, n51 1.6350 3.5376 5.7839
Inertial disc 2, n52 2.7250 5.9340 16.1701

Table 2: Damper’s inertial parameters.

Damper part Pinion + Shaft + Rack
+Damping disc

Pinion + Shaft + Rack +Damping disc + Inertial
disc 1

Pinion + Shaft + Rack +Damping disc + Inertial
disc 2

Inertial mass bd 4.2334 10.0173 20.4035
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Negative stiffness
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Figure 2: Test curve and theoretical curve: (a) Case 1, (b) case 2, and (c) case 3.

4 Shock and Vibration



length ρ, the chord length of the cable L � l1 + l2, and the
location of the damper l1. ,e sag of the cable was con-
sidered. In the cable’s free vibration, the cable’s vertical
displacement, additional tension, and the damping force can
be expressed as a time-dependent function, which are v �

v(x)eiωt, h � h(x)eiωt, andF � Feiωt, respectively.,e cable’s
vibration equation can be written as [11, 12, 14]

H
z
2
v(x, t)

zx
2 + h

z
2
y(x, t)

zx
2 � ρ

z
2
v(x, t)

zt
2 + Fδ x − l1( , (13)

where h is determined by

h �
EA

Le


L

0

dy(x)

dx

zv(x, t)

zx
dx �

ρg cos2 θ
H

EA

Le


L

0
v(x, t)dx,

(14)

where y(x) � 4f(1 − x/L)x/L � ρg cos θ/2H(Lx − x2) is
the cable’s static configuration, and f � ρgL2 cos θ/8H is
the stay cable’s mid-span sag. Restricted by experimental
conditions, the test cable is horizontally tensioned, and the
inclination angle θ should be set as zero.Le ≈ [1 + 8(f/L)2]

is the static (stretched) length of the cable. ,e Irvin pa-
rameter is

λ2 �
EA

Le/L
·
(ρgL cos θ)

2

H
3 . (15)

By substituting equations (14) and (15) into equation
(13), they can be simplified into

z
2
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Figure 3: Test curve and theoretical curve: (a) case 4, (b) case 5, and (c) case 6.
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Since the displacement continuity of the shallow cable at
the damper location is considered, the solution of equation
(16) can be expressed as

v(x) �

v l1( 
sin(βx)

sin βl1( 
+

8f

(βL)
2

h

H
· 1 − cos(βx) − tan

βl1

2
 sin(βx) , 0≤ x≤ l1

v l1( 
sin βx′( 

sin βl2( 
+

8f

(βL)
2

h

H
· 1 − cos βx′(  − tan

βl2

2
 sin βx′(  , 0≤ x′ ≤ l2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where β � ω
����
ρ/H


, v(l1) is the cable vibration amplitude at

the damper installation location. Substitute the two terms of
equation (17) into (16), eliminate the time term, and add
them together to obtain

8f

(βL)
2

h

H
2 tan

βl1
2

  + 2 tan
βl2
2

  − βL +
(βL)

3

λ2
  � v l1(  tan

βl1
2

  + tan
βl2
2

  . (18)

From the force balance condition at the damper location,
equation (19) can be obtained:

H
zv l

+
1 , t( 

zx
− H

zv l
−
1 , t( 

zx
� F. (19)

Substitute equation (17) into equation (19) and remove the
time term to obtain

8f

(βL)
2

h

H
tan

βl1

2
  + tan

βl2

2
   � −v l1(  cot βl1(  + cot βl2(  +

1
Hβ

F

v l1( 
 . (20)

Considering the displacement compatibility of equation
(18) and the force equilibrium of equation (20) at the VID
location, the wave number equation can be obtained as

cot βl1(  + cot βl2(  +
tan βl1/2(  + tan βl2/2(  

2

2 tan βl1/2(  + 2 tan βl2/2(  − βL + (βL)
3/λ2  

� −
1

Hβ
F

v l1( 
. (21)
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Figure 4: In-plane static profile of inclined cable-VID system.
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Considering λ2 � 0, the third term of equation (21) is
also zero, which is consistent with the wave number
equation of the taut cable [38–40]. ,e tangent sum is
expressed using equation (22), while the cotangent sum is
expressed using equation (23):

tan
1
2
βl1  + tan

1
2
βl2  �

sin((1/2)βL)

cos (1/2)βl1( cos (1/2)βl2( 
,

(22)

cot βl1(  + cot βl2(  �
sin(βL)

sin βl1( sin βl2( 
. (23)

,e following normalized parameters are defined:

v(x) �
v(x)

L
F �

F

π2H
δ x − l1  � Lδ x − l1(  ω0 �

π
L

��
H

ρ



t � ω0t x �
x

L
ω �

ω
ω0

β �
Lβ
π

bd �
bdLω2

0

π2
H

cd �
cdLω0

π2H

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

Among them, the variables whose superscripts are wavy
lines represent the amplitude of the variables, and those
whose superscripts are straight lines are the normalized

variables. According to above derivation, the wave number
equation can be normalized as

sin
βπ
2

  sin
βπ
2

  − cos
βπ
2

 
βπ
2

−
4
λ2

βπ
2

 

3
⎡⎢⎣ ⎤⎥⎦

⎧⎨

⎩

⎫⎬

⎭

� −2
π
β

F

v
 sin

βπl1
2

 sin
βπl2
2

  · sin
βπ
2

  − cos
βπl1
2

 cos
βπl2
2

 
βπ
2

−
4
λ2

βπ
2

 

3
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⎧⎨

⎩

⎫⎬

⎭

. (25)

4.2. Normalized Wave Number of Symmetric Mode. ,e
solution of the normalized wave number, equation (25), can
be expressed as two solution branches: one is related to
symmetric modes, and the other is related to antisymmetric
modes. In symmetric mode, cable vibration is associated

with the second term in equation (25). ,erefore, dividing
sin(βπ/2) eliminates the influence of the antisymmetric
mode. ,e normalized wave number equation for the
symmetric mode is obtained as

tan
βπ
2

  −
βπ
2

−
4
λ2

βπ
2

 

3
⎡⎢⎣ ⎤⎥⎦

� −2Φ
sin βπl1/2 sin βπl2/2 

sin(βπ/2)
· tan(βπ/2) −

cos βπl1/2 cos βπl2/2 

cos(βπ/2)
(βπ/2) − 4/λ2 (βπ/2)

3
 

⎧⎨

⎩

⎫⎬

⎭

. (26)

To simplify equation (26), equation (27) is introduced.
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cos βπl1/2 cos βπl1/2 

cos(βπ/2)
�
sin βπl1/2 sin βπl1/2 

cos(βπ/2)
+ 1.

(27)

After simplifying, equation (26) can be expressed as

tan
βπ
2

  −
βπ
2

−
4
λ2

βπ
2

 

3
⎡⎢⎣ ⎤⎥⎦

⎧⎨

⎩

⎫⎬

⎭(1 + 2ΦΘ) � 2ΦΘ2 tan
βπ
2

 
βπ
2

−
4
λ2

βπ
2

 

3
⎡⎢⎣ ⎤⎥⎦. (28)

,e parameters of the damper’s inertial coefficient and
viscous coefficient are normalized as mentioned in equation
(24), and then Φ and Θ in equation (28) can be defined as

Φ �
π −bdω

2
+ cdiω 

β
,

Θ �
sin βπl1/2 sin βπl2/2 

sin(βπ/2)
.

(29)

According to the above, the normalized wave number of
symmetric mode is defined as

tan
βπ
2

  �
βπ
2

−
4
λ2

βπ
2

 

3
⎡⎢⎣ ⎤⎥⎦ +

2ΦΘ2 (βπ/2) − 4/λ2 (βπ/2)
3

 
2

1 + 2ΦΘ 1 − Θ (βπ/2) − 4/λ2 (βπ/2)
3

  
. (30)

4.3. Normalized Wave Number of Antisymmetric Mode. In antisymmetric mode, divide the wave number equation
(25) by cos(βπ/2) to eliminate the symmetric mode’s in-
fluence on the wave number equation.

tan
βπ
2

  sin
βπ
2

  − cos
βπ
2

 
βπ
2

−
4
λ2

βπ
2

 

3
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⎩

⎫⎬

⎭
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3
⎡⎢⎣ ⎤⎥⎦

⎧⎨
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⎫⎬

⎭

. (31)

To simplify equation (31), the following Equation is
introduced:

sin βπl2/2 

cos(βπ/2)
� cos

βπl1

2
 tan

βπ
2

  − sin
βπl1

2
 . (32)

,e normalized wave number of antisymmetric mode is
defined in equation (33), and equation (34) is introduced for
convenience.

tan
βπ
2

  �
2Φ sin2 βπl1/2 

Ψ + 2Φ sin βπl1/2 cos βπl1/2 
, (33)

Ψ �
sin(βπ/2) − cos(βπ/2) (βπ/2) − 4/λ2 (βπ/2)

3
 

sin(βπ/2) − cos βπl1/2  cos βπl2/2  (βπ/2) − 4/λ2 (βπ/2)
3

 
. (34)
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Equations (30) and (33) are solved by Newton’s it-
eration method. Analytical solutions can be obtained. In
this study, through the numerical calculation software
Matlab, the normalized wave number is obtained, and
then the mode damping ratios are calculated by the
following equations:

βj � βj



 iξj ±
�����

1 − ξ2j


 ,

ξj �
Im βj 

βj




, (j � 1, 2, . . . , n).

(35)

5. Cable-VID System Testing and Analysis

5.1. Experimental Setup of Scaled Cable-VID System. To
experimentally evaluate the vibration control perfor-
mance of the VID, determine the frequency variation
characteristics of the cable-VID system, and validate the
theoretical analysis results, prototype dampers with three
different inertial coefficients and shallow cable were
established in the laboratory. Considering the experi-
mental conditions, this study chose a wire rope with a
diameter of 9.3 mm as the cable, which was horizontally
anchored to the reaction frame and increased the wire
rope’s weight by installing a small mass block. Figure 5
shows the cable-VID system. ,e main parameters of the
cable are listed in Table 3. Figure 6 illustrates a schematic
diagram of the cable vibration control. ,e VID was
attached to the cable 2.3 m away from the anchor, in-
corporating a load cell and a displacement sensor to
monitor the mechanical performance of the VID. Six
laser displacement sensors were installed 0.7 m, 1.4 m,
2.3 m, and 3.5 m away from the left anchor, and 1.4 m and
2.3 m away from the right anchor. Displacement sensors
were adopted to identify the mode damping ratios of the
cable. ,e DH5956 data acquisition system collected all
the signals with a 1000 Hz sampling frequency.

5.2. Analysis of Vibration Control Effect. At present, ana-
lyzing the attenuation speed of the cable’s free vibration can
help determine the damper’s influence on the vibration of
the cable. ,e evaluation index is the mode damping ratio. It
was found that the cable could be excited easily by just one
human at the antinode of the vibration mode shape with the
excitation frequency tuned to the natural cable frequency.
When the vertical vibration amplitude reached a certain
value, the man stopped excitation and allowed the cable to
continue freely decaying the vibration. ,e time history of
the decay of the vertical vibration was then recorded
[15, 41, 42]. In this experiment, under the cable’s controlled
vibration condition, the time history curve collected in the
experiment was fitted by the exponential function. ,e free
vertical vibration data were filtered by a bandpass filter to
eliminate the influence of other modes.

At the same time, the parameters of the VID are nor-
malized according to equation (24), the normalized pa-
rameters are brought into equations (30) and (33), and the

mode damping ratios can be obtained through equation
(35). ,e normalized values of each parameter are shown in
Table 4.

,e normalized inertial coefficients of case 1, case 2,
and case 3 are 0.13, 0.3, and 0.61, respectively. ,e at-
tenuation curves of the first symmetric mode vibration
are shown in Figures 7(a)–7(c), respectively. ,e nor-
malized inertial coefficients of case 4, case 5, and case 6
are 0.13, 0.3, and 0.61, respectively. ,e attenuation
curves of the first antisymmetric mode vibration are
shown in Figures 8(a)–8(c), respectively. By fitting the
time history curve at the cable damper’s installation
location, the damping ratios of the first symmetric and
antisymmetric modes were obtained. Simultaneously,
the symmetric point curve at the other end of the cable
was obtained. By comparing the amplitude at damper’s
installation location and its symmetric point at the other
end of the cable, the displacement amplification effect of
the cable-VID system can be observed.

,is study presents the measured damping ratio and the
theoretically damping ratio at the damper’s installation
location. Simultaneously, the normalized frequency calcu-
lated by the theory was deduced and compared with the
measured frequency, which verified the accuracy of the
theoretical calculation; it can also explain the change in the
cable frequency with the additional VID. ,e test results,
theoretical results, and deviations are summarized in
Tables 5–7.

Figures 9(a)–9(c) show the comparison of theoretical
results and experimental results for the different normalized
inertial coefficients. ,e figure shows that the test results are
in good agreement with the theoretical results. ,e theo-
retical analysis method described in this study is accurate,
and the mode damping ratio of the cable can be analyzed by
this theoretical method.

5.3.OptimalVIDDesignMethod. ,is study uses an iterative
method to solve equations (29) and (32). With the pure
inertial device’s contribution, the viscous coefficient Cd is
zero. Adding inertial coefficient generally reduces normal-
ized wave numbers. All wave numbers decrease with an
increasing inertial coefficient. In general, higher modes are
associated with faster decreasing rates than lower modes.
Finally, the decreasing wave numbers approach asymptotic
lower bounds. ,is situation is shown in Figure 10. ,ese
wave numbers should be used as the initial value of the
iteration in the VID optimization calculation [30].

Figure 10 shows that, in both symmetric and antisym-
metric modes, the lower limit of the frequency can be ap-
proximated as the adjacent lower mode of an uncontrolled
cable with a length of l2 (equivalent to the cable being
clamped in the damper installation location). ,e shallow
cable’s theoretical results in this study are approximately the
same as those previously reported in [30, 35].

When the normalized inertial coefficient is 0.13,
Figure 11(a) shows a clear schematic drawing of wave
number loci. ,e wave number of the first symmetric mode
moves toward the right with an increasing viscous
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coefficient. As the viscous coefficient approaches infinity
(c �∞), the first symmetric mode approaches the real axis.
,is finding implies that the cable is prone to the locking-
like effect at the damper location. ,e first antisymmetric
mode’s wave number moves along a quarter-circle with an
increasing damping coefficient. In Figure 11(a), when the
normalized viscous coefficient increases, the first antisym-
metric mode’s wave number will reach the imaginary axis.
,e first antisymmetric mode is overdamped after the locus
reaches an imaginary axis. ,is reveals the reason why the
damping ratio of the antisymmetric mode increases with the
increase of the viscous coefficient when the normalized
inertial coefficient is 0.13 in Figure 9(a). As shown in
Figure 11(d), when the viscous coefficient increases, the first
symmetric mode frequency and the first antisymmetric
mode frequency both increase.

When the normalized inertial coefficient is 0.3,
Figure 11(b) shows a schematic drawing of wave number
loci. ,e wave number of the first symmetric mode moves
toward the right with an increasing viscous coefficient. As
the damping coefficient approaches infinity, the first sym-
metric mode approaches the real axis. ,e first antisym-
metric mode’s wave number still moves along a nearly
quarter-circle with increasing viscous coefficient when
approaching the imaginary axis. As shown in Figure 11(b),
the wave numbers of the symmetric mode and the anti-
symmetric mode have an intersection point at a certain
viscous coefficient (cd � 0.6). Also shown in Figure 9(b),
before reaching this certain normalized viscous coefficient,
the damping ratios of the first symmetric mode and the first
antisymmetric mode of the cable are almost the same.
However, after exceeding this certain viscous coefficient, the
damping ratio of the first symmetric mode decreases, and the
damping ratio of the first antisymmetric mode continues to
increase. ,is study defines this viscous coefficient (cd � 0.6)
and the corresponding inertial coefficient (bd � 0.3) as
optimal value. Because, after exceeding this value, the

damping ratio of the symmetric mode will gradually de-
crease, this value can obtain optimal damping ratio of the
two adjacent vibration modes. As shown in Figure 11(e), as
the viscous coefficient increases, the first symmetric mode’s
frequency and the first antisymmetric mode’s frequency
tend to be consistent.

Figure 11(c) shows a schematic drawing of the wave
number loci when the normalized inertial coefficient is
0.61. ,e first symmetric mode’s frequency moves along a
quarter-circle with an increasing viscous coefficient. ,e
first symmetric mode is overdamped after the locus
reaches an imaginary axis. ,e wave number of the first
antisymmetric mode moves toward the left with an in-
creasing viscous coefficient. As the damping coefficient
increases in Figure 11(c), the first symmetric mode ap-
proaches the imaginary axis. ,is reveals the reason why
the damping ratio of the symmetric mode increases with
the increase of the viscous coefficient when the nor-
malized inertial coefficient is 0.61 in Figure 9(c). As
shown in Figure 11(f ), the symmetric mode frequency
and the antisymmetric mode frequency get close to each
other, but they do not converge.

5.4. Mode Shape Analysis. Figures 12(a) and 12(b) show
the normalized mode shapes of the first symmetric mode
and first antisymmetric mode of the cable under different
inertial coefficients, respectively. ,e figure accurately
explains the displacement amplification observed in the
experiment. For the symmetric mode, after the inertial
coefficient is optimized (bd � 0.3), the VID can increase
the displacement of the cable at the installation location
of the damper and consumes more energy. ,e vibration
can be quickly attenuated. ,e effect of the VID on the
displacement amplification of the damper can be intu-
itively understood as improving the installation location
of the damper. For the first symmetric mode, the larger
the normalized inertial coefficient, the better the
damping effect. However, for the first antisymmetric
mode, the amplification phenomenon can also be un-
derstood as improving the damper’s installation location.
However, when the inertial coefficient exceeds the op-
timal value (bd � 0.3), it is equivalent to the fact that VID
has been installed near the node of the antisymmetric
mode shape. ,e mode damping will be reduced due to
the excessive inertial coefficient.

Cable

VID

Displacement
sensor

Figure 5: Scale cable-damper test system.

Table 3: Physical parameters of the scaled cable.

Item Value
Cable force (N) 7170
Cable length (m) 14
Mass per unit length (kg/m) 2.402
Cross-sectional area (m2) 5.02 E− 5
Irvin parameters (λ2) 3.316
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Cable
1.4m

2.3m

0.7m

Displacement
sensor

Force sensor

1.4m
2.3m

3.5m

Reaction
frame

Reaction
frame

VID

① ② ③ ④

⑤ ⑥

⑦

⑧
bd cd

Figure 6: Sensor locations in the test model.

Table 4: ,e normalized parameters of the damper.

Cases 1 and 4 Cases 2 and 5 Cases 3 and 6 Cases 1∼6
Inertial coefficient, bd (kg) 4.2334 10.0136 20.4042 Viscous coefficient, cd (N·s/m) 66.0079
Normalized inertial coefficient, bd 0.13 0.30 0.61 Normalized viscous coefficient, cd 0.16
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Figure 7: Vibration attenuation curve of symmetric mode: (a) b � 0.13, (b) b � 0.3, and (c) b � 0.61.
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Figure 8: Vibration attenuation curve of antisymmetric mode: (a) b � 0.13, (b) b � 0.3, and (c) b � 0.61.

Table 5: Damping ratio results summary and deviation.

bd � 0.13 First symmetric mode First antisymmetric mode

Test damping ratio, ξ1 (%) 4.23 6.72
,eoretical damping ratio, ξ2 (%) 4.42 6.88
Deviation, (ξ1 − ξ2)/ξ2 (%) −4.30 −2.32
Test frequency, f1(Hz) 1.92 3.17
Deduced frequency, f2 (Hz) 1.92 3.15
Deviation, (f1 − f2)/f2 (%) 0 0.63

Table 6: Damping ratio results summary and deviation.

bd � 0.3 First symmetric mode First antisymmetric mode

Test damping ratio, ξ1 (%) 6.38 6.24
,eoretical damping ratio, ξ2 (%) 6.17 6.17
Deviation, (ξ1 − ξ2)/ξ2 (%) 3.40 1.13
Test frequency, f1 (Hz) 1.77 2.77
Deduced frequency, f2 (Hz) 1.77 2.73
Deviation, (f1 − f2)/f2 (%) 0 1.47
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Table 7: Damping ratio results summary and deviation.

bd � 0.61 First symmetric mode First antisymmetric mode

Test damping ratio, ξ1 (%) 7.51 2.02
,eoretical damping ratio, ξ2 (%) 7.51 2.17
Deviation, (ξ1 − ξ2)/ξ2 (%) 0.00 −6.91
Test frequency, f1 (Hz) 1.55 2.59
Deduced frequency, f2 (Hz) 1.55 2.47
Deviation, (f1 − f2)/f2 (%) 0 4.85
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Figure 9: Comparison between experimental and theoretical damping ratios. (a) bd � 0.13. (b) bd � 0.3. (c) bd � 0.61.
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Figure 11: Continued.
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6. Conclusions

In this study, we conducted normalized complex-valued
modes analysis and experimental research on a novel viscous
inertial damper. ,e numerical and experimental results
agree well, demonstrating the accuracy of the proposed
method for cable vibration control. ,e mechanical prop-
erties of the cable-VID system were analyzed in detail. ,e
main conclusions of this study are summarized as follows:

(1) ,e novel viscous inertial damper constructed in this
study can effectively suppress cable vibration,

improve the cable’s mode damping ratio, and more
quickly attenuate cable vibration.

(2) Compared with the traditional complex-valued
modes analysis, after the parameters are normalized
according to the method described in this article, the
frequency-dependent phenomena and the damping
ratio of the symmetric and antisymmetric modes of
the cable were discussed in detail.

(3) When the normalized inertial coefficient and the
normalized viscous coefficient are optimal, the op-
timal damping ratio of the two adjacent vibration
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Figure 11: Wave number loci (a–c); normalized frequency variation (d–f).
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Figure 12: Mode shape of cable. (a) Symmetric mode. (b) Antisymmetric mode.
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modes is obtained simultaneously. For example, the
first symmetric mode and the first antisymmetric
mode are optimal at the same time, or the first
antisymmetric mode and the second symmetric
mode are optimal at the same time. However, the
frequencies of the two modes are the same.

(4) According to the numerical method and the test
method proposed in this study, the parameters of the
damper can be designed according to the target
mode of vibration. After theoretical calculations, the
method proposed in this study can be used to pre-
cisely obtain the viscous and inertial coefficients.

(5) In the symmetric and antisymmetric modes, the
displacement amplification phenomena of the VID
were verified by theoretical analysis and experi-
mental observation.,is finding proves that the VID
provides superior vibration reduction performance
when the inertial coefficient is optimal. ,e VID
fabricated in this study can overcome the disad-
vantages of displacement loss caused by the tradi-
tional oil damper.
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